A series of monometallic and bimetallic metal catalysts (Pd, Cu, Fe, PdCu, PdFe) supported on ZrO2 (6-8 nm) were synthesized and tested for the hydrogenation of bio-oil model compounds (furfural, vanillin, glucose) under 50 bar H2 at 100 °C. The catalysts were fully characterized and their properties related to their catalytic activity. The bimetallic PdFe and PdCu displayed enhanced catalytic performance compared to the monometallic catalysts for aldehyde hydrogenation (furfural, vanillin, glucose). For the best catalyst, 98% vanillin alcohol (VA) and 65.5% furfuryl alcohol (FA) conversion was obtained for 80 min batch-time. PdFe showed high selectivity toward sorbitol (74%) from glucose, though at low conversion (20%). Overall, we have demonstrated that bimetallic Fe- A nd Cu-based catalysts promoted by Pd show significantly better performance for the partial hydrogenation of bio-oil model compounds than the corresponding monometallic ones. The better performance of the Pd-doped Fe/Cu catalysts is linked to the presence of smaller and better dispersed Pd nanoparticles (STEM) and their lower acidity (∼90 μmol/g cat) than corresponding monometallic ones (∼167 μmol/g cat).

Hydrogenation of Biobased Aldehydes to Monoalcohols Using Bimetallic Catalysts

Signoretto M.;Pizzolitto C.;Menegazzo F.;
2020-01-01

Abstract

A series of monometallic and bimetallic metal catalysts (Pd, Cu, Fe, PdCu, PdFe) supported on ZrO2 (6-8 nm) were synthesized and tested for the hydrogenation of bio-oil model compounds (furfural, vanillin, glucose) under 50 bar H2 at 100 °C. The catalysts were fully characterized and their properties related to their catalytic activity. The bimetallic PdFe and PdCu displayed enhanced catalytic performance compared to the monometallic catalysts for aldehyde hydrogenation (furfural, vanillin, glucose). For the best catalyst, 98% vanillin alcohol (VA) and 65.5% furfuryl alcohol (FA) conversion was obtained for 80 min batch-time. PdFe showed high selectivity toward sorbitol (74%) from glucose, though at low conversion (20%). Overall, we have demonstrated that bimetallic Fe- A nd Cu-based catalysts promoted by Pd show significantly better performance for the partial hydrogenation of bio-oil model compounds than the corresponding monometallic ones. The better performance of the Pd-doped Fe/Cu catalysts is linked to the presence of smaller and better dispersed Pd nanoparticles (STEM) and their lower acidity (∼90 μmol/g cat) than corresponding monometallic ones (∼167 μmol/g cat).
File in questo prodotto:
File Dimensione Formato  
prove preprint.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Accesso chiuso-personale
Dimensione 897.47 kB
Formato Adobe PDF
897.47 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3730154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact