Space confined catalysis has emerged as viable strategy for achieving potent and efficient catalysts in various important reactions. It offers a means of creating unique nanoscale chemical environments partitioned from the surrounding bulk space. This gives rise to the phenomena of nanoconfinement, where the energetics and kinetics of catalytic reactions can be modulated upon confining the catalysts in a particular site. Various scaffolds have been reported so far for confinement. Among these, void spaces under the cover of 2D materials, van der Waals (vdW) gaps of layered 2D materials, nanotubes, and porous surfaces have recently won copious attention. In this review, the concept of space confinement with respect to its effect on the electronic and structural properties of a catalyst is discussed. Emphasis is devoted to the catalysis of water splitting and CO2 reduction reactions. The progress in the design and applications of space confined catalysts is then traced. Finally, a discussion of emerging issues yet to be explored for this strategy to achieve a high efficiency, and future directions with the potential to become a new hotspots are presented.

Confined Catalysis: Progress and Prospects in Energy Conversion

Shifa T. A.
;
Vomiero A.
2019-01-01

Abstract

Space confined catalysis has emerged as viable strategy for achieving potent and efficient catalysts in various important reactions. It offers a means of creating unique nanoscale chemical environments partitioned from the surrounding bulk space. This gives rise to the phenomena of nanoconfinement, where the energetics and kinetics of catalytic reactions can be modulated upon confining the catalysts in a particular site. Various scaffolds have been reported so far for confinement. Among these, void spaces under the cover of 2D materials, van der Waals (vdW) gaps of layered 2D materials, nanotubes, and porous surfaces have recently won copious attention. In this review, the concept of space confinement with respect to its effect on the electronic and structural properties of a catalyst is discussed. Emphasis is devoted to the catalysis of water splitting and CO2 reduction reactions. The progress in the design and applications of space confined catalysts is then traced. Finally, a discussion of emerging issues yet to be explored for this strategy to achieve a high efficiency, and future directions with the potential to become a new hotspots are presented.
2019
N/D
File in questo prodotto:
File Dimensione Formato  
2019, AEM,.pdf

accesso aperto

Descrizione: Confined catalysis
Tipologia: Versione dell'editore
Licenza: Dominio pubblico
Dimensione 3.1 MB
Formato Adobe PDF
3.1 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3719255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 87
social impact