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Abstract. When acquiring sparse data samples, an interpolation method
is often needed to fill in the missing information. An example application,
known as “depth completion”, consists in estimating dense depth maps
from sparse observations (e.g. LiDAR acquisitions). To do this, algorith-
mic methods fill the depth image by performing a sequence of basic im-
age processing operations, while recent approaches propose data-driven
solutions, mostly based on Convolutional Neural Networks (CNNs), to
predict the missing information. In this work, we combine learning-based
and classical algorithmic approaches to ideally exploit the performance
of the former with the ability to generalize of the latter. First, we define a
novel architecture block called IDWBlock. This component allows to em-
bed Shepard’s interpolation (or Inverse Distance Weighting, IDW) into
a CNN model, with the advantage of requiring a small number of param-
eters regardless of the kernel size. Second, we propose two network ar-
chitectures involving a combination of the IDWBlock and learning-based
depth completion techniques. In the experimental section, we tested the
models’ performances on the KITTI depth completion benchmark and
NYU-depth-v2 dataset, showing how they present strong robustness to
input sparsity under different densities and patterns.
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Completion · CNN · Sparse convolution

1 Introduction

A dense and accurate depth map is beneficial to many computer vision tasks such
as 3D object detection [3, 33, 23], and reconstruction [24, 21, 22], optical flow es-
timation [26, 41], and semantic segmentation [37, 39]. The popular LiDAR depth
sensors produce reliable observations, and are widely employed in real-world ap-
plications such as autonomous driving [14] or in industrial setups [34]. However,
the resulting depth maps are too sparse, with about 5% of the acquired pix-
els having a valid depth value [33]. For several applications such data are not
sufficient, and methods aiming at densifying sparse data samples are needed.
In this context, depth completion is usually regarded as the task of recovering
an accurate dense depth map from a sparse input. The literature counts sev-
eral approaches to perform depth completion, ranging from classical algorithmic
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methods [2, 11, 29] to learning-based techniques [1, 10, 32]. Non-learning-based
approaches are based on predefined rules, do not require training data and rely
only on image processing operations. However some of them, such as [11], out-
perform learning-based methods. Regarding learning-based approaches, state-
of-the-art methods are based on deep convolutional neural networks (CNNs).
When the network input is sparse and the values are irregularly distributed, ap-
plying conventional convolutions gives inaccurate results since not all the input
values are actually observable [8]. There are several approaches designed to solve
the input sparsity problem with CNNs. This includes the naive approach which
assigns a default value to all missing pixels [12], to more effective approaches
that apply sparse convolutions to weight the elements of the kernel according
to a validity mask [10, 32]. The former method does not lead to optimal results,
as the learned filters must be invariant to all possible validity patterns. The
method proposed in [32] overcomes the problem by introducing a novel sparse
convolution, while Zixuan et al. [10] proposed an extension with a multi-scale
encoder-decoder CNN.

In this paper, we revisit the idea of sparsity invariant convolution and propose
a family of hybrid CNN architectures that mix learning-based elements and a
classic interpolation technique to perform unguided depth completion (i.e. based
only on depth data). Specifically, we adopt Inverse Distance Weighted (IDW)
interpolation, originally presented in [29], which can be easily reformulated as
a convolution operation, and embed it in a CNN. To do so, we define the novel
IDWBlock, which is able to adjust IDW parameters during training according
to local data sparsity and distribution of observable input samples. Such block
is combined with trainable sparse convolution layers in two alternative architec-
tures which effectively mix the two approaches in a single or multi-scale fashion.
This enables the proposed hybrid model to generate a dense and accurate depth
map with clear boundaries. We tested the two proposed IDW-embedding ar-
chitectures on the KITTI depth completion benchmark [32] and NYU-depth-v2
dataset [30] and show that they offer a more accurate reconstruction with respect
to the simple sparse convolution approach.

2 Related Work

Data Interpolation The problem of scattered data interpolation consists in
fitting a continuous function of two or more independent variables that interpo-
lates values that are measured at some scattered points. The sparse observations
can be located in a grid or can be distributed with a non-uniform pattern, mak-
ing the task even more challenging. A considerable number of methods have
been proposed to perform this task, from early approaches [7] to more recent
solutions [20]. The inverse distance weighted (IDW) interpolation, also known
as Shepard’s method [29] consists in computing the values of missing points as
a weighted average of the observed points, with weights being a power of the
inverse of their distance. The authors of [19] applied inverse distance weighted
interpolation for topographic surface modeling, while in [6] it is used for particu-
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late matter (PM) estimation and mapping. Another popular method is based on
radial basis function (RBF) [31, 42, 36]. In these approaches the interpolant is a
weighted sum of radial basis functions (e.g. Gaussian, polynomial), that depend
only on the distance between the input and a fixed point. Since the technique
involves the solution of a linear system that depend on the number of points, it
is unpractical in real-world applications due to computational complexity.

Depth Completion Depth completion task is a specific instance of data
interpolation, where observations are scattered depth data and the goal is to
recover dense depth maps. Depth completion approaches can be classified into
different categories, depending on different criteria. The first categorization for
depth completion methods is algorithmic or learning-based. Learning-based ap-
proaches are typically based on deep neural networks, whereas algorithmic solu-
tions rely on a sequence of image processing techniques. Ku et al. [11] proposed
to use of a sequence of well-known image processing algorithms to transform the
sparse input into dense depth maps. The proposed work first utilizes morpho-
logical operations, such as dilation and closure, to make the input depth map
denser, and then fills holes to obtain the final output. Based on the input data,
depth completion algorithms can be divided into guided and non-guided : the
former method works with an aligned RGB image used as a guide in addition to
the sparse input, while the latter only works on the sparse input. Fangchang M.
et al. [16] used color images as guidance in their proposed model that learns a
direct mapping from sparse depth to dense depth. Alex W. et al. [35] introduced
a method to infer dense depth from camera motion and sparse depth using a
visual inertia odometry system, while other works [27, 38] applied a transformer-
based architecture to produce a dense depth map from the given RGB image
and sparse input. Fabian M. et al. [18] used a segmentation map instead of RGB
image as guidance in their vgg05-like architecture. Other papers proposed by
Uhrig et al. [32], Huang et al. [10], and Chodosh N. et al. [5] used the sparse
depth only for depth completion, and thus are classified as non-guided. To handle
sparse inputs and sparse intermediate feature maps, Uhring et al [32] proposed
a non-guided sparsity-invariant convolution to replace the conventional convo-
lution in CNNs. The sparsity-invariant CNN involves sparse convolution layers
which weight the kernel elements according to the pixel validity. Additionally,
a second stream carries information about the pixel validity to subsequent lay-
ers. Huang et al. [10] proposed three novel sparsity-invariant operations, based
on which, a sparsity-invariant multi-scale encoder-decoder network (HMS-Net)
is proposed to handle sparse data at different scales. Additional RGB features
could also be incorporated to further improve the performance.

3 Combining IDW and Sparsity-invariant CNNs

We start by discussing how Shepard’s interpolation can be expressed in terms of
convolutions. Then, we observe how a recent approach based on Convolutional
Neural Network can be seen as a special case of such an interpolation algorithm,
but with trainable kernel weights. Therefore, we describe how to combine the two
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so that the learnable part can be trained with a reduced number of parameters
regardless of the network receptive field size.

3.1 Inverse Distance Weighted Interpolation

Inverse Distance Weighted (IDW) interpolation, also known as Shepard’s method,
is an old yet effective spatial interpolation approach for scattered data [29]. It
creates estimates for locations without data based on values at nearby locations.
The advantage of IDW interpolation includes its simplicity, ease of use, and fast
execution time [13].

Suppose to have a scattered set of 2D point samples x1, . . . ,xN with associ-
ated values v1, . . . , vN . Such values can represent any scalar field of interest, from
terrain elevation of some topographic data to temperature values measured by an
array of thermometers in an area. The IDW principle is to interpolate the value
at any point x̂ as a weighted average of the values at the neighboring points.
Weights are computed according to the distance between x̂ to each sampling
point xi, i = 1, . . . , N as:

wp(x̂,xi) =
1(√

x̂Txi

)p (1)

where p ≥ 0 is a free parameter that governs the relative importance to the point
closer to x̂ with respect to the ones farther away.

To get the interpolated value v̂ at a point x̂, IDW simply computes the
weighted average:

v̂ =



N∑
i=1

wp(x̂,xi)vi

N∑
i=1

wp(x̂,xi)

, if x̂Tx ̸= 0 ∀i

vi, if x̂Tx = 0 for some i.

(2)

Note that if x̂ coincides with any of the given points, the interpolated value is
given directly by vi since w(x̂,xi) would be undefined in that case. This also
agrees with the mathematical definition of “interpolation” which provides a con-
tinuous function passing exactly at the given samples. It is easy to observe that
the higher the value of p, the more v̂ will converge to the value of the nearest
neighbour of x̂, as its relative weight will dominate the others. On the other
hand, small values of p tend to produce a smoother interpolation since v̂ is av-
eraged among several neighbouring values. In the extreme case, when p = 0, all
the interpolated values will be equal to the average of the given values v1 . . . vN .
The original formulation described so far can be used for any scattered point set
but involve the computation of distances between the interpolated points and
the given data points. Since we are dealing with sparse depth images, point coor-
dinates are restricted to the image lattice. In such a case, we can precompute the
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weights among pixel pairs at certain distances and perform the same operation
in terms of convolutions.

Let S be the size of a sparse depth image I1. Let M be a binary mask of the
same size of I containing 1 for each valid pixel in I and 0 for the missing values.
We can compute the S × S correlation kernel:

KS,p =

k−S
2 ,−S

2
. . . kS

2 ,−S
2

...
. . .

...
k−S

2 ,S2
. . . kS

2 ,S2
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wp

((
i j

)T
,0

)
, otherwise

(3)

weighting the contribution of the neighbouring pixels with respect to the center

of the kernel. For example, K3,1 =
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.

It is easy to see that the interpolation in (2) can be expressed in terms of
convolution as follows:

Î = M · I + (1−M) · I ⋆K
M ⋆K (4)

Since M is a binary mask, M ⋆ K computes the sum of the weights for each
given sample used to normalize the weighted average defined in (2). To enforce
the resulting value to be equal to vi at each sample xi, the interpolated value is
overwritten by the original value in I by the linear combination with the binary
mask. For this reason, it has to be noted that K(0, 0) can be chosen arbitrarily
without affecting the resulting Î since each produced value is overwritten every
time the convolution kernel is centered on a given sample.

Considering IDW in terms of convolutions allows us to modify its formulation
providing an additional parameter controlling the resulting interpolation. Indeed,
the described operation is well-defined even if the size of the kernel is smaller
than S. In that case, instead of computing the value in x̂ as the weighted average
of all the given samples, we restrict the average to the neighbouring samples
closer to x̂ by half the kernel size. This allows the control of the interpolation
“receptive field” to limit the contribution of samples farther away even with low
power values. We define the Convolutional-IDW interpolator as follows:

CIDWs,p(I,M) = M · I + (1−M) · I ⋆Ks,p

(M + ϵ) ⋆Ks,p
(5)

where ϵ > 0 is a small constant to avoid division by zero. Since s < S, CIDW
will not produce a valid value if no sample falls within the area encompassed by
the convolution kernel. Therefore, the interpolation produced by the function is
undefined in all the pixels where the output mask M ′ = sign(M ⋆Ks,p) is zero.

1 We can assume without loss of generality that I is square and that S = 2a+1, a ∈ N.
If that is not the case, I can be padded with zeros to meet such condition.
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3.2 Sparsity-Invariant CNNs

The sparsity-invariant CNNs proposed in [32] is an effective way to modify con-
ventional convolutions in a CNN to handle sparse input feature maps (i.e. when
the input layer x can only be partially observed at the locations in which the
binary mask m is 1). The sparsity-invariant convolution is formulated as:

fu,v(x,m) =

a∑
i,j=−a

m(u+ i, v + j)x(u+ i, v + j)w(i, j)

a∑
i,j=−a

m(u+ i, v + j) + ϵ

+ b (6)

where w is a learnable kernel of size (2a+ 1)× (2a+ 1), b is a scalar bias, and
ϵ is again a small constant to avoid division by zero at locations where none of
the input values are observed.
Such formulation can be seen as a generalized version of CIDW in which the
weights are fully trainable instead of being a function of samples’ location as in
(1). However, the normalization component is conceptually different. In CIDW
we compute the weighted arithmetic mean of input values with the kernel values.
In the sparsity-invariant convolution, instead, the linear combination between in-
put and weights is normalized by the number of observed values encompassed
by the kernel, regardless of the weights’ values. Also in the case of sparse con-
volutions, some output values might be invalid. The authors propose to produce
the output mask by doing a max-pooling operation with a unitary stride and
the same kernel size as the one used for the convolution. This produces the same
result as computing the output mask M ′ as we described before.

3.3 IDWBlock: embedding CIDW in a Sparse CNN

Since the Shepard’s interpolation can be formulated in terms of convolutions (as
shown in Eq. 5), we studied the idea of embedding such operation into a classical
CNN model. In particular, we define a new architectural block, called IDWBlock,
with a limited set of parameters that learns the optimal way to combine a set of
CIDW outputs performed with different trainable power values p1 . . . pN .

The architecture of an IDWBlock is sketched in Fig. 1. The upper part per-
forms several CIDW operations with different combinations of kernel sizes and
power values. Kernel sizes are hard-coded into the block architecture and there-
fore cannot be trained. We observed that 5 × 5, 17 × 17, and 37 × 37 are good
values for the most popular datasets for depth completion. For each kernel size,
CIDW is executed with a set of different power values. Specifically, the 5 × 5
kernel is applied with 3 power values (p1, p2, p3), the 17×17 with 4 power values
and 37 × 37 with 3. All the p1, . . . , p11 are randomly chosen at the beginning
and optimized during the training together with all other network weights. Out-
puts of each of the 11 CIDW operations are stacked depth-wise to produce a
W ×H × 11 tensor C, where W,H are the width and height of the input image.
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Fig. 1. The Proposed IDWBlock architecture. See text for details.

The lower part of the block learns the relative importance of the produced
CIDW outputs C according to the local density of the given samples. Indeed,
we expect that the optimal combination of CIDW kernel size and power value
is significantly different if the input samples are very close or far away in a
certain region. To approximate the density, we convolve the input binary mask
M with unitary (non-trainable) kernels with size 5 × 5, 17 × 17, and 37 × 37.
Outputs are stacked together in a W × H × 3 tensor and processed with a
classical feed-forward convolutional network to expand into a W×H×11 tensor V
representing the relative weight of each CIDW output for each pixel. Since some
of the CIDW outputs might be invalid (especially with small kernels), we must
force the corresponding weights to zero. The validity information corresponds
to pixels where the local density for a certain kernel size is greater than zero.
Therefore, we compute the sign of local densities and multiply it element-wise
to V. Finally, CIDW outputs are rescaled with the element-wise product C ⊙ V,
and the resulting Io is returned with the per-element validity information Mo.

3.4 Adding IDWBlock into Sparsity Invariant CNNs

We propose two different ways to arrange IDWBlocks in a sparsity invariant
CNN. The first (IDWNet) is sketched in Fig. 2 and contains just a single ID-
WBlock used in parallel with a sequence of sparse convolutions (SparseConv)
followed by ReLU activations, as described in [32]. Output images of the ID-
WBlock are concatenated with the output feature maps of the SparseConvs,
as well as the respective output masks. To match the channelwise dimension
of the IDWBlock mask, the one-channel SparseConv mask is replicated before
concatenation. After the concatenation, the resulting multi-channel I and M
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Fig. 2. IDWNet architecture. The input is processed by our IDW block and by a
sequence of three trainable sparse convolution layers. Results are concatenated and
processed by a second sequence of sparse convolutions.
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Fig. 3. MS-IDWNet architecture. Input is processed at different scales (original, 2× and
4×) and concatenated. Dense output is produced by a sequence of sparse convolutions.

tensors are processed with additional SparseConv blocks to obtain the final in-
terpolated image. Note that, at this point, within the SparseConv module the
input multi-channel mask is squeezed into a single-channel mask by channel-wise
summation followed by sign operation: this is done because a single-channel mask
with max-pooling operation is propagated from layer to layer as proposed in [32].

The second architecture (MS-IDWNet) is shown in Fig. 3. This time we
investigated a multi-scale arrangement in which three parallel IDWBlocks are
fed with the original input image and a 2×, 4× down-scaled version respectively.
Down-scaling is performed by doing average pooling on both the image and
the mask and then normalizing the obtained image with the down-scaled mask.
The effect is equivalent as computing the average only on valid samples. For
the up-scaling, we perform a nearest-neighbour interpolation on both the image
and the mask. The two operations are not trainable. Finally, outputs of all the
IDWBlocks are concatenated and fed to a sequence of sparse convolutions as in
the previous architecture.

4 Experimental Section

To evaluate our approach, we conducted our experiments on both the KITTI
depth completion dataset and NYU-depth-v2 dataset.

KITTI-Depth dataset [32] includes sparse depth maps (5% of the pixels avail-
able) from projected LiDAR point clouds that were matched against the stereo
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Fig. 4. Testing robustness of our method varying input sparsity levels. First row shows
results on KITTI depth completion benchmark: the values on x-axis show the percent-
age of randomly abandoned input points. Second row shows the same evaluation on
NYU dataset for different sparsity levels (number of input samples).

cameras. The dataset has 86k training images, 7k validation images, and 1k test
set images with no access to the ground truth. We used all the 86k depth maps
for training and a validation subset of 1k images for evaluation. As the top part
of the images have no valid values, we removed the top 103 rows and center crop
for training and validation. For testing, we used the original image size.

NYU-depth-v2 [30] is an RGB-D dataset for indoor scenes, captured with a
Microsoft Kinect with size 640 × 480. Similarly to [17, 4], we used the official
split with roughly 48k images for the training and 654 for testing. Each input
image was randomly sampled with a uniform distribution.

We trained both our models on an NVIDIA GeForce RTX 4080 using the
Mean Squared Error (MSE) loss function. All parameters were randomly ini-
tialized and updated with ADAM optimizer configured with an initial learning
rate of 0.01. During the train we applied the Learning rate decaying equation
described in [10]. In all our experiments we used the proposed IDWNet (Fig. 2)
for the KITTY dataset and MS-IDWNet (Fig. 3) for NYU-depth-v2.

4.1 Evaluation

We started by testing the effect of different input sparsity for our technique.
Figure 4 shows the reconstruction error varying the test set sparsity. Plots on
the left show Root Mean Squared Error (RMSE), while plots on the right display
the MAE. The first row analyses the behaviour when abandoning an increasing
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Table 1. Comparisons of different methods against the validation set of the KITTI
dataset [32].Data of SegGuided [18] is as reported in the paper, Other competing meth-
ods are as reported in [10].

Method RMSE (mm) MAE (mm)
U-Net [28] 1387.35 445.73
FRRN [25] 1148.27 338.56
PSPNet [40] 1185.39 354.21
FPN [15] 1441.82 473.65
He et al. [9] 1056.39 293.86
HMS-Net [10] 994.14 262.41
SegGuided [18] 1146.78 278.75
SparseConv [32] 1314.23 409.17
IDWNet (our) 1045.34 265.08

number of points on KITTI dataset. The subsampling was performed by ran-
domly deleting samples with an increasing probability (from 0 to 0.8), keeping
the points distribution consistent with the original data by performing the opera-
tion with a sliding window. We compared our IDWNet (combining CIDW blocks
with sparse convolutions) with the sparsity invariant CNN as described in [32].
Our proposed model exhibits a consistent improvement in terms of both MAE
and RMSE at any density level. The second row shows the same experiment
performed on NYU dataset: since ground truth is dense, we uniformly sampled
the data to obtain different sparsity levels (from 50 up to 5000 points per image).
Also in this case, our approach performs better with respect to the sparse con-
volutions approach, since IDWBlock is able to adapt to different sparsity levels,
even for significantly sparser samples.

Table 2. Errors by different methods on NYU-DEPTH-V2 test set. The values are
taken from their respective papers. "w/RGB" indicates RGB image used.

Method RMSE (m) REL (m) δ1 δ2 δ3

20
0

po
in

ts SparseConv [32] 1.065 0.257 0.550 0.752 0.880
Sparse-to-dense [16] 0.259 0.054 0.963 0.992 0.998
HMS-Net [10] 0.233 0.044 — — —
MS-IDWNet (our) 0.255 0.055 0.955 0.991 0.988

50
0

po
in

ts SparseConv [32] 0.801 0.159 0.739 0.861 0.933
Sparse-to-dense [16] w/RGB 0.230 0.044 0.971 0.994 0.998
SPN [4] w/RGB 0.162 0.027 0.985 0.997 0.999
MS-IDWNet (our) 0.190 0.038 0.975 0.996 0.999

Table 1 reports quantitative results of our IDWNet versus other encoder-
decoder and unguided depth completion techniques on the KITTI validation
set. We report the RMSE and MAE values (in mm) for U-Net [28], FRRN [25],
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Fig. 5. Visual qualitative example of the result obtained on the KITTI validation set
by our method and the Sparsity Invariant CNN (SpConv) [32].

PSPNet [40], FPN [15], He et al. [9], HMS-Net [10] and SparseConv [32]. Our
approach performs better with respect to other methods, and it is comparable
with the HMS-Net architecture (especially the MAE), which however involves
a complex multi-scale structure. Table 2 reports comparisons on NYU test set
while handling very sparse inputs (200 and 500 samples). In this case, we included
the Sparse-to-dense [16] and SPN [4] that were designed to work well with a
low number of samples (with and without RGB guidance). Also for this case,
our method shows good results against other state of the art methods while
exhibiting a substantially simpler architecture.

Finally, Fig. 5 and Fig. 6 display qualitative outputs on KITTI and NYU
datasets respectively. In both the cases, we compare our approach with the spar-
sity invariant CNN as we did for the experiment shown in Fig. 4. In general, we
observe that our multi-scale IDW architecture offers sharper edges with respect
to the results obtained from SparseConv.

5 Conclusions

In this paper we proposed two CNN architectures for unguided depth comple-
tion. Both models includes the novel IDWBlock, which embeds Shepard’s in-
terpolation with sparse convolutions. We show that by mixing algorithmic and
learning-based interpolation approaches can offer better performances with a
minimal increase in the number of training parameters. Moreover, our approach
predicts accurate depths, without requiring different treatment for different spar-
sity levels. Experimental results showed the advantage of the proposed method
for depth completion without adding too much complexity.
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Fig. 6. Visual results for IDWNet and sparseConv [32] from NYU dataset. Our IDWNet
produces objects with sharp and clear boundaries.
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