The evolution of cooperation is one of the fundamental problems of both social sciences and biology. It is difficult to explain how a large extent of cooperation could evolve if individual free riding always provides higher benefits and chances of survival. In absence of direct reciprocation, it has been suggested that indirect reciprocity could potentially solve the problem of large scale cooperation. In this paper, we compare the chances of two forms of indirect reciprocity with each other: a blind one that rewards any partner who did good to previous partners, and an embedded one that conditions cooperation on good acts towards common acquaintances. We show that these two versions of indirect reciprocal strategies are not very different from each other in their efficiency. We also demonstrate that their success very much relies on the speed of evolution: their chances for survival are only present if evolutionary updates are not frequent. Robustness tests are provided for various forms of biases.

The evolution of cooperation is one of the fundamental problems of both social sciences and biology. It is difficult to explain how a large extent of cooperation could evolve if individual free riding always provides higher benefits and chances of survival. In absence of direct reciprocation, it has been suggested that indirect reciprocity could potentially solve the problem of large scale cooperation. In this paper, we compare the chances of two forms of indirect reciprocity with each other: a blind one that rewards any partner who did good to previous partners, and an embedded one that conditions cooperation on good acts towards common acquaintances. We show that these two versions of indirect reciprocal strategies are not very different from each other in their efficiency. We also demonstrate that their success very much relies on the speed of evolution: their chances for survival are only present if evolutionary updates are not frequent. Robustness tests are provided for various forms of biases.

Blind vs. embedded indirect reciprocity and the evolution of cooperation

Simone RIGHI;
2017-01-01

Abstract

The evolution of cooperation is one of the fundamental problems of both social sciences and biology. It is difficult to explain how a large extent of cooperation could evolve if individual free riding always provides higher benefits and chances of survival. In absence of direct reciprocation, it has been suggested that indirect reciprocity could potentially solve the problem of large scale cooperation. In this paper, we compare the chances of two forms of indirect reciprocity with each other: a blind one that rewards any partner who did good to previous partners, and an embedded one that conditions cooperation on good acts towards common acquaintances. We show that these two versions of indirect reciprocal strategies are not very different from each other in their efficiency. We also demonstrate that their success very much relies on the speed of evolution: their chances for survival are only present if evolutionary updates are not frequent. Robustness tests are provided for various forms of biases.
2017
31st European Conference on Modelling and Simulation (ECMS 2017)
File in questo prodotto:
File Dimensione Formato  
ECMS2017.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso libero (no vincoli)
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3728710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact