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A market mechanism for multiple air traffic resources

Abstract

We introduce a model that extends the concept of air traffic flow management slot to the concept
of time window, allowing to effectively deal with a network of interacting regulations. The model aims
at minimising the total cost of delay of a time window allocation to flights and is based on an integer
programming problem. It consists in a market-based mechanism between flights and a central authority
to trade time windows, which fulfils the properties of individual rationality (every participating airline has
a non-negative profit from the mechanism) and weak budget-balance (the mechanism requires no external
subsidisation). Equity is assumed to be respected because the First Planned First Served allocation is
an endowment guaranteed to all flights and allocated for free. The proposed market mechanism can be
implemented in a distributed manner preventing the disclosure of confidential information by airlines,
and is based on the Lagrangian relaxation of the integer optimisation problem, solved through the
subgradient algorithm. We present some computational experiments conducted to test the model on
some real instances of air traffic data.
Keywords: Air Traffic Management (ATM), Air Traffic Flow Management (ATFM), ATFM regulation,
subgradient algorithm, market mechanism, pricing equilibrium.

1. Introduction1

Air traffic resources consisting in airports and airspace volumes have a limited capacity in terms of2

number of aircraft that can enter the resource in a given period of time. The factor determining capacity3

is the amount of traffic that can be safely handled by air traffic controllers. In the current European4

Air Traffic Flow Management (ATFM) system, when an imbalance between traffic demand and available5

capacity is foreseen in an airport or airspace volume, the Network Manager (NM) can impose an ATFM6

regulation, which limits the rate of aircraft that can enter the regulated resource in a given period of7

time. This ATFM measure is achieved by delaying the departure of flights from their origin airport.8

ATFM delays are imposed to flights through an ATFM slot, a 15-minute tolerance time interval that9

flights have to comply with for departure. In the current system, ATFM slots are allocated to flights10

according to a First Planned First Served (FPFS) principle.11

Besides a better management of ATC sectors through configurations or splitting of sectors, alter-12

natives to ATFM regulations to resolve congestion are for example re-routing of traffic flows. These13

choices, however, “have a negative impact on the environment due to longer routes and/or sub-optimal14

altitude profiles” (Dalmau, 2022). ATFM regulations also have a negative economic impact because15

ATFM delays represent a cost for airlines: pre-pandemic estimations report 1.93B€ in 2018 and 1.76 B€16

in 2019 (Performance Review Commission, 2019). Recently, new quantitative and qualitative indicators17

to assess the expected impact of the costs ATFM regulations would impose on airspace users have been18

defined (Delgado et al., 2021). Therefore economic benefits are possible by considering an allocation of19

ATFM slots that takes into account the different impact that delays have on costs for airlines. Added to20

these savings are environmental benefits since a possible reduction in costs due to ATFM delays makes21

the rerouting option less attractive.22

The most immediate way to change the FPFS allocation is to let the NM centrally determine an23

allocation that minimises the overall costs of the delay. However, this solution is not feasible mainly24
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for two reasons: on the one hand, a single airline could eventually have a higher cost of delay with this25

new allocation than with FPFS (for the benefit of the system optimum a user is particularly penalised)26

and therefore it is not clear why it should agree to deviate from it. On the other hand, airlines need to27

communicate their delay costs to the NM and this is sensitive information that is released very reluctantly.28

It is therefore necessary to identify mechanisms which in some way involve airlines or which at least do29

not oblige them to disclose confidential information.30

Since for each regulation the number of slots is fixed (see Section 3.1), modifying the FPFS allocation31

means in practice allowing an exchange of slots (which we also refer to as slot trade or swap). In32

the United States context, Vossen and Ball (2006a,b) and Sherali et al. (2011) propose mathematical33

programming models for the exchange between airlines (inter-airlines) of slots if some flights are cancelled34

or further delayed compared to the initial allocation. Delays are assigned within a Ground delay program35

(Liu et al., 2019) where the ration by schedule (RBS) procedure is used to allocate slots (RBS follows36

the same principles of the FPFS). These models require trading to be regulated by a “mediator” (the37

FAA in their case), but they do not involve monetary aspects. However, the possibility of designing38

“market-based mechanisms in which airlines would be able to buy and sell slots” is mentioned since39

“benefits could be substantial” (Vossen and Ball, 2006b). This suggestion was taken in by Castelli et al.40

(2011b) who developed a market mechanism that enables airlines to pay for delay reduction or receive41

compensation for delay increase by adapting the Vossen and Ball (2006a) model to the European context.42

This mechanism fulfils some desirable properties for a market including individual rationality (i.e., each43

participant has a non-negative payoff from entering the market) and budget balance (i.e., the overall44

amount of prices paid and received by participants sums up to zero), and it can be implemented through45

two alternative distributed approaches that do not require airlines to disclose confidential information.46

Later, Granberg and Polishchuk (2012) show how to design mechanisms that can be used for the allocation47

of many different types of ATM resources, including ATFM slots. Even though these mechanisms are48

socially optimal (i.e., resources are distributed in the way that best serves the users community as a49

whole), truthful (i.e., each individual user has incentive to play fairly), and, under certain assumptions,50

individually rational, they are not budget balanced because the resource owner gains profit from the users’51

payments. Other truthful market mechanisms for ATFM slot allocation are proposed by Rosenthal and52

Eisenstein (2016) and by Mehta and Vazirani (2020). However, these mechanisms are centralised and53

therefore - even if no airline has an incentive to misreport the delay costs of its flights - airlines are54

forced to reveal information that they prefer to keep to themselves. To simultaneously respect this55

request for confidentiality and still involve airlines in the ATFM slot allocation process, for some years56

now EUROCONTROL1 has been developing UDPP, the User Driven Prioritisation Process (Pilon et al.,57

2016, 2019; Ruiz et al., 2019a). This mechanism requires that each AU associates a priority value to58

each of its flights, on the basis of which the FPFS allocation can then be modified (intra-airline). No59

inter-airline exchanges are allowed, but in certain circumstances an AU can also get a slot that did not60

previously belong to it and thus obtain a substantial reduction in the cost of the associated delay. Each61

AU is also free not to participate in the UDPP; in this case its FPFS allocation is not changed. UDPP has62

received a wide consensus among airlines and has reached a high level of maturity after several human63

in the loop validation exercises. Besides a study addressing an outdated version of UDPP, the current64

version is purely empirical since it is not supported, as far as we know, by any methodological framework65

that can quantify or at least estimate a-priori the benefits that this mechanism could bring in terms of66

cost reduction with respect to FPFS. Each AU can choose not to participate in the UDPP, and if they do,67

their FPFS allocation remains unchanged. UDPP has gained widespread acceptance among airlines and68

has become highly refined after numerous validation exercises involving human in the loop simulations69

1EUROCONTROL, the European Organisation for the Safety of Air Navigation, is the international organisation that
develops and maintains an efficient air traffic management across Europe.
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(SESAR, 2019). However, it is important to note that the assessment of the performance of the current70

version of UDPP is based solely on empirical data. Indeed, we have not found any established framework71

that can quantitatively or predictively assess the cost reduction benefits of this mechanism compared to72

FPFS. The only study we found regarding this mechanism was related to an outdated version (Zhang73

et al., 2021).74

All the models that have been presented in this short review foresee the allocation of slots to a single75

capacitated resource. In the not infrequent case, however, that one or more flights are subject to several76

regulations (our analysis of traffic data shows that in the week 1-7 July 2019 47% of regulated flights77

are subject to more than one regulation, see Section 5.2), Barnhart et al. (2012) demonstrate with a78

simple example that performing FPFS for each resource independently can produce inconsistencies, i.e.,79

a regulation may impose on a flight an ATFM slot that is not compatible with the slot imposed on80

the same flight by another regulation. It is therefore necessary to propose alternative algorithms. In81

Europe, for instance, when a flight is subject to multiple regulations, the delay of the Most Penalising82

Regulation (MPR), meaning the one causing the highest delay, takes precedence and is forced into all83

other regulations. In the U.S. other heuristics (named precedence RBS and exemption RBS) are applied84

(Barnhart et al., 2012).85

Our contribution fits into this context as it outlines a market-based approach to minimise the cost of86

ATFM delays in the presence of multiple regulations, guaranteeing to airlines the confidentiality of their87

costs. We introduce a time interval, which we refer to as time window, associated to each regulation a88

flight is subject to. A flight is expected to enter every regulated resource it has to traverse within its89

corresponding time window. A set (or bundle) of time windows is initially allocated to each flight, and90

the time windows of this bundle are possibly traded to form another bundle that decreases the flight delay91

cost. This exchange can be guided by a central authority, assuming it has access to the cost information92

of the flights, or carried out in a distributed manner without the need for each flight to communicate93

the costs of the delay. Our numerical computations based on real data instances of a test day of the94

European airspace show that the market-based allocation may reduce the delay costs from 47% up to95

89% with respect to the initial allocation, while preserving cost confidentiality.96

The idea of characterising the trajectory of a flight by a set of time windows is not entirely new in the97

ATM context, either at the execution (while en-route) (Berechet et al., 2009; Han et al., 2010; Margellos98

and Lygeros, 2013; Rodŕıguez-Sanz et al., 2019, 2020) or tactical planning (on the day of operations)99

phases of a flight (Castelli et al., 2011a). More recently, the definition of a flight trajectory as a sequence100

of time windows allowed Bolić et al. (2021a,b) to quantify the flexibility that can be granted to flights101

at the strategic level (up to 6 months ahead) taking into account changing airspace configurations and102

capacity. Flights complying with time windows guarantee that they will not impact negatively any other103

flight.104

None of these studies considers the time windows that characterise the flight trajectory as objects that105

can be traded in order to improve a system objective, such as the overall cost of the ATFM delay of flights106

subject to multiple regulations. A first hint of how to solve this latter problem was provided by Castelli107

et al. (2011c), which is now significantly refined and extended in this paper in several aspects, including108

the formulation of the distributed market mechanism, and its detailed implementation and resolution.109

Furthermore, we provide a realistic characterisation of the European airspace in terms of traffic, airspace110

configuration and cost data, as described in Section 5. Finally, all computational experiments are run111

on real data.112

The remainder of this paper unfolds as follows. Section 2 introduces the main features of Air Traffic113

Management, and describes the algorithm currently in place to allocate ATFM slots. The approach114

followed when airlines make available to an authority the costs incurred when their flights are delayed115

is presented in Section 3, which mathematically defines (a) the centralised allocation of time window116
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bundles that minimises the overall cost of delay and (b) the market mechanism that allows to trade117

the bundles of an initial allocation and reach the minimum ATFM delay cost allocation. The model118

relies on an integer linear programming formulation. If, on the other hand, the costs of the delay cannot119

be revealed, the allocation and trading of the time window bundles can be carried out in a distributed120

manner. Section 4 develops the distributed model by applying the Lagrangian relaxation technique and121

the subgradient method. Section 5 describes how the dataset for the numerical experimentation was122

prepared, and Section 6 reports computational results on some subsets of the dataset. Section 7 contains123

the conclusions and some ideas for further development of this work.124

2. Some key concepts of Air Traffic Management125

ATM is an extremely complex system, which has to cope with very different situations in daily126

operations (Niarchakou and Sfyroeras, 2021; Cook, 2016). The evaluation of the proposed market mech-127

anism can therefore only be based on a simplified representation of ATM, especially with regard to slot128

allocation procedures (Section 2.1).129

The whole airspace is divided in ATC sectors (or simply, sectors), which define the area of responsi-130

bility of air traffic controllers. Adjacent sectors can be merged into collapsed sectors from time to time,131

in order to enable more effective use of resources. Sectors which are not collapsed are called elementary132

sectors.133

The capacity of airspace resources is the ability of the ATM system to provide air navigation services134

to a certain volume of air traffic by meeting safety standards. In particular, In Europe the capacity of135

an ATC sector is defined as the maximum number of aircraft that can enter the given sector during a136

specified period of time (usually one hour), while permitting an acceptable level of air traffic controller137

workload.138

If traffic demand in an airspace or airport is forecast to exceed capacity, the NM decides whether to139

apply flow restrictions. Flow restrictions, called ATFM regulations, impose delays to aircraft restrict the140

departure times of flights, assigning them controlled take-off times (CTOTs) -which may cause delays on141

some flights-, so that traffic is smoothed and avoid overload of the regulated sector or airport.142

ATFM regulations are based on the principle that delays are both safer and less costly to be absorbed143

on the ground rather than in the air. Therefore, any delay forecast in a capacity-constrained resource144

along a flight’s route is anticipated at the departure airport before take-off, a practice known as ground-145

holding (Odoni, 1987). The flight receives an ATFM slot (also called departure slot), a 15-minute time146

range during which the aircraft must take off.147

2.1. The allocation of ATFM slots148

In this section, we present the main principles of the slot allocation procedures. ATFM slots are man-149

aged by the Computer Assisted Slot Allocation (CASA) system, which is a largely automatic and cen-150

tralised tool run by EUROCONTROL. CASA initially calculates an Estimated Take-Off Time (ETOT)151

for each flight. This enables each flight to be given an Estimated Time Over (ETO), which is the point152

of entry at each sector through which the route is planned.153

A regulation is characterised by a period of activation (start and end time), the allowed entering154

flow rate (in flights per hour), and some other specifications. The regulation is divided by CASA into155

a number of slots of equal width depending on the rate. Each regulation is thus associated to a Slot156

Allocation List which is initially empty. Normally the capacity of each slot is equal to one flight, although157

in special circumstances it may be higher (Ruiz et al., 2019b).158

The policy under which flights are assigned slots is First Planned First Served (FPFS). CASA sorts159

the flights entering the regulation according to their ETO over the restricted location, and assigns a slot160

to each flight in this sequential order, as close as possible to the ETO.161
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This order is also maintained when a flight is subject to multiple regulations by giving precedence to162

the regulation causing the highest delay, i.e., the Most Penalising Regulation (MPR). The flight receives163

an ATFM slot according to the FPFS order applied to the MPR. The delay thus obtained is then forced164

into all other regulations. The delay resulting from the MPR is used to find a slot in the other regulations165

crossed by the flight such that it is the closest to the new ETO of the flight in those regulated sectors.166

The flight is then “forced” into the slots predetermined by the MPR without following the FPFS logic167

in those regulations.168

The FPFS policy on which the CASA system is based is considered fair and equitable by all parties169

involved (Lulli and Odoni, 2007). However, from an efficiency point of view, it is not optimal as it170

does not consider the impact of ATFM delays to airlines in terms of delay costs. If one considers the171

economical impact of ATFM delays on the flight profitability, there is typically a trade-off between172

fairness and efficiency (Barnhart et al., 2012).173

Moreover, CASA works in a passive mode from the point of view of airspace users, since ATFM174

slots are imposed by a central authority.Moreover, in the current CASA logic (MPR-FPFS), the airspace175

users remain as passive actors, since they receive ATFM slots that are calculated and assigned to them176

based on pre-existing flight plan information and with limited options to influence the slot sequences177

based on the impact of the resulting delays to their operations and daily schedules. In contrast, an178

important tool to implement To fix that, an important concept that could be implemented to optimise179

the cost of the ATFM measures is Collaborative Decision Making (CDM), a process in which decisions180

are agreed by all stakeholders who actively take part in the decision-making (Niarchakou and Sfyroeras,181

2021). In particular, since the cost of delay for a flight is possibly known only by the airline operating it,182

the allocation of ATFM slots would benefit from an enhanced application of CDM. In this context, our183

proposal is to introduce a mechanism for exchanging slots. Since it would be impossible to replicate the184

operational reality with absolute precision, we have adopted certain simplifications. For example, the185

capacity of each TW is always equal to 1 and never higher as is sometimes the case, or the procedure for186

FPFS allocation of bundles can be called a CASA-like algorithm as it certainly follows the MPR rationale,187

but is not identical to the CASA algorithm (see Appendix C and also section 3). Thus, the objects that188

are exchanged, although very similar, do not inherit exactly all the dynamics and characteristics of the189

actual slots. In order not to misuse the term ‘slots’, we refer to these objects as time windows (TWs) in190

the rest of the paper.191

2.2. The cost of delays in ATM192

On the day of operations, various factors cause flight delay, for example weather, ATFM measures,193

and issues attributable to aircraft operators. There are two main types of costs that airlines experience194

due to delays: strategic delay costs and tactical delay costs. Strategic costs are mainly due to schedule195

buffers, while tactical costs are those incurred on the day of operations due to actual delays.196

A major component in the tactical cost of delay that impacts on airlines are the costs associated with197

delayed passengers, which fall into two categories: hard costs and soft costs. Hard costs are determined198

by passenger re-booking, compensation and care. Soft costs are due to the loss of market share that199

comes from passenger dissatisfaction.200

Tactical costs also include maintenance and crew costs. Tactical maintenance costs are due for201

example to the mechanical attrition of aircraft waiting at gates, whereas tactical crew costs are based202

on the cost of crewing for additional minutes above those planned at the strategic phase.203

For maintenance and crew costs, one minute of delay does not depend on the extent of the delay. In204

contrast, longer passenger delays have higher associated costs per minute than shorter ones, thus making205

tactical costs a super-linear function of delay length.206

A comprehensive study on the costs of delays in the air traffic management system was carried out207

for EUROCONTROL by Cook et al. (2004), and then updated and extended in subsequent years (Cook208
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and Tanner, 2015; Cook et al., 2021). It estimates cost delay figures for different phases of flight (e.g.209

en-route and at-gate), for a range of specific aircraft types and three cost scenarios (low, base and high),210

separately for strategic and tactical delays. These estimations will be used as inputs in this research (see211

Section 5).212

3. The central resource allocation problem213

This section formalises the market mechanism for the TW allocation by a central authority when214

flights are subject to multiple regulations. We first describe in mathematical terms the time window215

bundle allocation that minimises the cost of the delay as faced by the central authority (Sections 3.1216

and 3.2). This minimum cost allocation is then confronted with the initial allocation that is currently217

granted. With a slight abuse of terminology, we refer to it as FPFS allocation (see Section 5.2 and218

Appendix C for details on its implementation that mimics the Most Penalising Regulation principle).219

In particular, Section 3.3 introduces a mechanism for the allocation of time window bundles to flights,220

alternative to FPFS, which is cost-efficient. The mechanism is market-based since airlines can be seen as221

competitors contending for a limited resource, which is the capacity of regulated sectors or airports. In222

addition, it satisfies some of the following properties commonly used in mechanism design (see Krishna,223

2009, for a formal treatment):224

1. Individual rationality: each individual receives a non-negative utility from participating in the225

mechanism, so that it is preferable to participate than not participate.226

2. Budget balance: the mechanism requires no financing from outside. In particular, a mechanism227

is strongly budget balanced if the total payment of the participants is equal to zero. The mech-228

anism neither receives subsidisation from outside, nor generates a surplus; it just redistributes229

money among participants. A mechanism is weakly budget balanced if the total payment of the230

participants is larger or equal than zero: the mechanism can potentially generate a surplus.231

3. Allocative efficiency: the mechanism maximises the sum of individual utilities.232

4. Incentive compatibility: the best strategy for participants is to report their valuations truthfully.233

No agent can increase their utility by misreporting their true preferences.234

However, due to the impossibility theorem by Myerson and Satterthwaite (1983) the four properties235

cannot be satisfied at the same time. Myerson and Satterthwaite (1983) showed that in the presence of236

asymmetric information (i.e. the value of a given good for a given agent is only known by such agent),237

it is not always possible that the above four properties are guaranteed. Indeed, under some specific238

conditions and assumptions, Myerson and Satterthwaite proved that it is impossible to find a market239

mechanism that can satisfy all four properties simultaneously. The mechanism proposed in Section (3.3)240

relaxes the fourth property, and thus assumes that participants report their preferences honestly to the241

central authority. Section 4 will describe a distributed implementation of such mechanism in which242

participants are assumed to act honestly introducing their preferences in a privacy-preserving manner.243

The validity of this assumption is addressed in Appendix A.244

3.1. Mathematical formulation245

The proposed mathematical formulation requires the notation introduced in Table 1.246
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F set of flights
R set of regulations
Kr capacity of regulation r ∈ R (in flights per hour)
startr start time of regulation r ∈ R
endr end time of regulation r ∈ R
Lr TW allocation list of regulation r ∈ R
∆r TW width (in minutes) of regulation r ∈ R
Nr number of TWs of regulation r ∈ R
Ij lower bound of the j-th TW in Lr

Uj upper bound of the j-th TW in Lr

ϵ time discretisation interval
L̂r augmented TW allocation list of regulation r ∈ R
nf number of regulations crossed by flight f ∈ F
Rf list of the regulations crossed by flight f ∈ F
ri i-th regulation crossed by flight f ∈ F
Ef list of the expected times of entry of flight f ∈ F
ei expected entry time into ri

Qf set of feasible bundles of flight f ∈ F
qf an element of Qf , i.e., qf ∈ Qf is a feasible bundle for flight f

dqf
delay of bundle qf

C(f, qf ) cost of bundle qf for flight f

Table 1: Model’s notation

We consider a set of flights F that are scheduled within a period of time T , and a set of regulations247

R active during T that limit the rate of flights entering a capacity constrained resource, either an airport248

or an airspace sector.249

Each regulation r ∈ R has a capacity of Kr flights per hour and is active for a time period250

[startr, endr]. Each regulation r is associated to a TW allocation list Lr, a list of time windows of251

equal width that depends on the capacity. The TW width, expressed in minutes, is252

∆r = 60
Kr

and given that the duration endr − startr is expressed also in minutes, the number of time windows is253

Nr =
⌊︃

(endr − startr)
∆r

⌉︃
where ⌊·⌉ denotes rounding to the nearest integer.254

For j = 1, . . . , Nr the time interval associated to the j-th TW of the list [Ij , Uj ] ∈ Lr is given by255

Ij = startr +
⌊︁
(j − 1) ·∆r

⌉︁
256

Uj =

⎧⎨⎩Ij+1 − ϵ for j = 1, . . . , Nr − 1.

endr for j = Nr.

where ϵ = 1 second and the rounding is applied to an argument expressed in seconds (for example, an257

argument of 1 hour, 10 minutes, 3 seconds and 15 hundredths of a second is rounded to 1 hour, 10258

minutes and 3 seconds).259

The interval [startr, endr] is thus partitioned into a set of disjoint segments, with a time discretization260

of 1 second. Since ⌊x⌉ < x + 1 for any positive real number x, we have that261
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⌊︃
(endr − startr)

∆r

⌉︃
− 1 <

(endr − startr)
∆r

and thus262

(Nr − 1) ·∆r < (endr − startr).

Since ⌊x⌉ < ⌊y⌉ for any 0 < x < y and since startr and endr are reported with a precision of one minute263

in our data, i.e. (endr − startr) = ⌊endr − startr⌉, it follows264

⌊(Nr − 1) ·∆r⌉ < (endr − startr)

so we conclude that INr
< endr.265

The time discretization is actually not necessary for the optimisation model, but it simplifies the266

bundle construction algorithm (appendix B).267

Hereinafter, a TW will be denoted interchangeably by an integer j representing its position in the268

list Lr, or an interval [Ij , Uj ].269

Each TW has capacity of 1 flight and represents the time interval in which a flight is allowed to enter270

the regulated resource during its regulated period. However, a flight is also allowed to enter a regulated271

resource before or after its regulated period. To deal with the two situations uniformly, we augment the272

TW allocation list of each regulation r with two “dummy” time windows j = 0 and j = Nr + 1 defined273

by274

I0 = −∞, U0 = startr − ϵ
275

INr+1 = endr + ϵ, UNr+1 = +∞.

To simplify the model formulation, we assume these two additional time windows, placed at the beginning276

and at the end of Lr, have infinite capacity, so that the number of flights that they can accommodate is277

not limited. Let us call L̂r the TW allocation list augmented in this way, L̂r = [0, 1, 2, . . . , Nr + 1].278

The flight plan of each flight f ∈ F individuates a list Rf = [r1, ..., rnf
] of the regulations crossed279

along the route of f from its departure to its destination, and a list Ef = [e1, ..., enf
] of the expected280

times of entry into each regulated resource. The list Ef is defined with respect to the original (pre-281

regulated) flight plan and its i-th element ei is the expected time of entry into the i-th element ri of Rf .282

The length of the two lists nf = |Rf | is the number of regulations affecting flight f .283

One time window must be assigned to each flight f ∈ F for each regulated resource it crosses. A284

dummy time window is also a feasible assignment. We denote this bundle of time windows by qf =285

[TW1, . . . , TWnf
] where TWi ∈ L̂ri for i = 1, ..., nf .286

Since we assume that flights cannot be anticipated, every time window in qf must end after the287

corresponding entry time of f , i.e. ei ≤ UT Wi
for all i = 1, . . . , nf .288

If nf > 1, we assume that the flying time ei+1 − ei between consecutive resources ri and ri+1, for289

i = 1, ..., nf − 1, is fixed. A bundle qf is compatible with the fixed flying times if there exists a sequence290

of time instants [t1, . . . , tnf
] such that IT Wi

≤ ti ≤ UT Wi
for all i = 1, ..., nf and ti+1 − ti = ei+1 − ei291

for all i = 1, ..., nf − 1. The sequence [t1, . . . , tnf
] represents the re-planned times of entry in each292

regulated resources and is a temporal shift of the trajectory [e1, . . . , enf
]. Among the possible sequences293

[t1, . . . , tnf
], for each TWi the smallest shift occurs when ti = IT Wi

. Therefore, the delay dqf
experienced294

by flight f due to bundle qf is due to the time window that leads to the largest among these smallest295

shifts. Specifically,296

dqf
= max

i=1,...,nf

min
ti

{(ti − ei)+ : IT Wi
≤ ti ≤ UT Wi

} = max
i=1,...,nf

{(IT Wi
− ei)+} (1)

being (·)+ = max{·, 0}. The delay is strictly positive if ei < IT Wi
for at least one TWi ∈ qf .297
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A delay dqf
causes to flight f a cost C(f, qf ), which is a non-linear non-decreasing function of the298

delay, and depends on the flight f through factors such as type of aircraft and number of passengers.299

We say that a bundle qf is feasible for f if either qf is empty, and in this case f is cancelled, or it300

satisfies the following requirements:301

(i) it contains a time window TWi for each regulation in Rf and Ei ≤ UT Wi component-wise;302

(ii) it is compatible with the fixed flying times;303

(iii) the delay is acceptable, i.e. it satisfies the bound dqf
≤ MaxDelf where MaxDelf is the delay304

beyond which it is more convenient to cancel f .305

We denote by Qf the set of all feasible bundles for flight f . Appendix B describes a simple algorithm306

for constructing the set Qf .307

3.2. The optimal allocation308

The allocation of time windows to flights that minimises the total cost of delay is given by the optimal309

solution of the following binary optimisation problem (TW allocation problem):310

min
∑︂
f∈F

∑︂
q∈Qf

C(f, q)x(f, q) (2a)

∑︂
f∈F

∑︂
q∈Qf :q∋k

x(f, q) ≤ 1 ∀r ∈ R, k ∈ Lr (2b)

∑︂
q∈Qf

x(f, q) = 1 ∀f ∈ F (2c)

x(f, q) ∈ {0, 1} ∀f ∈ F , q ∈ Qf (2d)

The objective function (2a) minimises the sum of all delay costs. Constraint (2b) is the capacity311

constraint, which guarantees that no more than one flight is assigned to any time window. Constraint312

(2c) is the allocation constraint, which guarantees that every flight receives one and only one bundle313

from its set of requests. Constraint (2d) is the integrality constraint. The variable x(f, q) is equal to one314

when flight f is assigned to bundle q, and zero otherwise. Problem (2) is NP -hard as we can reduce to315

it the NP -complete Maximal Independent Set (MIS) problem (Lawler et al., 1980).316

A feasible solution of problem (2) always exists, because for all f ∈ F , Qf always contains either the317

empty bundle corresponding to flight cancellation, or the bundle composed of all “dummy” time windows318

that consumes no capacity.319

The allocation given by the application of the optimal solution of problem (2) will be denoted by320

X ∗ = {q∗
f}f∈F . The allocation A = {af}f∈F given by the FPFS rule constitutes a feasible solution of321

problem (2).322

In the particular case when |R| = 1 and flights compete for time windows in a single capacity323

constrained resource r, problem (2) simplifies into the following:324

min
∑︂
f∈F

∑︂
k∈Qf

C(f, k)x(f, k) (3a)

∑︂
f∈F

∑︂
k∈Qf

x(f, k) ≤ 1 ∀k ∈ Lr (3b)

∑︂
k∈Qf

x(f, k) = 1 ∀f ∈ F (3c)

x(f, k) ≥ 0 ∀f ∈ F , k ∈ Qf (3d)
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The integrality constraint was dropped since, in this case, the solutions of the linear relaxation are325

automatically integral. The reason is that problem (3) has the form of an assignment problem, and so326

the constraint matrix is totally unimodular.327

In presence of a single regulation, the FPFS allocation A minimises the total delay, or in other words328

A is an optimal solution of problem (3) when C(f, k) = dk (Castelli et al., 2011b). This fact is no longer329

true in presence of many interacting regulations (Ruiz et al., 2019c).330

For what will follow in the next section, it is convenient to reformulate problem (2) in terms of331

maximisation of a total value, instead of minimisation of a total cost. Let us define the value of a bundle332

q to flight f as the difference between the cost of the bundle af assigned to f under the FPFS, and the333

cost of q:334

V (f, q) = C(f, af )− C(f, q). (4)

The value is positive if q causes a delay smaller than the delay of af , and negative otherwise. Then, we335

consider the following problem:336

ZIP = max
∑︂
f∈F

∑︂
q∈Qf

V (f, q)x(f, q) (5a)

∑︂
f∈F

∑︂
q∈Qf :q∋k

x(f, q) ≤ 1 ∀r ∈ R, k ∈ Lr (5b)

∑︂
q∈Qf

x(f, q) = 1 ∀f ∈ F (5c)

x(f, q) ∈ {0, 1} ∀f ∈ F , q ∈ Qf (5d)

Trivially, problem (5) is equivalent to problem (2) in the sense that their optimal solution is the same,337

because the objective function only differs by a constant term. In fact,338

∑︂
f∈F

∑︂
q∈Qf

(︁
C(f, af )− C(f, q)

)︁
x(f, q) =

∑︂
f∈F

C(f, af )
∑︂

q∈Qf

x(f, q)−
∑︂
f∈F

∑︂
q∈Qf

C(f, q)x(f, q)

=
∑︂
f∈F

C(f, af )−
∑︂
f∈F

∑︂
q∈Qf

C(f, q)x(f, q)

where the last equality follows from constraint (5c).339

3.3. Pricing the exchange340

The allocation X ∗ given by the optimal solution of problem (5) could be perceived as unfair by341

airlines, because it is not always true that C(f, q∗
f ) ≤ C(f, af ), or in other terms the utility V (f, q∗

f ) can342

be negative. Some flights reduce their delay with respect to the FPFS while some other increase their343

delay. In order to design a mechanism which is both allocative efficient and individual rational, as well344

as weakly budget balanced, we introduce the possibility of payments between airlines that accompany345

the optimal allocation and attach a price p(q∗
f ) to each bundle q∗

f ∈ X ∗. In this way, airlines who are346

penalised by the optimal allocation with respect to the FPFS receive a monetary compensation, whereas347

airlines who are better off after the implementation of the optimal allocation can possibly be charged for348

the delay reduction.349

In order to find a set of prices P∗ = {p(q∗
f )}f∈F that support the optimal exchange, if we consider350

the optimal solution found for the linear relaxation of problem (5), the values of the associated dual351

variables are optimal for the following problem:352
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ZLP = min
∑︂
f∈F

u(f) +
∑︂
r∈R

∑︂
k∈Lr

π(k) (6a)

u(f) +
∑︂
r∈R

∑︂
k∈Lr:k∈q

π(k) ≥ V (f, q) ∀f ∈ F , q ∈ Qf (6b)

π(k) ≥ 0 ∀r ∈ R, k ∈ Lr (6c)

Variables π(k) are the dual variables associated to the capacity constraint (5b) and u(f) are the dual353

variables associated to the assignment constraint (5c). Variables π(k) can be interpreted as prices of354

time windows, and u(f) can be interpreted as utilities of users. It is then natural to assume a linear355

pricing of bundles, so that p(q) =
∑︁

k∈q π∗(k) where π∗(k) are the optimal dual variables. If we also356

assume that the utility of a flight when assigned a bundle qf is −C(f, qf )− p(qf ), a market mechanism357

that charges p(q∗
f ) to each flight f for the assigned bundle q∗

f would not satisfy individual rationality,358

because some flights would incur a greater cost with q∗
f than with af and additionally be forced to make359

a payment.360

In order to fulfil individual rationality, we consider the allocation af as an endowment guaranteed to361

all flights. Then the market mechanism, mediated by the central authority, takes place in two steps:362

1. First, the FPFS bundles A are allocated for free, as in the current system.363

2. Next, the optimal allocation X ∗ is implemented and the dual prices are charged for the bundle364

exchange: each flight pays p(q∗
f ) for the assigned bundle q∗

f and receives the price p(af ) for the365

released time windows in af .366

For flight f the cost after step 1 is C(f, af ), and the cost after step 2 is C(f, q∗
f ) + p(q∗

f ) − p(af ).367

Therefore the utility variation of f when taking part in the mechanism is ∆u(f) = C(f, af )−C(f, q∗
f ) +368

p(af ) − p(q∗
f ). Now we show the condition under which the individual rationality condition ∆u(f) ≥ 0369

holds.370

The complementary slackness conditions between the linear relaxation of problem (5) and its dual371

(6) are372

x∗(f, q) > 0 =⇒ u∗(f) +
∑︂
r∈R

∑︂
k∈Lr:k∈q

π∗(k) = V (f, q) ∀f ∈ F , q ∈ Qf (7a)

∑︂
f∈F

∑︂
q∈Qf :q∋k

x∗(f, q) < 1 =⇒ π∗(k) = 0 ∀r ∈ R, k ∈ Lr (7b)

If the optimal solution of the linear relaxation of (5) is integer, then the optimal allocation {q∗
f}f∈F373

satisfies374

u∗(f) = V (f, q∗
f )− p(q∗

f ) (8a)
u∗(f) ≥ V (f, q)− p(q) ∀q ∈ Qf (8b)

Equation (8a) follows from complementary slackness (7a) and equation (8b) follows from the feasibility375

(6b) of the optimal solution. Putting them together yields376

V (f, q∗
f )− p(q∗

f ) ≥ V (f, q)− p(q) ∀q ∈ Qf (9)

In particular, since A is a feasible solution, taking q = af gives377

∆u(f) = C(f, af )− C(f, q∗
f ) + p(af )− p(q∗

f ) ≥ 0 (10)
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which is the property of individual rationality: every agent has a non-negative profit when selling its378

FPFS bundle af and buying q∗
f . Equation (9) says that not only flight f prefers bundle q∗

f over af , but379

also over every other bundle q ∈ Qf .380

Now we show that the complementary slackness conditions are sufficient to impose that the weak381

budget balance property holds, i.e.,382 ∑︂
f∈F

(︁
p(q∗

f )− p(af )
)︁
≥ 0. (11)

Let us define L =
⋃︁

r∈R Lr the set of all time windows. Equation (7b) says that every time window383

which is unassigned under the optimal solution X ∗ has a price zero. It follows that384 ∑︂
f∈F

p(q∗
f ) =

∑︂
k∈L

π∗(k) (12)

where (5b) has also been used. So the net turnout resulting from the market mechanism is385 ∑︂
f∈F

(︁
p(q∗

f )− p(af )
)︁

=
∑︂
k∈L

π∗(k)−
∑︂
f∈F

∑︂
k∈af

π∗(k) =
∑︂

k∈L\
⋃︁

f∈F
af

π∗(k) ≥ 0. (13)

Taking a closer look at how the mechanism works, consider the monetary flow associated to each386

time window k ∈ L. There are four cases:387

(i) If k is assigned both under the FPFS allocation A and under the optimal allocation X ∗, respectively388

to flight f and to flight g, then f sells time window k to g at the price π∗(k) and the central authority389

is not involved in the exchange.390

(ii) If k is assigned under A to a flight f and it is unassigned under X ∗, then f receives π∗(k) from391

the central authority, but π∗(k) = 0 due to complementary slackness (7b).392

(iii) If k is not assigned under A but it is assigned to a flight g under X ∗, then g pays π∗(k) ≥ 0 to the393

central authority.394

(iv) If k is not assigned in A nor in X ∗, then there is no monetary flow associated to it.395

Again, from this reasoning it follows that the total revenue for the central authority is larger or equal to396

zero. The mechanism can produce a surplus, but not incur a deficit. In presence of a single regulation397

|R| = 1, Castelli et al. (2011b) proved that
∑︁

f∈F

(︂
p(q∗

f )− p(af )
)︂

= 0 and the mechanism is strongly398

budget balanced. They also showed that case (iii) cannot happen for |R| = 1, because all time windows399

that are unassigned under A are also unassigned under X ∗.400

Equations (9) and (12) together show that the allocation X ∗ = {q∗
f}f∈F and the prices P∗ =401

{p(q∗
f )}f∈F form a Walrasian equilibrium and P∗ is the set of market-clearing prices (Bikhchandani402

and Mamer, 1997). However, the complementary slackness conditions (7a) and (7b) can guarantee that403

the individual rationality and weak budget balance properties hold only in the case that the duality gap404

between problem (5) and its linear relaxation is zero. Otherwise, the integer optimal solution of problem405

(5) is not guaranteed to form a Walrasian equilibrium with the prices given by the optimal solution of406

(6). In particular, problem (6) may estimate utility values that are greater than the actual ones. Under407

these circumstances, it can be decided that initially only a subset of flights are allowed to exchange time408

windows so that a smaller problem for which the zero duality gap holds is considered, see Section 6.5. All409

flights belonging to this subset are allowed to exchange time windows and prices are negotiated between410

airlines. We remark that in the case of a unique regulation, the individual rationality and strong budget411

balance properties always hold, because problem (3) always gives integer optimal solutions, as mentioned412

in Section 3.2.413
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4. A distributed market mechanism414

The market mechanism described in Section 3.3 is a centralised model for the allocation of time415

windows to flights and the calculation of supporting prices. It requires that the central authority, who is416

in charge of solving problem (5), has complete knowledge of the delay cost data C(f, q) ∀f ∈ F ∀q ∈ Qf ,417

which can be possibly evaluated for each flight only by its aircraft operator. However, the cost of delay418

for flights represent confidential information in the commercially competitive air transport industry, and419

airlines could be reluctant to communicate their delay costs to the central authority.420

This section develops a decentralised version of the market mechanism, which does not require the421

explicit disclosure of private information by airlines, and instead allows to elicit their preferences in an422

indirect way. This mechanism also relieves the central authority of the burden of solving the NP-hard423

problem (5) by relaxing it into a set of trivial problems, one for each flight f ∈ F (see problem (17)424

below). The solution to these latter problems is then attributed to the airlines operating the flights to425

prevent the explicit disclosure of private information.426

Throughout the section we make use of well-known Lagrangian relaxation theory results and we refer427

the reader unfamiliar with them to, e.g., Fisher (2004).428

4.1. The Lagrangian dual of the allocation problem429

The Lagrangian relaxation of problem (5) with respect to the capacity constraint (5b) is430

ZLR(λ) = max
∑︂
f∈F

∑︂
q∈Qf

V (f, q)x(f, q) +
∑︂
k∈L

λk

(︃
1−

∑︂
f∈F

∑︂
q∈Qf :q∋k

x(f, q)
)︃

(14a)

∑︂
q∈Qf

x(f, q) = 1, ∀f ∈ F (14b)

x(f, k) ≥ 0, ∀f ∈ F , k ∈ Qf (14c)
λk ≥ 0, ∀k ∈ L (14d)

where λk are the Lagrangian multipliers. The second term in the objective function (14a) has the role of431

penalising capacity violations. The integrality constraint (5d) has been dropped because the constraint432

matrix of problem (14) is totally unimodular.433

It is convenient to rewrite objective function (14a) in an alternative form:434 ∑︂
f∈F

∑︂
q∈Qf

V (f, q)x(f, q) +
∑︂
k∈L

λk

(︃
1−

∑︂
f∈F

∑︂
q∈Qf :q∋k

x(f, q)
)︃

=

=
∑︂
f∈F

∑︂
q∈Qf

V (f, q)x(f, q)−
∑︂
f∈F

∑︂
q∈Qf

∑︂
k∈q

λkx(f, q) +
∑︂
k∈L

λk =

=
∑︂
f∈F

∑︂
q∈Qf

[︃
V (f, q)−

∑︂
k∈q

λk

]︃
x(f, q) +

∑︂
k∈L

λk

(15)

Equation (15) shows that problem (14) is separable into |F| problems, one for each f ∈ F . The435

Lagrangian subproblem for flight f is436

ZLR(f, λ) = max
∑︂

q∈Qf

[︃
V (f, q)−

∑︂
k∈q

λk

]︃
x(f, q) (16a)

∑︂
q∈Qf

x(f, q) = 1 (16b)

x(f, k) ≥ 0 ∀k ∈ Qf (16c)
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and ZLR(λ) =
∑︁

f∈F ZLR(f, λ) +
∑︁

k∈L λk. Each subproblem for f ∈ F can be locally solved by the437

airline operating f .438

Problem (16) can be solved in linear time by inspection as439

ZLR(f, λ) = max
q∈Qf

{︃
V (f, q)−

∑︂
k∈q

λk

}︃
, (17)

always corresponding to optimal integer values for the variables x(f, k) in (16).440

We can interpret
∑︁

k∈q λk as the cost of a bundle q according to the prices λ. The optimal solution of441

problem (17) is the bundle q ∈ Qf that maximises the utility of f if we interpret Lagrangian multipliers442

as prices of time windows.443

The Lagrangian dual of problem (5) is444

ZLD = min
λ≥0

ZLR(λ) (18)

Since the formulation (14) is totally unimodular, ZLD = ZLP and the optimal Lagrange multipliers that445

solve problem (18) are optimal dual variables for the linear relaxation of problem (5). Hence, if the446

duality gap between problem (5) and its linear relaxation is null, ZLD = ZLP = ZIP and the optimal447

Lagrange multipliers are equilibrium prices that support the optimal exchange.448

We solve problem (18) via the subgradient method (Fisher, 2004, Section 6). First of all, the central449

authority fixes the initial prices λ0, for example λ0 = 0. Then the subgradient method proceeds in an450

iterative way. At iteration t, each flight f determines the bundle q∗t
f that maximises its utility variation451

when exchanging the FPFS endownment af with another bundle q ∈ Qf , at the current prices λt:452

q∗t
f = argmax

q∈Qf

{︃
V (f, q)− pt(q)

}︃
= argmax

q∈Qf

{︃
V (f, q)− pt(q) + pt(af )

}︃
(19)

where pt(q) =
∑︁

k∈q λt
k. Notice that f only needs to communicate the optimal solution xt of (14)453

according to prices λt, i.e. its most preferred bundle q∗t
f , and not the optimal value ZLR(f, λ) to the454

central authority.455

Then the central authority computes the following quantity456

SGt
k = 1−

∑︂
f∈F

∑︂
q∈Qf :q∋k

xt(f, q) ∀k ∈ L. (20)

The vector SGt is a subgradient of ZLR(λ) at the point λt. The sum in (20) represents the number457

of flights whose demanded bundle q∗t
f contains time window k. Then the prices are centrally updated458

according to459

λt+1
k = max(0, λt

k − µtSGt
k) ∀k ∈ L (21)

where µt is the step length and will be discussed in Section 4.2.460

Equation (21) has the following interpretation: for each k ∈ L461

(i) if SGt
k < 0, the demand for time window k exceeds the capacity, so the price of k is raised;462

(ii) if SGt
k > 0, less capacity is used than available, so the price of k is lowered;463

(iii) if SGt
k = 0, there is already a balance between demand and capacity, so the price is unchanged.464

The market mechanism is configured in a series of exchanges of information between the central465

authority and the aircraft operators. Each iteration proceeds as follows:466
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1. The central authority communicates prices λt to all aircraft operators.467

2. Each aircraft operator solves problem (16) according to prices λt and communicates the demanded468

bundle q∗t
f to the central authority.469

3. The central authority computes the imbalance between the demand q∗t
f and the capacity of time470

windows according to equation (20) and updates the prices of time windows λt according to (21).471

In the rest of this Section, we discuss the details of the iterative market mechanism, i.e., of the472

subgradient method applied to problem (18). Hereinafter, we call (IP ) the problem (5), (LP ) its linear473

relaxation, (LR(λ)) the problem (14) and (LD) the problem (18).474

4.1.1. Termination of the iterative market mechanism475

Under appropriate choice of the stepsize the subgradient algorithm converges to the optimal solution476

of (LD).477

If at iteration t the bundles demanded by flights happen to form an allocation xt that respects the478

capacity, i.e. SGt
k ≥ 0 ∀k ∈ L, or in other words q∗t

f share no time windows, then the allocation will479

constitute a feasible solution for (IP ). Indeed, thanks to property (19), the prices λt are such that480

the exchange is individual rational, and each user also maximises the individual utility. However, we481

remark that there is no guarantee that the prices satisfy the weak budget balance property (11). It can482

occur that the solution xt of problem (LR(λt)) is feasible but not optimal for (IP ). In this case, the483

complementary slackness conditions do not hold.484

If the solution is not only capacity-compliant but also satisfies complementary slackness SGt ·λt = 0,485

i.e. all unassigned time windows have zero price, then ZLR(λt) = ZIP , so xt is an optimal solution of (IP )486

and λt is an optimal solution of problem (6), they form a Walrasian equilibrium, and the subgradient487

algorithm stops.488

When the duality gap ZLD − ZIP is zero, an optimal solution (λ∗, x∗) always exists, i.e., (λ∗, x∗)489

feasible for (LD) and (IP ) and such that the complementary slackness conditions hold. Unfortunately,490

determining the value of x∗ may be not easy even when the subgradient algorithm makes the sequence491

λt converge to λ∗. In presence of multiple optimal solutions for (LR(λ∗)), each optimal solution of (IP )492

is among the optimal solutions of (LR(λ∗)), but the opposite is not necessarily true. Hence, the solution493

of (LR(λ∗)) may provide an assignment x which is not optimal for (IP ).494

Generally speaking, there is no way of proving that the subgradient algorithm has converged to the495

optimal values λ∗. To resolve this difficulty, the method is usually terminated upon reaching an arbitrary496

iteration limit (Fisher, 2004).497

4.2. Choice of stepsize498

A choice of a stepsize for the subgradient method that guarantees convergence to the minimum of499

the Lagrangian function is500

µt =
ϵt

(︁
ZLR(λt)− ZLP

)︁
∥SGt∥2 (22)

where 0 < ϵ < ϵt ≤ 2. In (22) the numerator depends on the difference between the current Lagrangian501

objective function value and the minimum of the Lagrangian function, and the denominator is the square502

norm of the subgradient vector. Unfortunately, in general, the minimum of the Lagrangian function is503

unknown and one uses a lower bound on this minimum. In our case, both ZLP and ZLR(λt) are unknown504

because the objective function coefficients of the Lagrangian function V (f, q) (the costs of delay) are505

unknown to the central authority. The rest of this Section proposes a way to compute an estimate for506

the difference ZLR(λt)− ZLP to be used in the stepsize formula.507
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4.2.1. Cost elicitation508

First of all, we discuss how the preferences communicated by airlines through (19) during the course of509

the distributed market mechanism actually provide information on costs C(f, q) to the central authority.510

Recall that pt(q) =
∑︁

k∈q λt
k is the price of a bundle q at iteration t. Equation (19) says that for all511

f ∈ F512

V (f, q∗t
f )− V (f, q) ≥ pt(q∗t

f )− pt(q) ∀q ∈ Qf (23)

The right-hand side of equation (23) is a known quantity, whereas the left-hand side is unknown. Equa-513

tion (23) represents a set of |Qf | inequalities each involving the values of a pair of bundles. At every514

iteration, we can add a new set of |Qf | inequalities for each f ∈ F and build up a system of inequalities515

incrementally. Notice that, however, the total number of inequalities collected by the end of the iterative516

market mechanism is limited, because if at some iteration t the bundle demanded by f happens to be517

the same bundle demanded at an earlier iteration t′ < t, i.e. q∗t
f = q∗t′

f , then we can simply update the518

right-hand side of the old inequalities instead of adding a new set of inequalities, if the new right-hand519

side is larger than the old one.520

We can also take advantage of the fact that the cost is a non-decreasing function of the delay to write521

an additional relation between values:522

V (f, q) ≥ V (f, q̄) ∀q ∈ Qf , q̄ ∈ Qf : dq < dq̄ (24)

In addition, from Equation (4) it follows that V (f, af ) = C(f, af )− C(f, af ) so523

V (f, af ) = 0. (25)

The system of inequalities (23) together with (24) and (25) defines ∀f ∈ F a convex polyhedron in524

a |Qf |-dimensional space which gets smaller during the course of iterations, and which contains a point525

corresponding to the real combination of values V (f, q) ∀q ∈ Qf . This polyhedron represents all the526

information that has been elicited about the cost of delay for flight f . Now let q1, q2, . . . , q|Qf | be the527

bundles in Qf ordered by increasing delay. One can obtain a lower bound LB(f, q) ≤ V (f, q) on the528

value of each bundle q ∈ Qf by exploiting this elicited information. The tightest possible lower bound is529

the solution of the following linear program, whose constraints define the polyhedron described before530

LBt(f, qk) = min v(qk) (26a)
v(qi)− v(qj) ≥ ct

ij ∀qi ∈ Qf , qj ∈ Qf (26b)
v(qi−1) ≥ v(qi) ∀qi ∈ Qf \ {q1} (26c)

v(af ) = 0 (26d)

Constraints (26b) correspond to equations (23), constraints (26c) correspond to equations (24) and (26d)531

to (25). The coefficients of constraints (26b) are updated at each iteration as follows: for all qj ∈ Qf532

ct
ij =

⎧⎨⎩ct−1
ij if qi ̸= q∗t

f

max
(︁
pt(qi)− pt(qj), ct−1

ij

)︁
if qi = q∗t

f

(27)

initialised at t = 0 with533

c0
ij = −∞ ∀qi ∈ Qf , qj ∈ Qf (28)

Similarly, changing the objective function (26a), one obtains an upper bound UB(f, q) ≥ V (f, q) for534

all q ∈ Qf535
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UBt(f, qk) = max v(qk) (29a)
v(qi)− v(qj) ≥ ct

ij ∀qi ∈ Qf , qj ∈ Qf (29b)
v(qi−1) ≥ v(qi) ∀qi ∈ Qf \ {q1} (29c)

v(af ) = 0 (29d)

Notice that in doing this, we are effectively eliciting information on costs, but only the information536

which is necessary for the subgradient procedure to converge, and the bounds are not strict generally.537

If we reformulate the cost elicitation problem in terms of costs instead of values, we can write an538

additional relation between them: not only we know that the cost function is non-decreasing, but also539

that it is superlinear. This means that the unit cost of delay is a non-decreasing function of the delay:540

C(f, q)
dq

≤ C(f, q̄)
dq̄

∀q ∈ Qf , q̄ ∈ Qf : dq < dq̄, dq ̸= 0 (30)

This is a linear constraint, thus it can be included in our linear problem, and it makes constraint (24)541

redundant, since it is stricter. Relation (25) is substituted by542

C(q) = 0 if dq = 0 (31)

Then problem (26) becomes543

˜︃LB
t
(f, qk) = min c(qk) (32a)

c(qj)− c(qi) ≥ ct
ij ∀qi ∈ Qf , qj ∈ Qf (32b)

dqi · c(qi−1) ≤ dqi−1 · c(qi) ∀qi ∈ Qf \ {q1} (32c)
c(q2) ≥ 0 (32d)
c(q1) = 0 (32e)

We conclude this subsection with a word of caution. Even though the distributed mechanism does544

not require “explicit” disclosure of delay costs, the arguments presented in this subsection show how545

a central authority could estimate these values based on the bundles communicated by the airlines546

during the algorithm iterations. The quality of the estimate depends on the number of different bundles547

observed: the fewer the number of bundles, the worse the estimates. In Section 6.4 we shows on an548

example data instance that the estimates obtained are rough in almost all cases, therefore there is no549

risk of cost information disclosure in practice.550

4.2.2. Computation of the stepsize551

Returning to the problem of choosing an appropriate stepsize for the subgradient method, a possible552

approach would be to compute an upper bound on ZLR(λt) and a lower bound on ZLP based on the553

upper and lower bounds on values obtained in Section 4.2.1, and plug these bounds in equation (22). In554

particular, at each iteration t a lower bound ZLBt ≤ ZLP can be computed as555

ZLBt = max
∑︂
f∈F

∑︂
q∈Qf

LBt(f, q)x(f, q) (33a)

∑︂
f∈F

∑︂
q∈Qf :q∋k

x(f, q) ≤ 1 ∀r ∈ R, k ∈ Lr (33b)

∑︂
q∈Qf

x(f, q) = 1 ∀f ∈ F (33c)

x(f, q) ≥ 0 ∀f ∈ F , q ∈ Qf (33d)
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See Appendix D.1 for a proof that problem (33) indeed provides a lower bound on ZLP . An upper bound556

ZUBt(λt) ≥ ZLR(λt) can be computed as557

ZUBt(λt) =
∑︂
f∈F

UBt(f, q∗t
f ) + SGt · λt (34)

since ZLR(λt) =
∑︁

f∈F V (f, q∗t
f ) + SGt · λt. It follows that ZUBt(λt)− ZLBt ≥ ZLR(λt)− ZLP . Then558

the stepsize is computed as559

µt =
ϵt

(︁
ZUBt(λt)− ZLBt

)︁
∥SGt∥2 (35)

Problem (33) has always a finite optimal value since af is a feasible solution and LBt(f, af ) = 0, so560

ZLBt ≥ 0. However, problem (29) can be unbounded and so it can happen that ZUBt(λt) = +∞, thus561

this method is not viable. In Ranieri (2010) a method is proposed to compute a looser lower bound on562

V (f, q) without solving the linear problem (26), but he does not provide a way to compute an upper563

bound on ZLR(λt).564

Now we propose another method to compute the stepsize, which instead is always viable. The idea565

is to estimate the difference ZLR(λt)− ZLP directly, instead of estimating bounds on ZLR(λt) and ZLP566

separately and then taking the difference. First of all, we can write567

ZLR(λt)− ZLP =
∑︂
f∈F

V (f, q∗t
f ) + SGt · λt −max

x∈S

∑︂
f∈F

∑︂
q∈Qf

V (f, q)x(f, q) (36)

where S is the set of solutions x satisfying constraints (5b) and (5c). Thanks to (5c) we can write568

ZLR(λt)− ZLP = SGt · λt −max
x∈S

∑︂
f∈F

∑︂
q∈Qf

(︁
V (f, q)− V (f, q∗t

f )
)︁

x(f, q) (37)

The maximisation problem appearing in (37) involves differences between values V (f, q)− V (f, q∗t
f ). A569

finite upper bound on these quantities is readily available thanks to equation (23). This gives a finite570

lower bound on ZLR(λt)−ZLP (due to the minus sign in front of the maximum) that can be plugged in571

the stepsize formula.572

More precisely, once we have UBt
diff (f, q) ≥ V (f, q)− V (f, q∗t

f ) obtained as573

UBt
diff (f, q) = pt(q)− pt(q∗t

f ) (38)

we can solve the following linear problem574

ZUBt
diff = max

∑︂
f∈F

∑︂
q∈Qf

UBt
diff (f, q)x(f, q) (39a)

∑︂
f∈F

∑︂
q∈Qf :q∋k

x(f, q) ≤ 1 ∀r ∈ R, k ∈ Lr (39b)

∑︂
q∈Qf

x(f, q) = 1 ∀f ∈ F (39c)

x(f, q) ≥ 0 ∀f ∈ F , q ∈ Qf . (39d)

To simplify the notation, let us define the residual575

RESt = SGt · λt − ZUBt
diff (40)
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which will satisfy RESt ≤ ZLR(λt)− ZLP (see again Appendix D.1). Finally we set576

µt = ϵt
RESt

∥SGt∥2 . (41)

It can be proved (see Appendix D.2) that RESt ≥ 0 and so the stepsize is non-negative, whenever the577

duality gap ZIP−ZLD is zero. Therefore, in that case, there is no risk that a step of subgradient iteration578

moves in the opposite direction of −SGt.579

The bounds UBt
diff (f, q) obtained with (23) can be improved by exploiting the ordered structure of580

Qf (the monotonicity of cost functions). They are updated recursively with581

ˆ︃UB
t

diff (f, qi) =

⎧⎨⎩pt(qi)− pt(q∗t
f ) for i = 1

min
(︂

pt(qi)− pt(q∗t
f ), ˆ︃UB

t

diff (f, qi−1)
)︂

for i = 2, . . . , |Qf |
(42)

Then we can leverage the information obtained at previous iterations to write582

UBt
diff (f, qi) = min

(︂ˆ︃UB
t

diff (f, qi), UBt′

diff (f, qi)
)︂
∀qi ∈ Qf for t′ < t if q∗t′

f ≥ q∗t
f (43)

Of course, the tightest possible upper bound on V (f, q) − V (f, q∗t
f ) can be found by solving a linear583

problem analogous to (29)584

UBt
diff (f, qk) = max v(qk)− v(q∗t

f ) (44a)
v(qi)− v(qj) ≥ ct

ij ∀qi ∈ Qf , qj ∈ Qf (44b)
v(qi−1) ≥ v(qi) ∀qi ∈ Qf \ {q1} (44c)

v(af ) = 0 (44d)

but the combination of (42) and (43) allows to drastically reduce the computational cost, and will be585

used to present the results in Section 6.586

Similarly one could find a lower bound LBt
diff (f, q) ≤ V (f, q) − V (f, q∗t

f ) and use it to compute an587

upper bound on ZLR(λt)− ZLP to be used in the stepsize formula. However this does not always work588

because there could not exist a feasible solution x ∈ S for which
∑︁

f∈F
∑︁

q∈Qf
LBt

diff (f, q)x(f, q) > −∞.589

The downside of this method is the computational cost of solving a linear problem (39) at every590

iteration of the subgradient method.591

5. Data collection592

5.1. Traffic data593

We tested the model on real traffic data collected from the Demand Data Repository (DDR2) of594

EUROCONTROL. In particular (Niarchakou and Sfyroeras, 2021),595

• Each regulation is characterised by its associated traffic volume2, the sub-periods in which it is596

divided and the capacities of each sub-period.597

• Each flight is characterised by: aircraft type, airline, ATFM delay, most penalising regulation,598

departure airport and destination airport, Estimated Take-Off Time (ETOT) and Estimated Time599

of Arrival (ETA), and the list of intersections, i.e., the estimated times of entry into each sector600

crossed along the flight route according to the Initial Trajectory, also called M1 trajectory, which601

is based on the Last Filed Flight Plan from the aircraft operator.602

2A traffic volume is a tool used in ATFM to select a specific volume of air traffic. It is related to an aerodrome or an
airspace sector, and to one or more traffic flows that can be either included or excluded from the regulation.
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5.2. Data extraction603

We processed the data about all flights and regulations on the 4th of July 2019 in all Europe. There604

were a total of 39080 flights and 203 regulations during that day. We selected data relative to one day605

because there are typically few regulations at night, so it is unlikely to have a regulation straddling the606

midnight.607

As a preprocessing stage, we excluded flights having the same origin and destination airport, flights608

with unknown origin or destination airport, and regulations with zero capacity. The resources used609

to execute each flight f are the intersected airspace sectors, the departure airport and the destination610

airport; we are interested only in the regulated resources. In order to form the set Rf (see Section 3.1),611

we selected the resources for which the following three conditions hold:612

(i) the resource is regulated;613

(ii) the time of entry into the resource falls within the regulation period;614

(iii) the flight is not excluded from the regulation by the corresponding traffic volume definition.615

In the case the resource is an airspace sector, the time of entry in point (ii) is the ETO over the sector616

taken from the intersections; in the case the resource is the departure airport, the time of entry is the617

ETOT, and in the case the resource is the arrival airport, the time of entry is the ETA. The times of618

entry in each resource will constitute the inputs Ef of the model together with Rf . Point (ii) requires619

another specification: if the flight is subject to more than one regulation, we actually require that the620

interval [ei, ei + MaxDelf ] (where ei is the time of entry) intersects with the regulation period, because621

due to the delay in the Most Penalizing Regulation the flight may be pushed inside the regulation period622

even if the time of entry was before the start of the regulation. That is why in Section 3.1 we included623

a “dummy” time window at the beginning of a regulation, and not only at the end.624

Point (iii) means that we check whether the flight is captured by the flows associated to the traffic625

volume. In addition, if the resource is the departure airport, we check that the traffic volume does not626

capture only inbound flights, and vice versa for the destination airport.627

Since airspace sectors are sometimes non-convex, it can happen that a flights enters into a sector628

more than once. In these cases, we kept only the first intersection with the sector.629

Regulations can be applied to collapsed sectors, but intersections of flights are always with elementary630

sectors. We verified that for our test day (4 July 2019), for each regulation associated with a collapsed631

sector, the opening schemes indicate that all elementary sectors of that collapsed sector were active during632

the time interval in which that regulation was in force. Since an elementary sector can be included in633

more than one collapsed sector, but only one of them can be active at a given time, we could associate634

each collapsed sector with the elementary sectors composing it (the configuration, i.e. the structure of635

collapsed sectors, was available from the data) and we considered a flight subject to a regulation on a636

collapsed sector if the flight crosses an elementary sector inside it.637

Let F be the subset of flights which are found to be associated to at least one regulation according638

to our analysis, i.e. the flights for which Rf ̸= ∅. We obtained |F | = 11354. Finally, let F ′ ⊂ F be639

the subset of flights departing from outside the ATFM Area (which includes States receiving the full640

ATFM service from EUROCONTROL) and the ATFM Adjacent Area (which includes FIRs adjacent641

to the ATFM Area) and exempted flights (e.g. official, humanitarian and emergency flights). These642

categories of flights are not subject to ATFM measures. We did not include airborne flights (which are643

also not subject to the ATFM slot allocation) in F ′ because the data did not specify the time of creation644

of regulations. We obtained |F ′| = 1016. For each flight f ∈ F ′, for each ri ∈ Rf , we blocked the TW of645

ri containing ei, meaning that no other flight can be assigned this TW in the optimal allocation. Flights646

in F ′ will not participate in the market mechanism. If a flight does not wish to join, but prefers to keep647
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its FPFS time window, it can be excluded from the market by placing it in the set F ′ (see also Appendix648

A). For each f ∈ F \ F ′, a bundle containing any blocked time window is considered not feasible.649

On our test day, on average, a flight in F \ F ′ crosses 1.6 regulations and 39% of flights are subject650

to more than one regulation (see Figure 1, which shows the number of regulations crossed by a flight).651

Figure 2 shows a cumulative histogram of the number of flights subject to a regulation. The average is652

85, and only 16% of cases comprise more than 150 flights. Based on these histograms, to test the market653

mechanism on meaningful real instances, in Section 6 we used the examples of two regulations with a654

number of flights each not too small but also not too large as the latter cases are rare (see also Table 3).655

Applications on larger instances can be found in Appendix E. We extended the analysis of traffic data656

for seven days (from the 1st to the 7th of July 2019) and found that a regulated flight crosses on average657

1.9 regulations and 47% of regulated flights are subject to more than one regulation, thus motivating the658

need for a multiple regulation allocation system such as the one proposed in this work.659

Figure 1: Normalised histogram of the number of
regulations crossed by flights in F \ F ′, 4 July 2019

Figure 2: Normalised cumulative histogram of the
number of flights in F \ F ′ subject to a regulation,
4 July 2019

In principle, it would have been possible to use the ATFM delay from the data to obtain the FPFS660

TW allocation. However, the resulting allocation would not respect the capacities of time windows,661

because it was impossible to reproduce exactly the real environment due to the intricacies of the ATM662

system rules, which we tried nevertheless to take into account to the best of our possibilities. Thus we663

applied the algorithm in Appendix C instead.664

As a check, we compared the set Rf obtained for each flight with the Most Penalising Regulation665

indicated in the data. For 98% of the flights the MPR was included in Rf . In addition, there was a666

small number of flights for which we found Rf ̸= ∅ but the MPR was not present in the data, meaning667

that the flight was not subject to any regulation in reality; we decided to ignore these flights.668

For reasons of computational efficiency, the size of Qf was limited by setting MaxDelf = 60 min ∀f ∈669

F . This is reasonable since the typical ATFM delays are below 60 minutes.670

As a last note, it is straightforward to adapt the construction of TW allocation lists for regulations671

having more than one sub-period. We build a TW list as described in Section 3.1 for each sub-period,672

and then the allocation list Lr is the union of all these TW lists.673

5.3. Cost data674

As anticipated in Section 2.2, delay costs can be estimated relying on the values reported in Cook675

et al. (2021). To reflect the likely range of costs, they are assigned under three scenarios (“low”, “base”676

and “high”) for four flight phases (at-gate, taxi, en-route and arrival management), and are calculated677

for 18 common types of aircraft. In this work, we only consider the at-gate tactical delays.678
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To assign delay costs to flights whose aircraft is not among the 18 reference types, aircraft in the679

data were clustered in 18 groups whose centroid is the reference type, based on the square root of the680

Maximum Take-Off Weight (MTOW), as in Bolić et al. (2017).681

Flights of low cost airlines were assigned to the low cost profile, flights into a hub airport were assigned682

to the high profile, and all other flights to the base profile, as in Bolić et al. (2017).683

We attached the cost of delay specifically to each regulated flight, based on the aircraft type, company,684

destination, and flight length, which are available from the data. We also attached the cost of cancellation685

which was estimated in Cook et al. (2021) as well. Due to the clustering, many flights have the same686

cost of delay, which is unrealistic, thus we added a small Gaussian zero-mean noise to each cost C(f, q).687

6. Computational results688

All algorithms were coded in Python and making use of NumPy, a package for scientific computing.689

All experiments were performed using the FICO XPRESS optimisation software, version 8.12.3. It is a690

software specifically devoted to solving mixed-integer linear programming problems. We ran it on a 64691

bit Intel(R) Xeon(R) W-2145 @3.70GHz 16 core CPU computer, having 31 GB of RAM memory and692

Ubuntu 20.04 operating system. On this architecture, the most computationally demanding example693

instance presented here (Section 6.5) took 105 seconds to execute.694

First of all, we recall the formula (41) for the stepsize in the subgradient method elaborated in Section695

4.2.2:696

µt = ϵt
RESt

∥SGt∥2 . (45)

In addition to formula (45), we experimented with a heuristic method to adapt the stepsize, which we697

now describe. The idea is not to use RESt directly in the stepsize formula, but just to monitor the trend698

of the Lagrangian function during iterations. We initialise µ0 as in (45). Then, we half µt every time the699

objective function fails to improve after a given number of iterations n according to the estimate given700

by RESt, and at least n iterations have passed since the last time we halved µt. That is:701

µt+1 =

⎧⎨⎩ µt

γ if RESt−i ≥ RESt−n and µt = µt−i ∀i = 0, . . . , n− 1
µt otherwise

(46)

with γ = 2, and µ0 = ϵ0
RES0

∥SG0∥2 . This piece-wise constant stepsize can be seen as a modification of a702

common rule used in the subgradient method, which halves the stepsize every ν iterations for some fixed703

ν. In this case, ν is dynamically adapted based on the behaviour of the function. The parameters n and704

ϵ0 need to be tuned, and we found that n = 4 and ϵ0 = 3 work well in general. We will use these values705

in the rest of this Section if not otherwise stated.706

A rule of thumb to initialise λt is to set λ0 at random uniformly in an interval corresponding roughly707

to the range of equilibrium prices, which can be determined after a number of trials on similar-sized708

instances. We observed that generally setting λ0 at random works better than setting λ0 = 0. We709

believe that this is because in this way initial prices are on average closer to their final equilibrium value,710

which makes convergence faster.711

To illustrate the computational experience gained, we describe the results obtained on some instances712

involving two regulations and extracted from the real data (Section 5), which are representative of the713

average case (see Figures 1 and 2). We first discuss the convergence of the subgradient depending on714

the different stepsizes (45) - (46) and conclude that the best choice is to rely on the heuristic approach715

(section 6.1). This is the stepsize used in the subsequent examples. In the first case, we present an716

instance producing a weakly budget balanced solution (section 6.2), then a case where the subgradient717

does not converge and therefore TW capacity is not respected (section 6.3). Since we observe a decreasing718
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number of violated time windows as the subgradient advances, we deem the final solution acceptable719

from an operational point of view. In the third case, the optimal solution obtained through the market720

mechanism is illustrated in more detail (section 6.4). We conclude with a greedy algorithm to derive721

a feasible solution when the duality gap is not equal to zero (section 6.5). Appendix E reports some722

additional computational experiments performed on data instances of various sizes.723

6.1. Subgradient convergence - Regulations LBSAU04 and LBSCU04724

First of all, we consider two regulations, LBSAU04 and LBSCU04, affecting two collapsed sectors in725

Bulgaria, that were both limiting the rate to 40 flights per hour due to adverse weather, the first from726

13:00 to 14:31 and the second from 13:00 to 16:15. We take as F the set of all flights affected by at least727

one of the two regulations, and L the set of time windows on the two regulations. The set F comprises728

a total of 111 flights, of which 15 flights were affected by both regulations. The cost of the initial FPFS729

allocation is € 960.20. We verified that the duality gap for this instance is zero, and the cost of the TW730

allocation (5) is € 263.36 leading to 72.6% cost savings.731

Figure 3 shows with a blue line the decrease in the Lagrangian function in the first 100 iterations of732

the subgradient algorithm applied to such data instance, using stepsize (45). After 100 iterations, the733

objective value reaches 100.83% of its minimum value (the pink dotted line), and the prices are still not734

exactly at their equilibrium. The algorithm does not converge to an optimal solution of problem (IP )735

even after 300 iterations.736

Figure 3: Lagrangian objective value ZLR(λt) vs number of iterations t (with zoom over the last 10 iterations)

This behaviour is not caused by the approximation we did by employing the lower bound in the737

stepsize formula. As a comparison, we report in the same plot (Figure 3) the result when we run the738

subgradient algorithm using the ideal stepsize (22), pretending that costs are known (yellow line). The739

convergence profile is very similar. In this case also, convergence to an optimal solution of (IP ) does not740

happen, even if the final value is slightly lower, 100.42% of the minimum.741

We found that this is a general trend on other data instances. Using the ideal formula (22) for the742

stepsize, the subgradient algorithm rarely converges to a capacity-compliant solution within a reasonable743

number of iterations, because prices converge too slowly.744
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In instances for which the duality gap is zero, the subgradient algorithm always converges as discussed745

in Section 4.1.1, at least asymptotically if the ideal stepsize is used.746

Notice that we used the highest value possible for ϵt that guarantees convergence, i.e. ϵt = 2. If we use747

a higher value, on some instances a faster convergence can be achieved, but on some others the objective748

value diverges. With (45) we used ϵ0 = 3 to compensate for the fact that RESt is an underestimate of749

the true residual.750

When we use the heuristic formula (46) on our example instance (Figure 4) the algorithm finds751

an optimal solution of (IP ) at iteration 83 and terminates. We often achieved finite termination at752

optimality on other small-size instances (two regulations and comparable number of flights) with the753

heuristic formula.754

Figure 4: Lagrangian objective value ZLR(λt) vs number of iterations t (with zoom where finite convergence is
attained)

Figure 5 shows the true value of the residual ZLR(λt)− ZLP together with its underestimate RESt.755

It is evident that this underestimate is able to reproduce the trend in the real residual. When the real756

residual increases, the underestimate increases too and when the real residual decreases, the underes-757

timate decreases, even if the magnitude of the two is quite different. This provides justification to the758

empirical formula (46), as the underestimate is able to correctly capture when the real objective function759

fails to improve for n iterations.760

Figure 6 shows the stepsize sequence obtained when we run the subgradient algorithm with the ideal761

stepsize rule (22), and the stepsize sequence obtained when we use the heuristic rule (46). The heuristic762

stepsize tends to be higher, and we believe that this is the reason of the success of this formula: if the763

magnitude of the step is higher, prices λt tend to converge faster, provided that they converge at all. Of764

course, the drawback is that convergence is not guaranteed, so this represents a more aggressive strategy765

for scheduling the stepsize than (22), or actually its version (45) in the case of unknown costs, but less766

robust.767
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Figure 5: Goodness of the lower bound on the residual Figure 6: Comparison between stepsize sequences

6.2. Weakly budget balanced solution - Regulations LOVS04N and LOWB304A768

We present an example that shows that the subgradient algorithm finds a capacity-compliant solution769

that is also weakly budget balanced, even if it does not satisfy the complementary slackness conditions.770

The example is relative to two interacting regulations, LOVS04N and LOWB304A, and a total of771

145 flights affected by at least one of them. We verified that the duality gap for this instance is zero.772

Figure 7 displays the converge profile on this instance, with a zoom on the last iterations to show that773

convergence is not attained at the minimum of the Lagrangian function, but at a slightly higher value.774

Nonetheless, at iteration 100 the solution of the Lagrangian problem turns out to be capacity-compliant,775

and also weakly budget balanced, even if it does not satisfy complementary slackness. Although the776

solution is not optimal, the subgradient algorithm may be stopped, as the resulting market mechanism777

implied by the current solution satisfies the desired properties.778

We remark that we can assess the degree to which this near-optimal solution departs from optimality.779

Specifically, we have that ZIP −
∑︁

f∈F V (f, q∗t
f ) ≤ λt · SGt (Geoffrion, 1974).780

Figure 7: Convergence profile (with detail of the last iterations)
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6.3. Capacity constraint violation - Regulations LHSUH04A and LONE3504781

We introduce an example that shows that when the subgradient algorithm does not converge to a782

solution which respects the capacity constraint, often the violation of the capacity constraint is small.783

We consider the regulations LHSUH04A and LONE3504 which affect a total of 233 flights. Figure 8784

shows the convergence profile for our third example instance. The Lagrangian objective value reaches785

100.59% of its minimum after 150 iterations.786

Figure 8: Convergence profile

As we discussed in Section 4.1, due to the way the subgradient algorithm is designed, it tends to787

reduce capacity violations during the course of iterations. A step of the subgradient algorithm tends to788

raise the price of time windows for which the demand exceeds the capacity, so that at the next iteration789

the demand will be lower.790

More quantitatively, let us define the total overload of a time window allocation as the total number791

of flights exceeding the capacity of time windows (i.e. 1 flight per time window). Recall that the number792

of flights whose demanded bundle at iteration t contains time window k is 1− SGt
k. Then, at iteration793

t, the overload OLt
k of time window k is given by OLt

k = max(0,−SGt
k) and the total overload is given794

by
∑︁

k∈L OLt
k.795

Figure 9 reveals that the total overload indeed tends to decrease during iterations. If the subgradient796

algorithm would converge to an optimal solution, then the total overload would be zero. At the same797

time, as shown in Figure 10, the surplus
∑︁

f∈F

(︂
pt(qt

f )− pt(af )
)︂

tends to increase, and after 60 iterations798

it rises above zero.799
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Figure 9: Total overload Figure 10: Surplus

At iteration t = 131, there is only one flight in excess with respect to the capacity, i.e. the total800

overload is 1, and the surplus is positive, in particular it amounts to 44.57 €. Although one flight801

could not be appropriately accommodated by the algorithm, in practice it might happen that the ATFM802

controllers and/or the airlines could re-allocate such flight in cost-efficient manner. Therefore, even with803

this small capacity violation, we can be content with this solution.804

To sum up what we discussed in this section and in Section 4.1.1, these are the factors that prevent805

convergence of the subgradient algorithm to an optimal solution of our allocation problem:806

1. The duality gap may be non-zero, in which case the prices which solve the Lagrangian dual do not807

support the optimal allocation.808

2. There may be multiple solutions of the Lagrangian relaxation subproblem, so even when the duality809

gap is zero and the prices have converged exactly, the subgradient algorithm may not find the810

optimal allocation.811

3. Even if costs were known and the ideal stepsize sequence was used, finite convergence would not812

be guaranteed, and asymptotic convergence does not yield the solution to the allocation problem.813

4. By using an heuristic stepsize rule, in not all cases finite convergence is attained.814

When the subgradient algorithm stops without converging to the optimal solution, two situations815

can arise. Either the subgradient algorithm solution provides a set of bundles that do not cause slot816

overloads (i.e., no time windows are assigned to more than one flight), or conversely, some slot overload817

does occur (i.e., some time windows are assigned to more than one flight). In the former case, flights may818

decide to accept the proposed solution if it is weakly budget balanced. In the latter case, the presence819

of slot overloads can be handled with the heuristic presented in Section 6.5.820

We also note, as we have already pointed out, that it is not uncommon in operations to accept821

some slot overloads, i.e., more than one flight in the same time window, are accepted two flights in the822

same sequence time window are often accepted in a sector, especially if there is a nearby empty slot,823

typically in the range between -20 min and +60 min, that can compensate for the overload. Therefore,824

the acceptability of this type of “imperfect” solution may be worth further investigation in the future.825

6.4. Market mechanism solution - Regulations ME1204 and MKK04826

Here we introduce an example on an instance of smaller size (in terms of number of flights), for which827

the space limitation of the paper allows us to report the solution.828
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The interested regulations are ME1204 and MKK04, affecting two en-route sectors near Marseille,829

France. The regulation reason for both was ATC Staffing. Regulation MKK04 was active from 11:40 to830

13:00 with a capacity of 38 flights/hour, and regulation ME1204 was active from 12:00 to 13:40 with a831

capacity of 30 flights/hour. There were 39 flights subject to regulation ME1204 and 40 flights subject to832

MKK04, of which 15 to both of them, for a total of 64 flights. Regulation ME1204 has 50 time windows833

and MKK04 has 51 time windows. At first sight, it may seem weird that the number of flights subject to834

a regulation is smaller than the number of TWs available. But the point is that, if no delay was assigned835

to flights, some time windows would have more than one flight passing through them, and some other836

time windows would have no flights at all: the purpose of a regulation is to smooth the traffic over the837

regulation period.838

With the subgradient algorithm an optimal solution is found after only 37 iterations. The total delay839

under the FPFS allocation is 105 minutes and the total cost of delay is 1159.90€. Under the optimal840

allocation the total delay is slightly higher, 106 minutes, but the cost is almost halved, 619.72€. The841

surplus from the market mechanism is 7.26€. The sum of profits (utility variations) of all flights is thus842 ∑︁
f∈F ∆u(f) =

∑︁
f∈F (V (f, q∗

f )− p(q∗
f ) + p(af )) = 1159.90€ - 619.72€ - 7.26€ = 532.92€ .843

It is interesting to look closely at the optimal solution. Table 2 lists all the monetary transactions844

between flights and the central authority (CA) prescribed by the market mechanism. The first column845

is the TW being exchanged, the second column is the flight selling the TW (releasing the TW from its846

FPFS allocation), the third column is the flight buying the TW (taking up the TW under the optimal847

allocation), and the fourth column is the payment associated with the TW exchange, i.e. the price of the848

TW (see Section 3.3). Time windows not appearing in the table either are not assigned under the FPFS849

policy nor under the optimal policy, or they are assigned to the same flight in both policies (we omitted850

virtual transactions from a flight to itself from the table). Out of the total of 64 flights, 24 flights were851

allocated with the same time windows under both FPFS and optimal policy. These are the flights who852

are willing to participate in the process but for whom it is most convenient to keep the FPFS bundle.853

As an example, consider the two rows of the table involving time windows r1 k48 and r1 k49. Flights854

f28 and f54 exchange their FPFS TWs; f28 increases its delay and thus receives a net amount of 23.12€855

- 10.8€ = 12.32€ from f54 as a compensation. In many cases the transactions occur between a pair856

of flights swapping a time window, as in the example, but in other cases they consist in more complex857

trading cycles involving three or more flights.858

Most trades occur between flights, and only 5 trades occur between a flight and the central authority859

(see again cases (ii) and (iii) in Section 3.3). Of these, all are 0€ except one in which flight f63 pays 7.26€860

to the central authority for TW r1 k18 and this represents the surplus of the market mechanism. In the861

last case, we are in the presence of an airline that is willing to pay for a currently free TW. In such a862

situation, the central authority may decide to allocate it free of charge, so that in practice the exchange863

would be fully budget balanced. However, a similar policy should be agreed upon with all airlines in864

advance. In fact, reducing the price paid by f63 for TW r1 k18 from 7.26€ to 0.00€ may be unfair, since865

other flights may then prefer this TW at zero price to their allocated TW, and (19) would not hold.866

We remark that some TW exchanges or some central authority TW allocations may naturally occur867

with price equal to 0€. This is always the case when a flight sells a TW to the central authority, due to868

the complementary slackness condition. It can also happen when a flight exchanges a pair of slots with869

another flight. For instance, considering Table 2 again, f18 sells its FPFS time window r2 k5 at 0€ to870

f19 so that this f19 can sell r2 k4 to f18 and allows it to decrease its delay. In this type of TW exchange,871

and in general in circular TW exchanges, the difference in TW prices may be more important than the872

price of each individual TW, especially if no other flight is interested in the TWs being considered. As873

another example, the circular exchange of TWs r2 k45, k46, and k47 between f3, CA, and f23 at 0€ is874

justified even if f3 gets a TW with a greater delay. It allows f3 to be compensated in regulation r1, where875
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its profit is positive because it receives compensation of 24.03€ for the increase in delay.876

TW seller buyer payment
r1 k1 f33 f48 22.81€
r1 k3 f48 f11 0.00€
r1 k4 f24 CA 0.00€
r1 k5 f29 f24 2.70€
r1 k6 f11 f29 0.00€
r1 k18 CA f63 7.26€
r1 k21 f63 f13 0.00€
r1 k22 f13 CA 0.00€
r1 k23 f16 f23 10.80€
r1 k24 f23 f16 0.00€
r1 k30 f3 f14 24.03€
r1 k31 f14 f59 10.80€
r1 k32 f59 f3 0.00€
r1 k37 f41 f27 12.65€
r1 k38 f27 f38 10.75€
r1 k39 f38 f41 0.00€
r1 k44 f62 f26 8.99€
r1 k45 f26 f5 7.27€
r1 k46 f5 f62 2.70€
r1 k48 f28 f54 23.12€
r1 k49 f54 f28 10.80€
r2 k4 f19 f18 5.40€
r2 k5 f18 f19 0.00€
r2 k7 f10 f33 76.36€

TW seller buyer payment
r2 k10 f33 f48 46.51€
r2 k11 f24 f2 39.56€
r2 k12 f48 f10 21.61€
r2 k13 f2 f24 10.80€
r2 k14 f43 f34 5.40€
r2 k15 f22 f43 1.01€
r2 k16 f34 f22 0.34€
r2 k24 f60 f12 143.94€
r2 k25 f12 f60 104.63€
r2 k28 f36 f44 30.51€
r2 k31 f15 f17 17.53€
r2 k32 f44 f63 21.27€
r2 k33 f17 f36 4.05€
r2 k34 f63 f15 2.70€
r2 k35 f16 f20 2.03€
r2 k36 f20 f52 13.94€
r2 k37 f52 f49 2.38€
r2 k38 f49 f16 0.68€
r2 k45 f3 f23 0.00€
r2 k46 f23 CA 0.00€
r2 k47 CA f3 0.00€
r2 k48 f50 f61 44.34€
r2 k49 f61 f50 22.53€
r2 k50 f21 f1 13.59€

Table 2: Transactions (in the first column, “r1” stands for ME1204, “r2” stands for MKK04; “k1” is the first
TW, “k2” is the second etc.)

Finally, we show how strict are the bounds on costs obtained by the central authority and used to877

compute the stepsize. Figure 11 shows a histogram of the ratios ˜︃LB
t
(f, q)/C(f, q) for the last iteration878

t = 37 for all bundles q ∈ Qf , f ∈ F . The bounds ˜︃LB
t
(f, q) are computed as in problem (32). For 96%879

of the bundles, the lower bound is less than 90% of the true cost value. Figure 12 shows a histogram of880

C(f, q)/˜︃UB
t
(f, q) for t = 37. The first bin of the histogram highlights that for 86% of the bundles no881

upper bound can be obtained (i.e. problem (32) is unbounded). This means that in practice the cost882

elicitation procedure described in Section 4.2.1 does not pose a privacy risk for the airlines.883
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Figure 11: Histogram of the ratio between the lower
bound on the cost and the true cost

Figure 12: Histogram of the ratio between the true
cost and the upper bound on the cost (broken y axis)

Appendix E.1 reports some additional computational experiments performed on real instances of884

different sizes with the duality gap equal to zero.885

6.5. Resolution of duality gaps886

The duality gap was always zero in all the previous examples. However, our experiments confirm the887

expectations that the percentage of problem instances for which the duality gap is zero decreases as the888

instance size (in terms of number of flights and regulations) increases. Here, we discuss how to handle889

these situations, and also the cases where the subgradient algorithm returns a solution that provides890

bundles that cause some slot overloads.891

A straightforward way to find a feasible solution is to allow only a subset of the flights to exchange892

time windows, while the rest of the flights will maintain their FPFS allocation. We run the subgradient893

algorithm until the objective value is close to its minimum. We consider the time windows for which894

the overload is OLt
k > 0. For each of these, we remove from the market mechanism one of the OLt

k895

flights demanding that time window at time t, and assign the FPFS bundle to them. This means that896

the size of the set F on which the optimisation is performed is reduced. The time windows belonging to897

these FPFS bundles are removed from the set K of time windows available for exchange, meaning that898

the feasible bundles of all flights in F are filtered from these. Then, the subgradient algorithm is run899

again on this reduced instance, with the hope that the duality gap will be now zero. In the case it is,900

the feasible solution of the reduced optimisation problem is implemented. In the case the duality gap is901

still different from zero, the above procedure of constructing a smaller instance is repeated one or more902

times. This procedure obviously guarantees to terminate with a feasible solution, since in the limit all903

flights are removed from F and the FPFS allocation for all flights is implemented. In practice, we found904

that just one iteration is often sufficient.905

As an example, we used an instance with 5 regulations and 832 flights, depicted in Figure 13 as a906

graph. A node corresponds to a regulation in R, and an edge is drawn between every pair of regulations907

which are connected by at least one flight, in the sense that the flight crosses the two regulations908

consecutively. The edge weight represents the number of connections. The delay cost of the initial FPFS909

allocation is equal to € 24364.04 and the savings from the TW allocation (5) are equal to 82.9%. The910

duality gap for this instance is 0.14.911
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Figure 13: Instance structure

For such large instance, it is necessary to decrease the parameter γ appearing in equation (46),912

because convergence is expected to be slower with respect to the four cases encountered before. We set913

γ = 1.2. After 371 subgradient iterations on the entire instance, the objective function reaches 100.0002%914

of its minimum value and there are only 4 overloaded time windows. At this point, after removing the 4915

flights in excess with respect to the capacity, the duality gap becomes zero. Restarting the subgradient916

algorithm, an optimal solution is obtained after 410 iterations, with an optimal cost of € 4184.67. By917

adding the cost of the FPFS bundles of the 4 removed flights, we obtain the cost of the feasible solution918

for the entire instance, € 4184.67 + € 6.79 = € 4191.46. This cost is very close to the optimal cost for919

the entire instance, € 4170.23. In other words, the value of this feasible solution is only 21.23€ lower920

than the value of the optimal solution. It is also worth noting that the prices obtained are close to the921

optimal prices. More precisely, for 70% of the time windows the price is less than 10% away from the922

optimal price. The maximum price is 179.81€, and 25% of the time windows have prices equal to zero.923

Figure 14 shows a histogram of the non-zero prices.924

Figure 14: Histogram of non-zero prices

Appendix E.2 reports other computational experiments performed on real instances of different sizes925

with the duality gap different zero.926

6.6. Concluding remarks on computational experiments927

Summing up, the five examples introduced in this section provide some guidelines on how to deal928

with our problem in practice, when it is not known if we are dealing with zero dual-gap instances.929
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When the subgradient algorithm is stopped three situations may occur. If we find a feasible solution930

that satisfies the complementary slackness conditions, we are in presence of a zero dual-gap instance and931

the algorithm has individuated a Walsarian equilibrium. If the solution does not satisfy the complemen-932

tary slackness conditions but it is feasible for (IP ), this solution is capacity compliant and individual933

rational, but may or may not be weakly budget balanced (see Section 6.2 for a weakly budget balanced934

instance). If the solution is not feasible for (IP ) the heuristic proposed in Section 6.5 can be applied.935

Table 3 summarises the properties of the optimal solution (“opt. sol.”) compared to the FPFS936

solution in the four cases with two regulations presented from Section 6.1 to Section 6.4, respectively.937

The total delay is not the sum of the two regulations’ delay because the delay of flights passing through938

both regulations does not have to be double counted, and similarly for the number of flights and the939

cost. We notice that cost savings are always significant (from 33% to 85%), despite sometimes a small940

increase in the delay is experienced. The table also reports the number of flights delayed beyond the941

upper bound of each regulation period (“n° flights out of reg.”), both in the FPFS and in the optimal942

allocation. These are flights occupying a dummy TW. Since their number, if any, is always very low, the943

presence of these TWs is not expected to pose problems from an operational point of view. Similarly944

to capacity violations addressed in Section 6.3, in practice it might happen that the ATFM controllers945

and/or the airlines could re-allocate such flights in a cost-efficient manner.946

section 6.1 section 6.2 section 6.3 section 6.4
LBSAU04,
LBSCU04

LOVS04N,
LOWB304A

LHSUH04A,
LONE3504

ME1204,
MKK04

first
regulation

n° flights 39 60 159 39
cost FPFS € 319.82 € 1,783.97 € 5,421.41 € 713.04
cost opt. sol. € 121.13 € 340.64 € 1,005.92 € 477.66
% of change opt.sol. vs. FPFS −62% −81% −81% −33%
delay FPFS 23 min 171 min 554 min 66 min
delay opt. sol. 27 min 172 min 556 min 64 min
n° flights out of reg. in FPFS 0 0 2 1
n° flights out of reg. in opt. sol. 0 0 1 1

second
regulation

n° flights 87 112 116 40
cost FPFS € 746.96 € 2,027.90 € 1,755.64 € 1,020.92
cost opt. sol. € 236.26 € 426.82 € 264.08 € 564.30
% of change opt.sol. vs. FPFS −68% −79% −85% −45%
delay FPFS 84 min 192 min 172 min 87 min
delay opt. sol. 100 min 162 min 189 min 92 min
n° flights out of reg. in FPFS 1 1 0 1
n° flights out of reg. in opt. sol. 1 0 0 1

both
regulations

n° flights 111 145 233 64
cost FPFS € 960.20 € 2,689.30 € 6,328.80 € 1,159.90
cost opt. sol. € 263.36 € 661.93 € 1,121.86 € 619.72
% of change opt.sol. vs. FPFS −73% −75% −82% −47%
delay FPFS 100 min 268 min 651 min 105 min
delay opt. sol. 109 min 280 min 666 min 106 min

Table 3: Number of flights, cost and delay of the FPFS solution and the optimal solution, for the two single
regulations and in total
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7. Conclusions and future perspectives947

In this paper, we propose a market-based mechanism for the allocation of time windows in case of948

multiple interacting ATFM regulations. We show that significant delay cost reductions are possible for949

airlines with respect to the First Planned First Served allocation policy currently adopted in Europe.950

This market mechanism is allocative efficient, individual rational and weakly budget balanced. It is951

based on the Lagrangian relaxation of an integer optimisation problem that can be implemented in a952

distributed way with the subgradient method. We have successfully tested the mechanism on real data953

instances and discussed possible problems that can arise in convergence of the subgradient method. In954

particular, the choice of stepsize for the subgradient method is a delicate matter, which requires to find955

a compromise between fast convergence and “robust” convergence (i.e. convergence in all instances).956

It should be noted that optimised hardware can partially help to resolve this trade-off, but the957

inevitable uncertainty that plagues cost values makes it questionable to spend excessive computational958

time on finding a solution whose value is approximated anyway.959

We have shown that convergence to an optimal solution, or even just a feasible solution, is not always960

possible. A possible future development would be to try to design a Lagrangian heuristic (Fisher, 2004) to961

slightly modify nearly feasible Lagrangian solutions to satisfy the capacity constraint while maintaining962

individual rationality and weak budget balance.963

Another possibility for future experiments could be to leverage the fact that delay costs are not964

completely unknown and that recent advances in predicting rerouting costs (Khan et al., 2021) provide965

reliable thresholds for airlines to assess whether the acceptance of the delay is economically viable. For966

example, before running the subgradient method, to set the stepsize sequence we could initialise prices967

of time windows with the optimal dual prices of the allocation problem solved with the estimated costs968

available by the central authority. This would facilitate and speed up convergence towards optimal969

solutions.970

A challenging perspective would be to try to apply the model on a large-scale instance, possibly a971

whole day of air traffic data. The difficulty is that the duality gap for such large instance is probably non-972

zero. Also, this would require to find another rule for the stepsize, because solving a linear optimisation973

problem at each iteration would be too computationally expensive.974
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Bolić, T., Castelli, L., Corolli, L., Rigonat, D., 2017. Reducing atfm delays through strategic flight planning. Transportation982

Research Part E: Logistics and Transportation Review 98, 42–59.983
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Appendix A Discussion on incentive compatibility1060

In the paper, we assume the incentive compatibility property is always respected, i.e., all partici-1061

pants in the market report their preferences honestly. Some of the consequences that may occur if this1062

assumption is violated are discussed below, extending similar considerations already made for the case1063

of a single regulation, i.e., |R| = 1 (Castelli et al., 2011b).1064

In the centralised mechanism (Section 3), each flight communicates the value of each bundle to the1065

central authority which allocates them to all flights, maximising the overall value. Some airline could1066

therefore be tempted to communicate false values to gain an advantage (i.e., declare costs greater than1067

the real C(f, q) in order to receive a better position in the optimal allocation). This possibility is1068

however mitigated by the fact that, operating in a competitive environment, an airline would need to1069

have perfect knowledge of other participants’ costs in order to be sure that its utility would not decrease1070

when cheating.1071

Another action that could be a consequence of dishonest attitudes is the rejection of the allocated1072

bundle because it does not match the desired one. This possibility is mitigated by not requiring anyone1073

to participate in the mechanism. Even if the market mechanism is individual rational (each participant1074

has a non-negative profit from entering the market), there should be no obligation from an airline to1075

participate in it. Exactly as with the UDPP (Pilon et al., 2016), if an airline does not want to participate,1076

it remains with the slots allocated through the FPFS. Only those airlines that wish to be in the market1077

participate. In our setting, this is possible by including in the set F ′ introduced in Section 5.2 (flights1078

that are not requested to participate in the market mechanism) also the flights that do not wish to1079

participate in it. Those who participate are then required to accept the solution provided. Of course,1080

an airline that agrees to participate in the centralised mechanism could still provide false cost values to1081

the authority. However, this case falls under the one described in the previous paragraph.1082

Alternatively, applying an iterative procedure similar to the one illustrated in section 6.5 (“The idea1083

is to allow only a subset of the flights to exchange time windows, while the rest of the flights will maintain1084

their FPFS allocation”), one could also think of a multi-step scheme in which an airline can reject the1085

solution proposed by the market mechanism. In the first step, the TW allocation is made to all flights.1086

Within a certain instant of time, the airline decides whether to accept or keep the FPFS slot and then1087

the allocation is performed again only on those who accepted. Reasons for refusal could be either because1088

you have tried to cheat the system or because, in good faith, you have made an incorrect assessment1089

of your costs. The flight dispatcher might not accept the market solution because he/she knows from1090

experience that FPFS is better. Clearly, this whole process should be regulated (e.g., a maximum number1091

of refusals or penalties for refusals could be envisaged) in order to avoid continual attempts by airlines1092

to test the system until the desired bundle is obtained, and to give stability to the solution of those who1093

do adhere. A detailed design of this scheme is, however, outside the scope of this study and may be the1094

subject of future work.1095

In the distributed case (Section 4), at each iteration the central authority communicates the TW1096

prices and each flight identifies the optimal bundle for it at those prices. For example, for flight f1 the1097

optimal bundle contains the TW called a1 available at price p1. f1 could actually communicate another1098

bundle that, for example, contains a2 instead of a1 to lower the price of the latter at the next iteration.1099

This operation is risky, however, since a1 could also be requested by another flight f2 willing to pay p11100
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for it, and thus f1 has to make content with a2 from which it obtains a lower payoff. As in the case of1101

the centralised mechanism, the existing competition for critical resources makes opportunistic behaviour1102

complex.1103

Appendix B Construction of feasible bundles1104

Algorithm 1 describes how to generate the set of feasible bundles Qf for any flight f . Bundles are1105

constructed in sequence, from the one having the smallest delay to the one with the largest delay. The1106

first bundle in Qf is the bundle whose time windows contain the expected times of entry Ef . This bundle1107

will have zero delay. Then, the idea is to shift a sequence of time instants t, initialised with Ef , towards1108

the right of the discretised timeline and keep track of which time windows contain t in each element of1109

Rf ; as soon as the time windows change, a new bundle will be appended to Qf . Starting from t = Ef1110

and shifting t towards higher times, you will remain inside the same time windows until you encounter1111

the first upper border of a time window. When an upper bound (or more than one) is encountered, you1112

take the next time window in the slot allocation list of this resource(s), while the other time windows1113

stay the same, and append this new bundle to Qf . The delay will be the temporal distance between1114

the lower bound of the new time window and the expected time over the corresponding resource. This1115

procedure is repeated iteratively until either the maximum delay MaxDelf is reached, or the end of all1116

slot allocation lists is reached. In the case that MaxDelf is reached before all time windows become1117

dummy time windows, the empty bundle corresponding to flight cancellation is added to Qf .1118

Algorithm 1: Construction of feasible bundles
Input: Rf , Ef , {L̂r for r ∈ Rf}, MaxDelf

Output: Qf

1 n← |Rf |;
2 t← Ef ;
3 q ← [TW1, . . . , TWn] where TWi is such that IT Wi

≤ ei ≤ UT Wi
for i = 1, . . . , n;

4 delay ← 0 seconds;
5 Qf ← ∅;
6 while delay < MaxDelf do
7 dqf

← delay;
8 Qf ← Qf ∪ q;
9 if all TWi ∈ q are dummy then break;

10 interval← [UT W1 − t1, . . . UT Wn
− tn];

11 gap← min(interval);
12 q ← [TWi + 1 if intervali = gap else TWi for i = 1, . . . , n];
13 shift← gap + 1 second;
14 t← [t1 + shift, . . . , tn + shift];
15 delay ← delay + shift;
16 end
17 if any TWi ∈ q is not dummy then
18 Qf ← Qf ∪ [ ] ;
19 end

1119

Appendix C Algorithm for FPFS1120

This appendix provides an algorithm, adapted from Ranieri (2010), for computing the FPFS bundle1121

af for all f ∈ F . Here we will denote ef
r the ETO of flight f in regulation r. We will consider the set1122
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Qf as ordered by increasing delay, and with a little abuse of notation we will identify a bundle q with its1123

index in the ordered list Qf , for example the most-preferred bundle is q = 1. We will denote TWr ∈ q1124

the time window in q which belongs to regulation r.1125

The algorithm begins with variable initialisation at lines 1-9. Variable provalloc(f) is the tentative1126

FPFS allocation for flight f . During the course of the algorithm, a time window can be assigned to1127

multiple flights according to provalloc, but at the end of the algorithm at most one flight has assigned1128

any time window. Variable processed(f, r) is True whenever the time window assigned to f in regulation1129

r is not assigned to another flight whose ETO is smaller.1130

The algorithm applies the FPFS policy independently on each regulation (lines 11-15). This implies1131

that the bundle assigned by the FPFS in one regulation might not respect the FPFS order in another1132

regulation, thus the algorithm iteratively adjusts the allocation (lines 16-26) until the FPFS property1133

is respected for each flight (line 10) and the capacity constraint is satisfied. At the end of the while1134

loop, also the Most Penalizing Regulation rule is satisfied. The second while loop (lines 31-42) checks1135

whether some flights can be assigned a bundle with a smaller delay without breaking the FPFS rule and1136

the capacity constraint.1137
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Algorithm 2: FPFS
1 for f ∈ F do
2 provalloc(f)← None;
3 for r ∈ Rf do
4 processed(f, r)← False;
5 end
6 end
7 for r ∈ R do
8 Fr ← ordered flight list(r);
9 end

10 while all processed() = False do
11 for r ∈ R do
12 for f ∈ Fr do
13 if provalloc(f) = None then
14 assign first feasible(f, r, 1);
15 processed(f, r)← True;
16 else if processed(f, r) = False then
17 if is feasible(provalloc(f), f, r) = True then
18 processed(f, r)← True;
19 else
20 for z ∈ Rf : z ̸= r do
21 processed(f, z)← False;
22 end
23 assign first feasible(f, r, provalloc(r));
24 processed(f, r)← True;
25 end
26 end
27 end
28 end
29 end
30 noimprovement← False;
31 while noimprovement = False do
32 noimprovement← True;
33 for f ∈ F do
34 for q ∈ Qf : q < provalloc(f) do
35 if all feasible(q, f, r) = True then
36 do assign(f, q);
37 noimprovement← False;
38 break;
39 end
40 end
41 end
42 end
43 for f ∈ F do
44 af ← provalloc(f);
45 end

1138
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The function ordered flight list(r) returns the list of flights crossing r ordered by increasing ef
r .1139

The function all processed() returns True if processed(f, r) = True for all f ∈ F , r ∈ Rf .1140

The function all feasible(q, f, r) returns True if is feasible(q, f, r) = True for all r ∈ Rf .1141

The function assign first feasible(f, r, i) assigns to f the first bundle in Qf whose index is at least1142

i and such that TWr ∈ q is either not assigned to any other flight, or for all flights g to which it is1143

assigned it holds eg
r > ef

r . In this latter case, we also set processed(g, r)← False.1144

The function is feasible(q, f, r) returns True if TWr ∈ q for flight f has not been assigned to any1145

other flight.1146

The function do assign(f, q) assigns bundle q to flight f .1147

For the sake of efficiency, the five functions described above make use of a data structure which maps1148

every time window to the set of flights that are currently assigned to it according to provalloc.1149

Appendix D Proof of bounds1150

D.1 Bound on optimal value1151

Problem (39) is the same of the linear relaxation of problem (5) with the objective function coefficients1152

V (f, q) substituted by lower bounds LBt(f, q). The feasible region of (39) is the same as the feasible1153

region of the linear relaxation of (5), and the objective function of (39) is everywhere lower than the1154

objective function of (5). In fact, from1155

LBt(f, q) ≤ V (f, q) ∀f ∈ F , q ∈ Qf

it follows, since x is feasible and so x(f, q) ≥ 0,1156

LBt(f, q)x(f, q) ≤ V (f, q)x(f, q) ∀f ∈ F , q ∈ Qf

and by summing over f ∈ F and q ∈ Qf1157 ∑︂
f∈F

∑︂
q∈Qf

LBt(f, q)x(f, q) ≤
∑︂
f∈F

∑︂
q∈Qf

V (f, q)x(f, q)

Therefore, ZLBt ≤ ZLP . Analogously, if LBt(f, q) is substituted by an upper bound UBt(f, q), we1158

obtain that the optimal value of (39) is an upper bound for the optimal value of the linear relaxation of1159

(5).1160

D.2 Non-negativity of a bound1161

The lower bound RESt on ZLR(λt)− ZLP is given by1162

RESt = SGt · λt −max
x∈S

∑︂
f∈F

∑︂
q∈Qf

(︁
pt(q)− pt(q∗t

f )
)︁

x(f, q). (47)

If the duality gap ZIP −ZLP is zero, the maximisation problem appearing in (47) has always an integer1163

optimal solution, since its feasible region is the same as the feasible region of the linear relaxation of1164

problem (5). Let {q◦t
f }f∈F be the set of bundles corresponding to the optimal solution. Then we can1165

write1166

RESt =
∑︂
k∈L

λt
k

(︂
1−

∑︂
f∈F

∑︂
q∈Qf :q∋k

xt(f, q)
)︂
−

∑︂
f∈F

(︁
pt(q◦t

f )− pt(q∗t
f )

)︁
=

∑︂
k∈L

λt
k −

∑︂
f∈F

∑︂
q∈Qf

∑︂
k∈q

λt
kxt(f, q)−

∑︂
f∈F

(︁
pt(q◦t

f )− pt(q∗t
f )

)︁
=

∑︂
k∈L

λt
k −

∑︂
f∈F

pt(q∗t
f )−

∑︂
f∈F

pt(q◦t
f ) +

∑︂
f∈F

pt(q∗t
f )

=
∑︂
k∈L

λt
k −

∑︂
f∈F

pt(q◦t
f ) ≥ 0
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where the inequality follows from the fact that {q◦t
f }f∈F are capacity-compliant, thus they share no time1167

windows.1168

Appendix E Additional computational results1169

E.1 Instances with zero duality gap1170

Tables 4 and 5 present some additional computational experiments performed. The table has been1171

split for reasons of space. The first four rows (a, b, c and d) are the four cases already presented in1172

sections 6.1, 6.2, 6.3 and 6.4. The duality gap was zero for all cases in the table. Table 4 contains the1173

following columns: names of the regulations, number of regulations, total number of flights, number of1174

flights subject to at least two of the regulations. Table 5 contains: number of iterations, final overload,1175

whether or not the solution found is optimal, surplus, cost of the FPFS allocation, cost of the optimal1176

allocation, cost of the allocation found (in case it is not optimal). Notice that if the overload is nonzero,1177

the latter cost can be smaller than the optimal cost, since the allocation found is not a proper solution.1178

All these costs are unknown to the central authority. The cost savings are between 47% and 85%, and1179

the cost of the solution found is at most 6% higher than the optimal cost.1180

regulations num. reg. num. flights num. flights
with Rf > 1

a LBSAU04, LBSCU04 2 111 15
b LOVS04N, LOWB304A 2 145 27
c LHSUH04A, LONE3504 2 233 42
d ME1204, MKK04 2 64 15
e RMZU04E, RQXU04E 2 143 39
f EGKKA04, RJS04 2 163 25
g KCHI104A, LOW3504A 2 259 73
h EDDLA04, EDWSUD04 2 119 10
i LHNLMU04, LHWSEN04, LOVSC04 3 82 13
j EDGN004M, GL67W04, YB3LL04M 3 114 20
k GL67W04, PDMX04M, YB3LL04M 3 123 25
l EHYR04M, RESTU04, RG04A 3 170 30
m KDON1D04, KFFM2404, KWUR1C04 3 221 54
n K11UFX04, LHENH04, LHENU04 3 275 39
o EDMBBG04, EDMHAG04, K11UFX04 3 206 25
p GL12W04, GL5W04, MGY04A, ZM3404 4 363 36
q KDON104N, KFFM1C04, KFFMC04A 3 414 99

Table 4: Description of the instances, zero duality gap

E.2 Instances with nonzero duality gap1181

Tables 6 and 7 present additional computational experiments performed with the algorithm of Section1182

6.5. In all cases the duality gap was reduced to zero after the first iteration of the algorithm and the1183

optimal solution of the reduced problem (which is a feasible solution of the whole problem) was found1184

in the second iteration. The first row of the table is the case already presented in Section 6.5. The1185

columns of Table 7 are: number of iterations performed on the whole problem, number of iterations1186

on the reduced problem, magnitude of the duality gap, number of flights removed, cost of the FPFS1187

allocation, cost of the optimal allocation of the whole problem, cost of the feasible solution found. The1188
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num. iter. overload is sol. opt. surplus FPFS cost opt. cost solution cost
a 83 0 true € 0.00 € 960.20 € 263.36
b 100 0 false € 13.15 € 2,689.30 € 661.93 € 662.93
c 131 1 false € 44.57 € 6,328.80 € 1,121.86 € 1,068.50
d 37 0 true € 7.26 € 1,159.90 € 619.72
e 141 0 false € 11.37 € 6,559.48 € 1,021.94 € 1,070.14
f 122 0 true € 0.00 € 9,537.10 € 1,823.13
g 184 1 false € 73.12 € 10,932.82 € 2,153.40 € 2,228.41
h 111 1 false € 46.27 € 11,640.81 € 1,981.35 € 1,897.21
i 66 0 true € 14.82 € 2,055.24 € 1,042.56
j 109 0 true € 58.08 € 3,761.87 € 843.38
k 141 0 true € 8.89 € 4,484.10 € 913.96
l 138 0 false € 95.87 € 6,375.28 € 911.90 € 932.05
m 157 0 false € 34.42 € 8,675.39 € 1,612.18 € 1,660.24
n 169 0 false € 36.31 € 21,496.61 € 3,800.02 € 4,031.79
o 183 0 true € 58.67 € 13,792.50 € 2,107.29
p 191 0 true € 0.00 € 12,195.43 € 3,964.32
q 223 2 false € 90.36 € 18,380.43 € 3,460.63 € 3,518.02

Table 5: Computational results, zero duality gap

cost of the feasible solution is most often less than 10% more than the optimal cost, and at most 50%1189

higher, and the savings with respect to the FPFS solution are between 71% and 89%.1190

regulations num.
reg.

num.
flights

num. flights
with Rf > 1

a LHENT04L, LHLYBA04, LHSUH04A, LONE3504, LOVS04N 5 832 81
b CBHRE04, EGKKA04, EHYR04M, RJS04 4 345 85
c MAB04L, MRAEE04L 2 61 13
d LEBLA04A, MMF04A 2 82 10
e EKHR04, RMZU04E, RQXU04E 3 165 50
f EDMBBG04, EDMHAG04, K11UFX04 3 206 25
g KFFM204A, KWUR04A 2 253 66
h KFFM2404, KTGO1T04, KWUR04, KWUR2404, LHWSUH04 5 475 120
i EDGN004M, GL67W04, PDMX04M, YB3EH04M, YB3LL04M 5 426 51
j CPBDL04, K11UFX04, KHVL1H04, LHENLM04, LOE1504 5 703 80

Table 6: Description of the instances, nonzero duality gap
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num. iter.
first round

num. iter.
second round

duality gap num. flights
removed

FPFS cost opt. cost solution cost

a 371 410 0.14 4 € 24,364.04 € 4,170.23 € 4,191.46
b 387 484 1.66 4 € 31,779.53 € 3,396.45 € 3,499.92
c 83 233 0.06 1 € 1,145.10 € 171.72 € 224.23
d 185 386 0.23 1 € 1,741.77 € 286.01 € 286.14
e 552 366 2.35 1 € 6,798.12 € 1,104.81 € 1,296.86
f 600 370 0.17 4 € 13,777.47 € 2,131.83 € 2,276.11
g 154 204 8.97 6 € 8,885.98 € 1,685.85 € 2,532.98
h 479 505 8.40 4 € 15,992.62 € 2,704.83 € 2,836.05
i 563 341 0.88 6 € 15,002.05 € 3,376.16 € 3,766.67
j 537 442 0.73 3 € 36,963.43 € 7,754.63 € 7,890.24

Table 7: Computational results, nonzero duality gap
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