We consider an iterative preconditioning technique for non-convex large scale optimization. First, we refer to the solution of large scale indefinite linear systems by using a Krylov subspace method, and describe the iterative construction of a preconditioner which does not involve matrices products or matrices storage. The set of directions generated by the Krylov subspace method is used, as by product, to provide an approximate inverse preconditioner. Then, we experience our preconditioner within Truncated Newton schemes for large scale unconstrained optimization, where we generalize the truncation rule by Nash–Sofer (Oper. Res. Lett. 9:219–221, 1990) to the indefinite case, too. We use a Krylov subspace method to both approximately solve the Newton equation and to construct the preconditioner to be used at the current outer iteration. An extensive numerical experience shows that the proposed preconditioning strategy, compared with the unpreconditioned strategy and PREQN (Morales and Nocedal in SIAM J. Optim. 10:1079–1096, 2000), may lead to a reduction of the overall inner iterations. Finally, we show that our proposal has some similarities with the Limited Memory Preconditioners (Gratton et al. in SIAM J. Optim. 21:912–935, 2011).

Preconditioning Newton-Krylov Methods in Non-Convex Large Scale Optimization

FASANO, Giovanni;
2013-01-01

Abstract

We consider an iterative preconditioning technique for non-convex large scale optimization. First, we refer to the solution of large scale indefinite linear systems by using a Krylov subspace method, and describe the iterative construction of a preconditioner which does not involve matrices products or matrices storage. The set of directions generated by the Krylov subspace method is used, as by product, to provide an approximate inverse preconditioner. Then, we experience our preconditioner within Truncated Newton schemes for large scale unconstrained optimization, where we generalize the truncation rule by Nash–Sofer (Oper. Res. Lett. 9:219–221, 1990) to the indefinite case, too. We use a Krylov subspace method to both approximately solve the Newton equation and to construct the preconditioner to be used at the current outer iteration. An extensive numerical experience shows that the proposed preconditioning strategy, compared with the unpreconditioned strategy and PREQN (Morales and Nocedal in SIAM J. Optim. 10:1079–1096, 2000), may lead to a reduction of the overall inner iterations. Finally, we show that our proposal has some similarities with the Limited Memory Preconditioners (Gratton et al. in SIAM J. Optim. 21:912–935, 2011).
File in questo prodotto:
File Dimensione Formato  
10.1007_s10589-013-9563-6.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Licenza non definita
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/38255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact