The functionalization of mesoporous silica nanoparticles (MSNs) is a very important step in the preparation of these systems for a variety of applications. The surface of MSNs can be widely functionalized with different organic groups. There are essentially two ways to covalently modify the surface of nanoparticles: co-condensation and post-grafting. Generally, for both of these methods, the precursors are: [(R’O)3SiR] and [Cl3SiR]. The paper summarizes the main experimental contributions and the recent advances in the study of interactions among organosilanes and the MSNs surface. In particular, it provides relevant and innovative examples of Solid State and Solution NMR (SSNMR and SolNMR) and Fourier Transform InfraRed (FTIR) spectroscopy that highlight different possible approaches to understand the MSNs-pendants interaction.

The functionalization of mesoporous silica nanoparticles (MSNs) is a very important step in the preparation of these systems for a variety of applications. The surface of MSNs can be widely functionalized with different organic groups. There are essentially two ways to covalently modify the surface of nanoparticles: co-condensation and post-grafting. Generally, for both of these methods, the precursors are: [(R'O)(3)SiR] and [Cl3SiR]. The paper summarizes the main experimental contributions and the recent advances in the study of interactions among organosilanes and the MSNs surface. In particular, it provides relevant and innovative examples of Solid State and Solution NMR (SSNMR and SolNMR) and Fourier Transform InfraRed (FTIR) spectroscopy that highlight different possible approaches to understand the MSNs-pendants interaction.

Functionalization of Mesoporous Silica Nanoparticles with Organosilanes: Experimental Evidence of the Interaction Between Organic Groups and Silica Surface

Tedesco, Anna Del;Ambrosi, Emmanuele;Benedetti, Alvise
2017-01-01

Abstract

The functionalization of mesoporous silica nanoparticles (MSNs) is a very important step in the preparation of these systems for a variety of applications. The surface of MSNs can be widely functionalized with different organic groups. There are essentially two ways to covalently modify the surface of nanoparticles: co-condensation and post-grafting. Generally, for both of these methods, the precursors are: [(R'O)(3)SiR] and [Cl3SiR]. The paper summarizes the main experimental contributions and the recent advances in the study of interactions among organosilanes and the MSNs surface. In particular, it provides relevant and innovative examples of Solid State and Solution NMR (SSNMR and SolNMR) and Fourier Transform InfraRed (FTIR) spectroscopy that highlight different possible approaches to understand the MSNs-pendants interaction.
File in questo prodotto:
File Dimensione Formato  
review_Venice_MSN.pdf

non disponibili

Descrizione: Articolo di review
Tipologia: Documento in Pre-print
Licenza: Accesso chiuso-personale
Dimensione 566.17 kB
Formato Adobe PDF
566.17 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3700676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact