
P
o
S
(
I
C
R
C
2
0
2
3
)
1
2
9
0
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The increasing of experimental observations’ accuracy and model complexity of the heliospheric
cosmic rays modulation requires the development of a new class of numerical solvers. In this work,
we present a GPU-accelerated code for solving the Parker propagation equation in the heliosphere
using a stochastic differential equation (SDE) approach. The presented method uses the CUDA
programming language developed for the NVIDIA GPUs. Our approach achieves speed-up of
the orders of ∼ 10 − 40×, depending on the number of quasi-particle simulated, compared to
the previous CPU implementation. This allows us to efficiently solve the transport equation for
the modulated spectra of charged particles in the heliosphere, opening the field for deeper studies
and make the realized simulations available for general purpose studies. We demonstrate the
accuracy and efficiency of our method through numerical experiments on a realistic model of the
heliosphere.
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solving Parker Equation with GPUs

1. Introduction

Cosmic Rays (CR) are ionized atoms that permeate the interplanetary medium, originating
from supernova explosions or stellar eruptive events. The proper characterization of the CR
flux allows one to the two-fold achievement of exploring the physics of particle interaction in
the interstellar medium, and asses the space radiation environment that challenges the electronic
devices of interplanetary probes. When entering into the heliosphere — the region around the Sun
dominated by the solar magnetic field and solar wind — galactic cosmic rays (GCR) experience
the so called solar modulation, a reduction of CR flux intensity at ∼GeV/n energies. A review of
observations and solar modulation models in the heliosphere is reported in Refs. [1] and [2].

2. The physical model

All relevant physical processes involved in the CR propagation are described by the Parker
Transport Equation (PTE), named after Eugene Parker who first proposed it in the 1960s (see, e.g.,
Refs. [3, 4] and references therein):
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where 𝑈 is the number density of GCR particles per unit of kinetic energy 𝑇 (GeV/nucleon), 𝑡
is time, 𝑉sw,𝑖 is the solar wind (SW) velocity along the axis 𝑥𝑖 , 𝐾𝑆

𝑖 𝑗
is the symmetric part of the

diffusion tensor, 𝑣𝑑,𝑖 is the particle magnetic drift velocity (related to the anti-symmetric part of
the diffusion tensor), and 𝛼rel =

𝑇+2𝑚𝑟𝑐
2

𝑇+𝑚𝑟𝑐
2 , with 𝑚𝑟 the particle rest mass per nucleon in units of

GeV/nucleon.
The PTE is a Fokker-Planck type equation that can be solved using both an approach forward-

in-time as well as backward-in-time (in the latter case it is usually named as Kolmogorov equation,
see Equation 1.7.15 in Ref. [5]). Both Fokker-Planck and Kolmogorov differential equations are
equivalent to a system of stochastic differential equations (SDE), as shown in Sections 4.3.2–4.3.5
of Ref. [6] and Appendix A.13.1 of Ref. [7], following the Ito’s formula.

To obtain the SDEs equivalent to Eq. (1), the latter should be rearranged to match the following
formulation (see, e.g., Equation 13 of Ref. [8], Equation A2 of Ref. [9], Equation 14 of Ref. [10]):
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− 𝐿𝐵𝑄 + 𝑆 (2)

where 𝑄 represent the evolving quantity, 𝐴𝐵,𝑖 is the advective vector, 𝐶𝐵,𝑖 𝑗 is the diffusion tensor,
𝐿𝐵 describes energy loss and 𝑆 stances for source of particles. In this formulation, 𝜕𝑠 > 0 represents
the backward time evolution of the propagation. The system of SDEs corresponding to Eq. (2) can
be generally expressed as:

𝑑𝑦𝑖 (𝑠) = 𝐴𝐵,𝑖𝑑𝑠 + 𝐵𝐵,𝑖, 𝑗𝑑𝑊 𝑗 (𝑠), (3)

where tensors 𝐵 and 𝐶 follows the relationship 𝐶 = 𝐵𝐵𝑇 , and 𝑑 ®𝑊 represents the increments of a
standard Wiener process, which can be described as an independent random variable of the form√
𝑑𝑠𝑁 (0, 1), with 𝑁 (0, 1) denoting a normally distributed random variable with zero mean and unit

variance (see, e.g., Appendix A of Ref. [8] and Section 2 of Ref. [11]). To numerically integrate
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solving Parker Equation with GPUs

the SDEs, the Euler-Maruyana scheme (see, e.g., Ref. [7], Section 5.6.1) is the most simple and
commonly used, combined with the Ito rule (see discussion in Ref. [12] and reference therein).
Propagating backward-in-time allows one to simulate only the quasi-particles actually reaching the
restricted subset of phase space points of interest, like the Earth orbit or the spacecraft trajectory
(as shown by Ref. [13]).

3. Numerical algorithm and GPU parallelization

Using SDEs, the solution of PTE could be evaluated numerically using a Monte Carlo algorithm.
In this approach, quasi-particle objects evolve in space position and energy according to SDEs;
since the evolution of each object is independent of the others, the ensemble of the final states of
all the computed objects allows to compute the modulated spectra. This method could be easily
parallelized on an HPC system, e.g., on GPU architecture. We use the CUDA-C language1

,
2
,
3

(for a complete guide see handbooks in Refs. [14, 15]), which provides optimized interactions and
low-level code architecture for the NVIDIA GPUs.

The diagram of the CUDA code algorithm is shown in Fig. 1. We assign the evolution of each
quasi-particle to a different GPU thread (i.e. the minimal computing unit of the GPU), following
the single instruction, multiple data (SIMD) paradigm [16] (optimal for GPU architecture). The
first step of the program is the initialization of the hyper-parameters of the simulation: the number
of quasi-particles to be simulated (N ), the heliospheric model parameters, the particle species
characteristics, and the initial positions. The latter are copied into the global memory of the GPU,
while the other variables are copied into the constant memory, which is a special memory present
in the NVIDIA GPUs (see, e.g., Chapter 4-5 of Ref. [14]) where the data stored are protected
and remain constant over the course of kernel execution (i.e. read-only memory). Moreover,
the constant memory has short latency, high bandwidth, and, using a broadcasting implemented
method, memory reading is no slower than reading from a register. These features make it perfect
to store the time-independent and thread-common parameters of the simulation.

The second step in the algorithm is the configuration of the GPU kernel execution and allocation
of the hardware resources, to achieve the maximum device usage. The quasi-particles objects are
partioned into subsets, each one referring to different initial positions and heliospheric parameters.
To maximize the probability of broadcasting data from device memory, we ensure that each warp
evolves quasi-particles objects belonging to the same subset. Furthermore, we adjust N to be a
multiple of the size of a warp (i.e. 32 for NVIDIA GPUs with Compute Capability version 8.0),
maximizing the GPU occupancy.

Then we generate the random number sequences needed for the stochastic Wiener process term
in Eq. (3), using the Philox4_32_10 generator [17], which is a Pseudo-Random Number Generator
(PRNG) provided by the device API of the cuRAND library to generate per-thread random numbers
within quasi-particle propagation kernel. The PRNG is initialized by using the same seed for each
kernel call on the same GPU but specifying a different sequence identifier related to the ID of the
thread (see, e.g., the implementation in Ref. [18] and [19] for the PRNGs choice).

1https://developer.nvidia.com/cuda-toolkit
2https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
3https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
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Figure 1: Scheme of the GPU algorithm architecture implemented for the CUDA code. In sky blue are
represented the macroscopic steps of the code, in purple the output of the respective step, in yellow the
memory interaction between the host CPU and device GPU and in orange which processor executes the
respective computation. The arrows indicate the links between various inputs and outputs of the numerical
algorithm.

At this point, all is set to execute the stochastic quasi-particle propagation for all the threads.
The device computes the particle heliospheric location and the corresponding 𝐴𝐵,𝑖 , 𝐵𝐵,𝑖, 𝑗 in the
Eq. (3) at each integration step, until a heliospheric boundary is reached. Eventually, the exit
modulated quasi-particle objects are collected in a partial histogram for each block, with an atomic
function to avoid memory conflicts. Then, the partial histograms are merged and the final results
are copied to the host memory.

In the case of multiple GPUs, the algorithm assigns to each GPU a subset of energies to be
simulated. With this approach, each GPU-thread can proceed independently and it is not necessary
to share memory across devices even in the histogram building (only the final histograms are
transferred to the host without the need for further merging).
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4. Performances

In this section, we compare the simulation execution time of CPU-only code and CPU+GPU
code. As a case study, we refer to the HelMod-4 model [12, 20] that was designed to solve PTE
in heliosphere tuning its parameters on the state-of-art of GCR measurements. The CPU-only
code was executed on a server with two CPUs Intel(R) Xeon(R) 2.10 GHz. The GPU-CUDA
code, instead, was tested on the same server with two NVIDIA A304 and NVIDIA A1005 GPUs
boards.Technical information on used GPU boards A30 and A100 is shown in Table 1.

A30 A100
Architecture Ampere Ampere

Boost clock speed 1440 MHz 1410 MHz
Core clock speed 930 MHz 1095 MHz

Peak FP32 performance 10.32 TFLOPS 19.49 TFLOPS
Maximum RAM 24 GB 80 GB

Memory bandwidth 933.1 GB/s 2039 GB/s

Table 1: NVIDIA’s GPU boards comparison on the main hardware features of interest for the computations
illustrated in this paper. All the values reported correspond to the maximum of the hardware available
resources.

Moreover, the CPU+GPU code was compiled using fast_math library, which converts all the
mathematical functions into device intrinsic functions, resulting in a reduction of the numerical
accuracy (negligible for our purposes) and in a huge run time speed-up.

We simulated from 102 to 105 quasi-particle objects per energy bin and, for each value of N
and energy bin, we computed the execution time as the mean value for ∼ 200 code instances. An
example of the execution times of the different code versions and hardware is shown in Fig. 2 as a
function of N . Due to the linearity of the algorithm, the execution time of CPU-only code scales
as a linear function of N in logarithmic scale. On the other hand, the execution time of CPU+GPU
code shows two different regimes: up to N ∼ 104 it scales as a power law with spectral index ∼0.1,
then the spectral index becomes steeper. One can note also that the A100 curve is the same as A30,
except for the shift of 1 N bin. This can be explained by the fact that the two GPUs have nearly the
same processor clock. Therefore, the code is executed at the same speed until the GPU’s memory
or parallelization available is saturated, which occurs at higher N for the A100 boards.

The observed performance represents a huge improvement with respect to the initial code,
especially with N ∼ 104 when it reaches a factor of ∼ 40× faster. Furthermore, the processor
power consumption are: 165𝑊 for the NVIDIA A30, 300𝑊 for the NVIDIA A100 and 80𝑊 for the
Intel Xeon E5520. Considering the execution time of the two codes, for N ∼104, the total energy
consumption of the CPU+GPU code is ∼19 and ∼11 times smaller than the CPU-only one, when
executed with the A30 and A100 respectively.

4https://www.nvidia.com/en-us/data-center/products/a30-gpu/
5https://www.nvidia.com/en-us/data-center/a100/
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Figure 2: Execution time of CPU-only code (blue points) and CPU+GPU code on A30 without fast math
(orange points), with fast math (green points) and on A100 with fast math (red points). The run time is
expressed in minutes with respect to the number of simulated events N . Here 0.01 GeV GCR protons at
Earth Orbit on CR-1937 are simulated. The grey lines represent the linear fit of the point in the N -range
102 ∼ 104. CPU+GPU code execution times are evaluated by using 1 GPU board.

5. Conclusion

From the illustrated tests, it was evident that, for a large number of injected particles (i.e.
less numerical uncertainties), CPU+GPU code is game-changing in the execution time of solving
Parker’s equation with the SDE approach compared to the CPU-only code. Furthermore, we tested
the performance of the code on different GPUs to find the best hardware features to execute it.
These results, joined with the availability of high-performance GPUs at affordable cost, as well
the possibility to install several GPUs on a relatively small cluster and with sustainable power
consumption, allow the application of parameters scanning algorithms to improve the knowledge
of model parameters space.
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