Today, at the frontier of biomedical research, the need has been clearly established for integrating disease detection and therapeutic function in one single theranostic system. Light-emitting nanoparticles are being intensively investigated to fulfil this demand, by continuously developing nanoparticle systems simultaneously emitting in both the UV/visible (light-triggered release and activation of drugs) and the near-infrared (imaging and tracking) spectral regions. In this work, rare-earth (RE) doped nanoparticles (RENPs) were synthesized via a thermal decomposition process and spectroscopically investigated as potential candidates as all-in-one optical imaging, diagnostic and therapeutic agents. These core/shell/shell nanoparticles (NaGdF4:Er3+,Ho3+,Yb3+/ NaGdF4:Nd3+,Yb3+/NaGdF4) are optically excited by heating-free 806 nm light that, aside from minimizing the local thermal load, also allows to obtain a deeper sub-tissue penetration with respect to the still widely used 980 nm light. Moreover, these water-dispersed nanoplatforms offer interesting assets as triggers/probes for biomedical applications, by virtue of a plethora of emission bands (spanning the 380–1600 nm range). Our results pave the way to use these RENPs for UV/visible-triggered photodynamic therapy/drug release, while simultaneously tracking the nanoparticle biodistribution and monitoring their therapeutic action through the near-infrared signal that overlaps with biological transparency windows.

Today, at the frontier of biomedical research, the need has been clearly established for integrating disease detection and therapeutic function in one single theranostic system. Light-emitting nanoparticles are being intensively investigated to fulfil this demand, by continuously developing nanoparticle systems simultaneously emitting in both the UV/visible (light-triggered release and activation of drugs) and the near-infrared (imaging and tracking) spectral regions. In this work, rare-earth (RE) doped nanoparticles (RENPs) were synthesized via a thermal decomposition process and spectroscopically investigated as potential candidates as all-in-one optical imaging, diagnostic and therapeutic agents. These core/shell/shell nanoparticles (NaGdF4: Er3+, Ho3+, Yb3+/ NaGdF4: Nd3+, Yb3+/NaGdF4) are optically excited by heating-free 806 nm light that, aside from minimizing the local thermal load, also allows to obtain a deeper sub-tissue penetration with respect to the still widely used 980 nm light. Moreover, these water-dispersed nanoplatforms offer interesting assets as triggers/probes for biomedical applications, by virtue of a plethora of emission bands (spanning the 380-1600 nm range). Our results pave the way to use these RENPs for UV/visible-triggered photodynamic therapy/drug release, while simultaneously tracking the nanoparticle biodistribution and monitoring their therapeutic action through the near-infrared signal that overlaps with biological transparency windows.

Covering the optical spectrum through collective rare-earth doping of NaGdF4 nanoparticles: 806 and 980 nm excitation routes

MARIN, RICCARDO;CANTON, Patrizia;
2017-01-01

Abstract

Today, at the frontier of biomedical research, the need has been clearly established for integrating disease detection and therapeutic function in one single theranostic system. Light-emitting nanoparticles are being intensively investigated to fulfil this demand, by continuously developing nanoparticle systems simultaneously emitting in both the UV/visible (light-triggered release and activation of drugs) and the near-infrared (imaging and tracking) spectral regions. In this work, rare-earth (RE) doped nanoparticles (RENPs) were synthesized via a thermal decomposition process and spectroscopically investigated as potential candidates as all-in-one optical imaging, diagnostic and therapeutic agents. These core/shell/shell nanoparticles (NaGdF4: Er3+, Ho3+, Yb3+/ NaGdF4: Nd3+, Yb3+/NaGdF4) are optically excited by heating-free 806 nm light that, aside from minimizing the local thermal load, also allows to obtain a deeper sub-tissue penetration with respect to the still widely used 980 nm light. Moreover, these water-dispersed nanoplatforms offer interesting assets as triggers/probes for biomedical applications, by virtue of a plethora of emission bands (spanning the 380-1600 nm range). Our results pave the way to use these RENPs for UV/visible-triggered photodynamic therapy/drug release, while simultaneously tracking the nanoparticle biodistribution and monitoring their therapeutic action through the near-infrared signal that overlaps with biological transparency windows.
File in questo prodotto:
File Dimensione Formato  
A_Skripka_et_al_PCCP.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Accesso chiuso-personale
Dimensione 3.24 MB
Formato Adobe PDF
3.24 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3686058
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact