This review deals with recent advances in the field of electrochemical sensing and biosensing with nanoelectrode ensembles (NEEs) and nanoelectrode arrays (NEAs), focusing mainly on articles published since 2015. At first, a brief introduction on the properties and possible advantages which characterize electroanalytical signals at the NEE/NEA is presented, followed by an overview on the most recent theoretical advances concerning the modeling of relevant electrochemical signals. Novel nanofabrication methods and nanoelectrode materials are discussed together with original (bio)funtionalization procedures, suitable to obtain more sensitive and reliable sensors. Advanced applications of NEE/ NEA-based sensors in the biological and biomedical field are presented, including their integration with living cells and application for neurochemical studies. Advances, present limits, and prospects for research in the area are finally is cussed. As far as future research trends are concerned, on the one hand, there is a need for development of theoretical models which take into account specific effects that can rule electrochemistry with arrays of nanosized electrodes, such as double layer and quantum mechanical effects. On the other hand, frontier studies concerning the application of the NEE/ NEA to the biomedical and neurochemical fields can open new tracks both to fundamental knowledge and application.

This review deals with recent advances in the field of electrochemical sensing and biosensing with nanoelectrode ensembles (NEEs) and nanoelectrode arrays (NEAs), focusing mainly on articles published since 2015. At first, a brief introduction on the properties and possible advantages which characterize electroanalytical signals at the NEE/NEA is presented, followed by an overview on the most recent theoretical advances concerning the modeling of relevant electrochemical signals. Novel nanofabrication methods and nanoelectrode materials are discussed together with original (bio) funtionalization procedures, suitable to obtain more sensitive and reliable sensors. Advanced applications of NEE/NEA-based sensors in the biological and biomedical field are presented, including their integration with living cells and application for neurochemical studies. Advances, present limits, and prospects for research in the area are finally discussed. As far as future research trends are concerned, on the one hand, there is a need for development of theoretical models which take into account specific effects that can rule electrochemistry with arrays of nanosized electrodes, such as double layer and quantum mechanical effects. On the other hand, frontier studies concerning the application of the NEE/NEA to the biomedical and neurochemical fields can open new tracks both to fundamental knowledge and application.

Recent advances in sensing and biosensing with arrays of nanoelectrodes

KARIMIAN, Najmeh
;
Paolo Ugo
2019-01-01

Abstract

This review deals with recent advances in the field of electrochemical sensing and biosensing with nanoelectrode ensembles (NEEs) and nanoelectrode arrays (NEAs), focusing mainly on articles published since 2015. At first, a brief introduction on the properties and possible advantages which characterize electroanalytical signals at the NEE/NEA is presented, followed by an overview on the most recent theoretical advances concerning the modeling of relevant electrochemical signals. Novel nanofabrication methods and nanoelectrode materials are discussed together with original (bio) funtionalization procedures, suitable to obtain more sensitive and reliable sensors. Advanced applications of NEE/NEA-based sensors in the biological and biomedical field are presented, including their integration with living cells and application for neurochemical studies. Advances, present limits, and prospects for research in the area are finally discussed. As far as future research trends are concerned, on the one hand, there is a need for development of theoretical models which take into account specific effects that can rule electrochemistry with arrays of nanosized electrodes, such as double layer and quantum mechanical effects. On the other hand, frontier studies concerning the application of the NEE/NEA to the biomedical and neurochemical fields can open new tracks both to fundamental knowledge and application.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3717924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
social impact