Kernel methods provide a convenient way to apply a wide range of learning techniques to complex and structured data by shifting the representational problem from one of finding an embedding of the data to that of defining a positive semidefinite kernel. One problem with the most widely used kernels is that they neglect the locational information within the structures, resulting in less discrimination. Correspondence-based kernels, on the other hand, are in general more discriminating, at the cost of sacrificing positive-definiteness due to their inability to guarantee transitivity of the correspondences between multiple graphs. In this paper we generalize a recent structural kernel based on the Jensen-Shannon divergence between quantum walks over the structures by introducing a novel alignment step which rather than permuting the nodes of the structures, aligns the quantum states of their walks. This results in a novel kernel that maintains localization within the structures, but still guarantees positive definiteness. Experimental evaluation validates the effectiveness of the kernel for several structural classification tasks. © 2014 Springer-Verlag Berlin Heidelberg.

Transitive State Alignment for the Quantum Jensen-Shannon KernelStructural, Syntactic, and Statistical Pattern Recognition

TORSELLO, Andrea;GASPARETTO, ANDREA;ROSSI, LUCA;
2014-01-01

Abstract

Kernel methods provide a convenient way to apply a wide range of learning techniques to complex and structured data by shifting the representational problem from one of finding an embedding of the data to that of defining a positive semidefinite kernel. One problem with the most widely used kernels is that they neglect the locational information within the structures, resulting in less discrimination. Correspondence-based kernels, on the other hand, are in general more discriminating, at the cost of sacrificing positive-definiteness due to their inability to guarantee transitivity of the correspondences between multiple graphs. In this paper we generalize a recent structural kernel based on the Jensen-Shannon divergence between quantum walks over the structures by introducing a novel alignment step which rather than permuting the nodes of the structures, aligns the quantum states of their walks. This results in a novel kernel that maintains localization within the structures, but still guarantees positive definiteness. Experimental evaluation validates the effectiveness of the kernel for several structural classification tasks. © 2014 Springer-Verlag Berlin Heidelberg.
2014
Lecture Notes in Computer ScienceStructural, Syntactic, and Statistical Pattern Recognition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/43890
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact