A group G has all of its subgroups normal-by-finite if H/H (G) is finite for all subgroups H of G. The Tarski-groups provide examples of p-groups (p a "large" prime) of nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper is to prove that a 2-group with every subgroup normal-by-finite is locally finite. We also prove that if |H/H (G) | 6 2 for every subgroup H of G, then G contains an Abelian subgroup of index at most 8.
Autori: | |
Data di pubblicazione: | 2018 |
Titolo: | Every 2-group with all subgroups normal-by-finite is locally finite. |
Rivista: | CZECHOSLOVAK MATHEMATICAL JOURNAL |
Digital Object Identifier (DOI): | http://dx.doi.org/10.21136/CMJ.2018.0504-16 |
Volume: | 68 |
Appare nelle tipologie: | 2.1 Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Every2Group.pdf | Articolo | Versione dell'editore | Accesso chiuso-personale | Open Access dal 01/09/2021 |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.