The replacement of animals in acute systemic toxicity testing remains a considerable challenge. Only animal data are currently accepted by regulators, including data generated by reduction and refinement methods. The development of Integrated Approaches to Testing and Assessment (IATA) is hampered by an insufficient understanding of the numerous toxicity pathways that lead to acute systemic toxicity. Therefore, central to our work has been the collection and evaluation of the mechanistic information on eight organs identified as relevant for acute systemic toxicity (nervous system, cardiovascular system, liver, kidney, lung, blood, gastrointestinal system and immune system). While the nervous and cardiovascular systems are the most frequent targets, no clear relationship emerged between specific mechanisms of target organ toxicity and the level (category) of toxicity. From a list of 114 chemicals with acute oral in vivo and in vitro data, 98 were identified with target organ specific effects, of which 93% were predicted as acutely toxic by the 3T3 neutral red uptake cytotoxicity assay and 6% as non-toxic. This analysis will help to prioritise the development of adverse outcome pathways for acute oral toxicity, which will support the assessment of chemicals using mechanistically informed IATA.

The replacement of animals in acute systemic toxicity testing remains a considerable challenge. Only animal data are currently accepted by regulators, including data generated by reduction and refinement methods. The development of integrated approaches to testing and assessment (IATA) is hampered by an insufficient understanding of the numerous toxicity pathways that lead to acute systemic toxicity. Therefore, central to our work has been the collection and evaluation of the mechanistic information on eight organs identified as relevant for acute systemic toxicity (nervous system, cardiovascular system, liver, kidney, lung, blood, gastrointestinal system, and immune system). While the nervous and cardiovascular systems are the most frequent targets, no clear relationship emerged between specific mechanisms of target organ toxicity and the level (category) of toxicity. From a list of 114 chemicals with acute oral in vivo and in vitro data, 97 were identified with target organ specific effects, of which 94% (91/97) were predicted as acutely toxic by the 3T3 neutral red uptake cytotoxicity assay and 6% (6/97) as non-toxic. Although specific target organ mechanisms of toxicity could in some cases explain the false negative prediction obtained with the cytotoxicity assay, in general it is difficult to explain in vitro misclassifications only on the basis of mechanistic information. This analysis will help to prioritize the development of adverse outcome pathways for acute oral toxicity, which will support the assessment of chemicals using mechanistically informed IATA.

Investigating cell type specific mechanisms contributing to acute oral toxicity

Lamon Lara;
2018-01-01

Abstract

The replacement of animals in acute systemic toxicity testing remains a considerable challenge. Only animal data are currently accepted by regulators, including data generated by reduction and refinement methods. The development of integrated approaches to testing and assessment (IATA) is hampered by an insufficient understanding of the numerous toxicity pathways that lead to acute systemic toxicity. Therefore, central to our work has been the collection and evaluation of the mechanistic information on eight organs identified as relevant for acute systemic toxicity (nervous system, cardiovascular system, liver, kidney, lung, blood, gastrointestinal system, and immune system). While the nervous and cardiovascular systems are the most frequent targets, no clear relationship emerged between specific mechanisms of target organ toxicity and the level (category) of toxicity. From a list of 114 chemicals with acute oral in vivo and in vitro data, 97 were identified with target organ specific effects, of which 94% (91/97) were predicted as acutely toxic by the 3T3 neutral red uptake cytotoxicity assay and 6% (6/97) as non-toxic. Although specific target organ mechanisms of toxicity could in some cases explain the false negative prediction obtained with the cytotoxicity assay, in general it is difficult to explain in vitro misclassifications only on the basis of mechanistic information. This analysis will help to prioritize the development of adverse outcome pathways for acute oral toxicity, which will support the assessment of chemicals using mechanistically informed IATA.
File in questo prodotto:
File Dimensione Formato  
Prieto et al. - 2018 - Investigating cell type specific mechanisms contributing to acute oral toxicity.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3715755
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact