We employed a de novo synthesized porphyrin module to construct one-dimensional (1D) Cu-coordinated polymers on Cu(111) and Ag(111) surfaces. The programmed geometry and functionality of the molecular module together with its conformational flexibility and substrate interaction yields sinuous metal-organic polymeric assemblies, based on an unusual two-fold Cu-pyridyl coordination motif. An analysis of scanning tunneling microscopy (STM) data reveals the occurrence of two enantiomers, resulting from the surface confinement that deconvolutes the module in 2D-chiral conformational isomers. The stereoisomers exhibit site-specific surface anchoring, from whence three discrete orientations are possible for each species. Their sequence and mutual arrangement determine direction and curvature of the metal-organic chains. The Cu-coordinated polymers are very similar on both Cu(111) and Ag(111), where their formation is induced by intrinsic and coevaporated adatoms, respectively, which indicates that the lateral bonding motif is predominantly independent of the substrate. In addition, molecular manipulation experiments show the collective motion of entire segments of the Cu-coordinated multi-porphyrin polymers. © 2010 American Chemical Society.

Self-Assembly of Flexible One-Dimensional Coordination Polymers on Metal Surfaces

FABBRO, Chiara;
2010-01-01

Abstract

We employed a de novo synthesized porphyrin module to construct one-dimensional (1D) Cu-coordinated polymers on Cu(111) and Ag(111) surfaces. The programmed geometry and functionality of the molecular module together with its conformational flexibility and substrate interaction yields sinuous metal-organic polymeric assemblies, based on an unusual two-fold Cu-pyridyl coordination motif. An analysis of scanning tunneling microscopy (STM) data reveals the occurrence of two enantiomers, resulting from the surface confinement that deconvolutes the module in 2D-chiral conformational isomers. The stereoisomers exhibit site-specific surface anchoring, from whence three discrete orientations are possible for each species. Their sequence and mutual arrangement determine direction and curvature of the metal-organic chains. The Cu-coordinated polymers are very similar on both Cu(111) and Ag(111), where their formation is induced by intrinsic and coevaporated adatoms, respectively, which indicates that the lateral bonding motif is predominantly independent of the substrate. In addition, molecular manipulation experiments show the collective motion of entire segments of the Cu-coordinated multi-porphyrin polymers. © 2010 American Chemical Society.
File in questo prodotto:
File Dimensione Formato  
2010,JACS.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 3.35 MB
Formato Adobe PDF
3.35 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/34803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 129
  • ???jsp.display-item.citation.isi??? 126
social impact