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Abstract

Text Classification methods have been improving at an unparalleled speed in the last

decade thanks to the success brought about by deep learning. Historically, state-of-the-art

approaches have been developed for and benchmarked against English datasets, while

other languages have had to catch up and deal with inevitable linguistic challenges. This

paper offers a survey with practical and linguistic connotations, showcasing the complica-

tions and challenges tied to the application of modern Text Classification algorithms to

languages other than English. We engage this subject from the perspective of the Italian lan-

guage, and we discuss in detail issues related to the scarcity of task-specific datasets, as

well as the issues posed by the computational expensiveness of modern approaches. We

substantiate this by providing an extensively researched list of available datasets in Italian,

comparing it with a similarly sought list for French, which we use for comparison. In order to

simulate a real-world practical scenario, we apply a number of representative methods to

custom-tailored multilabel classification datasets in Italian, French, and English. We con-

clude by discussing results, future challenges, and research directions from a linguistically

inclusive perspective.

Introduction

Text Classification (TC) is one of the most essential tasks in the field of Natural Language Pro-

cessing (NLP). This denomination is usually associated with a broad category of more specific

procedures, which roughly share the common objective of designating predefined labels for a

given input body of text. Over the years, TC procedures have evolved from simple, rule-based

systems to highly specialized architectures. The latter have gone closer than ever before to

showing actual understanding of the underlying semantics of a piece of text, utilizing such

meaning in order to make an informed decision for the classification process.

There are countless practical applications of TC, including information retrieval, topic

labeling, sentiment analysis, and news classification. Even more loosely related tasks, such

as extractive text summarization and content-based recommendation systems, can be

approached within a TC framework.
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Due to the speed at which textual information is produced, it has become essential to rely

on automatic processing techniques to handle continuously increasing volumes of data. How-

ever, the adoption of modern machine learning (ML) methods in this context can be non-

trivial. Recent ML methods rely on the ingestion of massive amounts of textual documents in

order to effectively model a probability distribution over sequences of words. Hence, the lim-

ited availability of text corpora (i.e., large collections of digitized textual data) in some lan-

guages constitutes a serious obstacle to the application of these methods. Such resources are

essential to the development of modern approaches and add to the intrinsic difficulties of this

task.

Resource categorization of language

In order to better understand how the resources tied to a language influence the application of

ML algorithms, we briefly discuss the topic of resource categorization of languages. In the field

of computational linguistics, it is common to define language as low-, mid- or high-resource.

While there is no standardized approach to determine whether a language fits into one cate-

gory or the other, a reasonable categorization is usually easy to find and agree on. The

resources described by these denominations refer to raw data (i.e., collections of digitized text)

as well as linguistic tools and software necessary to perform various tasks. In the particular

context of Text Classification, tools like these might be needed to perform common text inter-

pretation procedures such as lemmatization and part-of-speech (PoS) tagging (further outlined

in the Preprocessing section).

As there is no standardized approach to this classification, the spectrum of resources in

which languages lie is highly speculative, but it is fair to claim that the most well-resourced end

is dominated by English and Chinese (Mandarin). Other languages commonly considered as

high resource include Arabic, French, German, Portuguese, Spanish and Finnish, though most

of research implicitly utilizes one of the former two languages, English in particular [1].

Throughout this survey, we utilize Italian as a means of comparison. As a language, Italian

can be considered on the higher end of this spectrum, somewhere between a mid- and high-

resource categorization. Indeed, as far as raw computerized text data is concerned, it is a rather

well documented language. However, task-specific data, indispensable to test and validate TC

algorithms, can be severely lacking for this language. Moreover, sets of textual data for specific

downstream tasks may only be available if duly licensed (and sometimes at a cost), something

that is certainly true for Italian as well as many other languages. Obviously, this can vastly limit

the potential for research.

The importance of generalizing linguistic research

Much of modern research focuses on a few, dominant high-resource languages like English.

However, something that is certainly desirable for any NLP model is for it to be validated on

its capability of generalizing its result on data and languages other than those on which it has

been trained and tested [2]. This concept is relatable to that of language independence [3], an

attribute that describes models that can be made to work comparably well across languages.

Because this aspect is often overlooked, applying Text Classification procedures can be chal-

lenging in languages other than English. This might be because linguistic tools are lacking (or

simply perform differently), or because suitable benchmarks are not readily available. Further-

more, as research has moved more and more toward deep learning methods, the divide can be

further exacerbated by the interpretability issues of these models, which makes it difficult to

ascertain their effectiveness on other languages.
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Major differences and contributions

In recent years, multiple excellent works have reviewed TC from a generic, language-agnos-

tic perspective. Li et al. [4] provide a comprehensive investigation of models ranging from

traditional approaches to more deep learning-based models. We follow their excellent cate-

gorization of approaches. Kowsari et al.’s [5] survey is notable for its in-depth exploration of

stages such as feature extraction and dimensionality reduction, which are more common in

traditional approaches. Minaee et al.’s [6] work focuses solely on a thorough exploration of

deep approaches, though it notably also provides quantitative results for classical methods in

its experimental performance analysis. The main objective of this work is to provide insight

into the main linguistic challenges involved in the development of TC methods as applied to

languages other than English. While we provide a brief summary of some of the most promi-

nent TC techniques, we emphasize those aspects related to the linguistic component of this

task.

The main language studied while surveying these methods was Italian; to reiterate, this is a

well-documented language, for which we will however showcase a scarceness of task-specific

datasets. To this end, we provide a list of notable TC datasets for Italian and complement it

with a similarly built list for the French language, such as to provide a fair comparison with a

high-resource language that is not necessarily English. We describe how to distill a multilabel

dataset for topic labeling from Wikipedia dumps, as well as a news classification dataset from

Reuters articles. We perform a study of compatibility between a set of representative algo-

rithms and these two datasets for the multilabel classification task, for which we discuss various

challenges and difficulties encountered. In summary, this study’s main contributions are as

follows:

• We provide a high-level overview of TC, highlighting which steps of the pipeline have been

shown to be more language-dependent;

• We highlight recent developments in classification methods for NLP, including modern pre-

processing operations and pre-trained language models;

• While introducing the operation of a TC pipeline, we discuss the main causes of compatibil-

ity issues with languages other than English;

• We demonstrate the applicability of several traditional and modern methods to multilabel

datasets in three different languages (Italian, French, and English);

• We underline technical challenges and the current research directions being explored to

solve them.

The rest of this survey is organized as follows. The first section discusses text preprocessing,

going into detail about language segmentation as the most relevant operation from a linguistic

point of view. We then discuss text representation techniques utilized to project preprocessed

text into a feature space, briefly describing early methods and how they evolved into contextu-

alized and semantically meaningful vectorial embeddings. We discuss the issues posed by the

computational expensiveness of these methods, and why these are problematic for their appli-

cation in multiple languages. We dedicate a short section to classification algorithms and how

their importance has diminished in favor of better text representation. The latter sections deal

with experimental factors, describing TC tasks and showcasing datasets in Italian and French,

outlining the search criteria, and providing a selection of English datasets for comparison

purposes. We provide quantitative results for a select choice of multilabel datasets in all three

languages. Finally, we summarize the main future challenges faced by TC methods, before

PLOS ONE A survey on text classification: Practical perspectives on the Italian language

PLOS ONE | https://doi.org/10.1371/journal.pone.0270904 July 6, 2022 3 / 46

https://doi.org/10.1371/journal.pone.0270904


concluding the survey. Datasets and code used for the experimental part of this work are avail-

able (when legally possible) at https://gitlab.com/distration/dsi-nlp-publib.

Preprocessing

A fundamental part of the Text Classification pipeline resides in its preprocessing steps. Raw

textual information is unstructured and does not have a straightforward numerical representa-

tion (differently, for example, from types of data such as images). Clearly, from a linguistic

point of view, languages are indeed ruled by a very complex structure, one that might be intui-

tive to a native speaker of that language, but much less so to a machine.

It becomes therefore necessary to project text into an appropriate feature space so that it

can be handled by a learning algorithm. In this section, we discuss all those procedures that

prepare textual data for this projection, whether this is done through manual feature extraction

(as with earlier, more traditional methods) or automatically (as is with recent, deep learning-

based approaches). We provide an overview of the most important preprocessing operations,

while the section that follows will describe possible choices for obtaining machine-friendly

representations from the resulting preprocessed text. We place particular focus on tokeniza-

tion as, among the early steps of language interpretation, it is certainly the most critical, having

a considerable impact on downstream performance on several NLP tasks [7].

Tokenization

The first and most basic operation is that of tokenization, the process of breaking a stream of

text into smaller chunks (historically called tokens). The most traditional as well as intuitive

atomic unit of choice (i.e., token) has been centered around words [8]. Recent approaches

have instead been applying more granular decomposition processes, such as character n-

grams, sub-words and, most recently, even segmentation approaches based on the underlying

byte representation of text [9]. It has been argued that, among preprocessing operations for

any NLP task, tokenization can be regarded as the most important language-dependent opera-

tion [10].

The following sections will describe the main difference between more traditional and

recent tokenizers, showcasing an interesting trend towards maximal decomposition. It is

worth mentioning that, as of now, researchers agree that there is no single best solution, and

the choice of unit of text is one that must be made depending on the context and necessity of

the application.

Pre-tokenizers. Conventional approaches to the tokenization task have traditionally been

rule-based, and, especially in most white-spaced writing systems (i.e., languages where spaces

are used as word separators in writing), minimal tokenization can be carried out by separating

around blank characters, punctuation, and contractions. Clearly, this intuitive approach has

seen many refinements, often integrating language-specific knowledge into its rules. While not

perfect, such segmentation approaches are deemed an acceptable approximation of actual

morphemes, striking a compromise between linguistic irrelevance and purely typographic

tokens [8]. Examples of popular rule-based tokenizers include Moses [11], and the SpaCy toke-

nizer [12]. Both Moses and SpaCy are NLP toolkits and include tokenizers that work with mul-

tiple languages using a set of language-specific rules and exceptions.

Recent literature often defines earlier tokenization approaches as “pre-tokenizers”, because

of how many modern methods may use them as an initial step (therefore preceding “proper”

tokenization).
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Data-driven tokenizers. Tokenization (and language segmentation in general) has

evolved greatly in recent decades. Here, we introduce some of the latest developments in the

field, such as to highlight their close relationship with language representation approaches.

When provided with textual data, a tokenizer will decompose it and create a “vocabulary”

of terms. At a practical level, this vocabulary is used to generate an index-based mapping

between actual tokens and a numerical representation (different depending on the feature

extraction technique). Modern text representation techniques are based on embeddings,
rich vectorial representations which we will cover in the Text representation section. As each

token in the vocabulary corresponds to a possibly large embedding, these representations

are unable to handle arbitrarily vocabularies of arbitrary size because of time and space limita-

tions. As a consequence, most modern language representation techniques require a fixed-size

vocabulary.

It is clear, then, that modern tokenization approaches must strike a balance between the

expressiveness of the vocabulary and its dimension. This expressiveness is most closely tied to

the concept of out-of-vocabulary (OOV) words, which correspond to text units that have not

been seen during a model’s training. As such, the model is unable to extract useful information

from OOV tokens (models such as these are termed as closed-vocabulary) [8]. A sufficiently

expressive vocabulary, then, should be able to minimize the number of OOV terms, such as to

fully utilize the information available at inference time.

OOV words are a central weakness of traditional tokenization approaches. Because of phe-

nomena such as derivations, inflections, and contractions, certain languages can be difficult to

segment properly, creating excessively large vocabularies. A solution can be to reduce tokeni-

zation to a character-level segmentation; while this has been tested with some degree of suc-

cess, in many languages it can be hard to obtain a meaningful representation for single

characters since they appear in too many different contexts and are not as relevant as, for

example, words in terms of sequence modeling [13]. Furthermore, since each character is

mapped to its own vector of parameters, the memory footprint increases for longer sequences.

Many modern neural language representation approaches resort to truncation of input

sequences to a pre-defined length in order to handle memory issues; doing this with character

tokenization would mean keeping the first k characters instead of the first k words, potentially

losing much of the original sequence information.

As both of these simple strategies are not entirely satisfactory, modern tokenization

approaches most commonly employ hybrid techniques that split text into sub-words. Notably,

while manually constructed approaches to this type of segmentation have been tested, the

more popular method of choice for recent methods relies on automatically learning morpho-

logical segmentation in an unsupervised manner. The general idea of data-driven tokenizers is

that frequently used words should not be split into smaller words, while rare words should be

broken into more “reusable” fragments; this way, OOV tokens can be recognized as a compo-

sition of multiple known sub-words. In the following paragraphs, we introduce some of the

most popular tokenizers that have seen widespread adoption in modern NLP models in recent

years. Table 1 provides a concise view of the main modern tokenizers.

Byte Pair Encoding. An important breakthrough in tokenization strategies was the develop-

ment of Byte Pair Encoding (BPE) [14], originally proposed as a data compression algorithm

[19] and later adapted for sub-word segmentation. After a character-level pre-tokenization,

smarter tokenization is learned by iteratively computing the co-occurrence of consecutive

pairs of vocabulary terms, and merging the most frequent into a new vocabulary word. The

same process is then applied when tokenizing unseen documents, executing recorded merges

in the same order as they were during training. A notable extension of this segmentation
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procedure is byte-level BPE [15], which applies the same algorithm not to characters but to

raw bytes.

WordPiece. The WordPiece tokenizer [16] was initially developed for Japanese text segmen-

tation problems, and relies on the creation of n-gram-based language models (in the classical

sense, as we describe later in the Text representation section) to recognize recurring syllables,

prefixes and word segments in a corpus. A greedy process iteratively increases the vocabulary

size, starting from single characters, selecting and merging pairs of sub-words that maximize

the language model likelihood. The algorithm stops when the expected likelihood falls below a

predefined threshold, or the maximum vocabulary size is reached.

UnigramLM. Conceptually similar to WordPiece, UnigramLM [17] proceeds in the oppo-

site direction, starting from a large vocabulary obtained by pre-tokenization and iteratively

removing the terms with the lowest expected probability with regards to a simple unigram lan-

guage model. The process is repeated until the desired size is reached. Multiple segmentations

are possible due to the stochastic nature of this process, and while the most likely segmentation

is chosen in practice, it is possible to implement sampling procedures to perform what is

defined as “sub-word regularization”, which has empirically been shown to improve results on

some tasks.

SentencePiece. SentencePiece [18] is not an algorithm in itself but rather a software package

containing optimized versions of the above approaches. Among other segmentation optimiza-

tions, it is a particularly worthy mention as it addresses the fact that other tokenizers depend

on knowing which characters act as word separators in the corpus, which is language-depen-

dent and may require specific pre-tokenization procedures to create rules to recognize word

boundaries. Instead, SentencePiece considers text as a raw stream of characters, including

word-separators, removing this operational constraint.

Linguistic aspect of tokenization. The segmentation of textual data into sentences and

words has been historically rooted in linguistic motivations (as well as technical constraints).

The common and intuitive approach of segmenting into words has the advantage that, from a

linguistic point of view, these units can be labeled with linguistic annotations such as PoS tags

(e.g., noun, verb) and syntactic dependency information (related to the structure of sentences)

[8]. Therefore, utilizing linguistically motivated units opens the possibility of using such addi-

tional information throughout the classification pipeline.

However, it is not trivial to define and identify linguistic units, most notably because of the

vast number of irregularities and language-specific phenomena involved. Works such as the

Morpho-Syntactic Annotation Framework (MAF) ISO standard [20, 21] identify linguistic

units as word-forms: these are represented by a stem and a list of inflections to be attached. For

example, many English words can be inflected as verbs, adverbs, nouns, and adjectives. Word-

Table 1. Most widely adopted recent tokenization approaches.

Tokenizer Training Procedure Inference Procedure Language

Support

BPE [14] Merge most frequent consecutive pairs of n-grams Merge incrementally, keeping merged term if

in vocabulary

White-spaced

only

BBPE [15] Same as BPE, based on bytes instead of n-grams Same as BPE All languages

WordPiece [16] Merge sub-words that maximize LM likelihood Find longest first substring of words within

vocabulary

White-spaced

only

UnigramLM [17] Start from pre-generated vocabulary, remove sub-words that least

contribute to the LM likelihood function

Substring likelihood maximization through

Viterbi Algorithm

All languages

SentencePiece (sw

package) [18]

Fast, optimized procedures for other algorithms Enhanced inference methods All languages

https://doi.org/10.1371/journal.pone.0270904.t001
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forms cover many linguistic phenomena, such as contractions (e.g., “isn’t”), compounds (e.g.,

“football”), morphological derivatives (e.g., “sadness”), diminutive or augmentative derivations

and more. Nevertheless, deriving a precise procedure to segment into word-forms is hard and

expensive, and word-based segmentation is usually accepted as a reasonable approximation.

Similarly, other works focus on morpheme-based tokenization for morphologically com-

plex languages [22–24]. Morphemes are the indivisible basic units of language that carry

semantic meaning; learning meaningful context-independent representations of morphemes

is challenging, particularly for agglutinative languages, where words can be composed by

(almost) arbitrarily long and complex sequences of morphemes with minimal contextual

change. This is in contrast to fusional languages, where morphemes are stitched together usu-

ally with more radical adaptations [25]. For example, the Turkish agglutination “evlerden” can

be seen as the composition of a stem and two word elements, “ev-ler-den”, meaning “from the

houses”, composed by a concatenation of morphemes translating literally to “house-(plural
modifier)-from”. Clearly, simple white-space tokenization will not suffice in the recognition of

these three morphemes.

Modern sub-word tokenization strategies, as discussed, put the linguistic significance of

tokens aside. Tokens in the vocabulary are instead selected using model-based approaches that

require an appropriate amount of training data but do not rely on explicit language-specific

knowledge. In other words, these tokens are not seeking to have a one-to-one correspondence

to morphemes, and may also span through different words, depending on the co-occurrence

of character sequences in the training corpus.

Sub-word segmentation. As mentioned, traditional tokenization procedures often approxi-

mate linguistic units as an acceptable compromise. Modern segmentation procedures, on the

other hand, often do not have explicit linguistic motivations or explanations and are instead

based on automatic learning processes, trained for efficient tokenization on large unlabeled

corpora. Unsupervised word segmentation with neural models has seen particular interest in

languages that are notoriously difficult to segment because of their lack of white-space delimit-

ers (Chinese, Japanese) or because of their highly productive morphologies tokens (Arabic,

Hebrew) [26]. Reducing the number of OOV terms is particularly important for the latter

case, as downstream tasks such as classification would incur too high a loss of information if

they were just removed. However, it has been argued that languages such as these, as well as

agglutinative languages, may be better served with character-level models or small sub-word

inventories [27, 28], even though sub-word segmentation has reasonable motivation [8]. Cases

like these reinforce the notion that there is no single best solution for language segmentation.

Maximal decomposition. As previously mentioned, some recent proposals have proposed

maximal decomposition of text based on its underlying bytes rather than typographical tokens

(e.g., words, sub-words, characters). An example widely used in recent models is that of byte-

level BPE, which applies the BPE compression algorithm on bytes rather than characters [15].

This is not only a compact representation (up to 256 possible values for a vocabulary), but cru-

cially agnostic to languages, and has seen success in languages particularly difficult to segment.

Encoding byte-level representations is not however as simple as it may seem, as byte sequence

representations are often much longer than character sequences. Moreover, as Mielke et al. [8]

point out, byte-level modeling is not necessarily unbiased; while characters are intrinsically

tied to language representation, different character encodings are unrelated to linguistics. For

example, Unicode-based representations were not created with linguistic motivations, and dif-

ferent languages may have different representations (for example, might require multiple bytes

per character). Another approach being explored is that of “visual” modeling, utilizing the pix-

els that compose the graphical representation of text, which may be promising for languages

with rich visual features (e.g., Chinese, Korean) [29].
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Shared vocabularies. Many NLP applications must be able to handle text in different lan-

guages simultaneously. It is possible to utilize a number of language-specific tokenizers, but

shared vocabularies have also been proposed for multilingual systems. These systems work

with a vocabulary composed of a variable number of word segments derived from different

languages. Thus, there is no language-specific set of recognized tokens, but only an expanded

multilingual vocabulary. As can be expected, a same token might be shared across different

languages: in this case, its vectorial representations will have to encompass its meaning in mul-

tiple languages. While the sharing of learned representations is enticing, inconclusive results

have been found in this regard [30]. Moreover, recent language representation approaches

based on shared-vocabulary tokenization tend to be biased towards high resource languages

such as English (even when oversampling low-resource languages), propagating this bias to

downstream tasks such as TC [31].

A related work by Rust et al. [7] evaluated the performance of several monolingual tokeni-

zers pre-trained on monolingual corpora and reports results in terms of two custom-tailored

metrics. In their research, which concerns the effect of tokenization strategies on downstream

tasks when paired with recent approaches, they explore the difference in performance between

monolingual and multilingual tokenizers. The former are based on prior research on monolin-

gual models and are mostly based on the WordPiece algorithm. However, many of these toke-

nization strategies rely on additional language-specific preprocessing. Examples include

Japanese utilizing a pre-built morphological parser whose tokens are then split into characters,

Arabic testing pre-segmentation techniques before applying the WordPiece algorithm, and

Korean introducing bi-directional conditioning in the WordPiece algorithm. The authors

found that the multilingual tokenizer performed inconsistently across languages, producing a

lower number of tokens in morphologically poor languages and over-segmenting the richer

ones. The latter are more challenging because root morphemes are frequently enriched with

affixes to match the context of the sentence, including grammatical gender, case, number, or

person. This translates to a higher number of possible combinations of words that require

either more data or language-specific tokenizers. The issues and challenges faced by multilin-

gual tokenizers and the shared vocabularies they produce are an active area of research [8].

Summary. Text segmentation is a fundamental part of any NLP task, with high linguistic

relevance and important ramifications throughout the pipeline of a classifier due to its intrinsic

ties to the embedding creation process. The previously mentioned work by Rust et al. [7]

reports that the tokenization strategy (and, relatedly, the size of training data) are among the

greatest driving forces for downstream task performance. They also found that utilizing mono-

lingual tokenizers in multilingual models can lead to improved performance in most tasks and

languages.

There is much more to be said about this topic, and we point interested readers to the work

by Mielke et al. [8] which provides a comprehensive dissertation on the issues of tokenization

strategies and emphasizes the limits of fixed vocabulary data-driven tokenizers, including the

ones related to bias in data and language fairness for multilingual models.

Other preprocessing operations

In this section, we briefly outline other common preprocessing operations applied to already

tokenized text. Notably, most modern tokenizers already apply a number of the noise removal

and “soft” normalization processes we will describe (e.g., lowercasing). Other more “destruc-

tive” operations, which remove or alter words altogether, should instead be considered care-

fully and on a case-to-case basis, as modern NLP models are typically trained to extract

context from grammatically and morphologically sound sentences and performance will likely

PLOS ONE A survey on text classification: Practical perspectives on the Italian language

PLOS ONE | https://doi.org/10.1371/journal.pone.0270904 July 6, 2022 8 / 46

https://doi.org/10.1371/journal.pone.0270904


suffer if they are applied to heavily preprocessed corpora with a very different distribution of

words.

Noise removal. The set of tokens produced by tokenization might contain unnecessary or

misleading elements, such as superfluous symbols or characters. Noise removal refers to the set

of operations used to remove those tokens and words that are deemed unnecessary or harmful

to solve a specific task. Such procedures may also include lowercasing, misspelling correction,

and standardization of slang words and abbreviations, which are all intended to reduce the

number of different elements to be projected in the feature space. Earlier approaches com-

monly resorted to the removal of stopwords, non-informative words with no discriminative

importance for classification and that are common in languages (e.g., articles, pronouns, etc.)

[32, 33].

Stemming and lemmatization. As traditional text interpretation approaches are unable

to capture significant semantic information about words, a further simplification of the feature

space can (and has been shown to) be beneficial [34, 35]. Therefore, simplifying words by

reducing inflections to a common form can be helpful in relating words that earlier methods

would otherwise be unable to tie together (e.g., “child” vs “children”). This is most commonly

achieved through either stemming or lemmatization, which derive the stem or lemma (canoni-

cal form) of a word, respectively.

Linguistic considerations. Many relevant linguistic aspects were already covered when

discussing tokenizers and language segmentation in general, which is easily the most influen-

tial preprocessing step. Other operations, such as stemming and lemmatization, also have a

similar linguistic connotation, but in a more traditional sense; indeed, they are generally rule-

based or vocabulary-based, meaning that they are specifically created to process text in a lan-

guage and depend on a manually defined set of rules and common affixes, stopwords and

base lemmas. For example, the SpaCy rule-based lemmatizer uses a set of cascading rules that

reduce tokens to a base form, according to possible word-forms that are applicable to the rec-

ognized PoS. The language-specific vocabulary is then used to determine if the lemmatized

word actually exists.

Each language requires specific adaptations of rules and vocabularies to perform noise

removal operations, which can notably have varying success in different languages. The rea-

sons behind these differences in performance between languages are likely to be attributable to

differences in the complexity of morphology that are more difficult to model through a set of

rules. Additionally, vocabularies for rule-based procedures might potentially be incomplete

because of the high variance in the number of lemmas in different languages.

For instance, lemmatizing a document in Greek is likely to be much harder than lemmatiz-

ing a document in Italian; as an empirical example, the SpaCy documentation reports a much

lower score for the former’s lemmatization accuracy [36, 37].

Text representation

Following a preprocessing procedure, a body of text will be transformed into a list of separated,

standardized tokens that might have been through multiple filters. Before it can be understood

by a computer, however, it must be expressed in numeric form. Feature representation tech-

niques are a fundamental part of any NLP application, many times trumping in importance

the actual classification step of the overall pipeline. In this section, we give a brief overview of

the most frequently utilized traditionally, and segue to a discussion of recent approaches.

Language modeling. An important concept in text representation is that of language mod-
els (LMs). These are a statistical representation of text which has been studied for decades,

though it has seen a new rise in popularity due to the application of deep neural models.
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Intuitively, language models aim to predict the likelihood of a string given a preceding or sur-

rounding context (usually a sequence of words, or, more in general, tokens). The related task is

referred to as language modeling.

Formally, a statistical language model can be described as a probability distribution over

sequences of words. Given a sequence of words s = w1, w2, . . ., wm, the model assigns a proba-

bility P(w1 w2. . .wm) to the whole sequence. While the goal is to assign probabilities to whole

sequences of words, the task is related to that of computing the probability of an upcoming

word and is framed as such. N-gram models are a simple example, making use of the Markov

assumption, by which the prediction probability is based only on the last n words before it—

i.e., Pðw1w2 . . . wnÞ ¼ Pðwijwi� n . . . wi� 1Þ. Traditional algorithms such as Maximum Likeli-

hood Estimation (MLE) [38, 39] can be used to solve the probability prediction task. The prob-

ability scores given are context-specific (in general, they relate to a better-structured sentence,

such as a good translation).

From text to vectors

We introduce in this section the most influential strategies for the representation of text

sequences. We start by outlining the more traditional approaches for the conversion of text to

numerical form, which are based on word occurrence frequency, and move on to the more

advanced methods which utilize the underlying idea of language modeling.

Bag-of-Words. Traditionally, the most basic representation of text has been that of Bag-
of-Words (BoW) [40–42]. As the name suggests, this model reduces bodies of text to unor-

dered collections of words in which sentence structures and semantic relationships between its

elements are ignored (hence, the intuitive visualization as a “bag of words”). Though simple,

this approach has been widely used throughout ML applications (even outside of NLP, where

it is commonly referred to as “Bag-of-Features”) [41, 43–45]. Furthermore, it is common to

utilize a feature extraction technique such as Term Frequency (TF), which maintains the rela-

tive frequency of words in a single vector for the entire text rather than a one-hot encoding of

each word. This is usually paired with an Inverse Document Frequency (IDF) [46] factor,

which penalizes common words within the entire corpus of texts (since they do not help dis-

criminate between them). Vocabularies generated by TF-IDF representations may encounter

time and memory complexity issues. One possible solution is to limit the maximum number

of features represented (in practice, pruning low-scored words) or, alternatively, a dimension-

ality reduction algorithm can be applied. Popular approaches which have seen success include

Principal Components Analysis (PCA) [47], Linear Discriminant Analysis (LDA) [48] and

Non-Negative Matrix Factorization (NMF) [49].

Word embeddings. Earlier methods focused on capturing the syntactic representations of

words but lacked the capability of encapsulating semantic meaning inferred from context. For

example, they possessed no way to assimilate word synonyms. In the last decade, researchers

have proposed to leverage language modeling to produce word embeddings as a solution to this

problem. Intuitively, this self-supervised feature learning technique is aimed at learning a map-

ping between each piece of text (most commonly words, hence the name) to a n-dimensional

vector of real numbers. These approaches are based on shallow neural networks, which learn

these mappings through different learning procedures; in general, they are based on the

assumption that the meaning of a word can be extracted from its surrounding words in a sen-

tence. Some of the most popular and effective word embedding techniques based on these

principles are Word2Vec [50], GloVe [51] and FastText [52].

Differently from BoW representations, which are only concerned with word occurrence sta-

tistics, this latter technique can embed much more information in the learned representation,
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depending on the objective of the training procedure used to generate it. In the simplest case,

word embedding techniques produce representations based on the surrounding tokens: similar

contexts produce similar embeddings. This is generally the idea behind pre-trained embed-

dings, that are released for general usage and are not designed for specific tasks.

However, it should be noted that many strategies can be devised to enrich learned embed-

dings with more discriminative features, sometimes by fine-tuning pre-trained ones on other

tasks. For instance, Qin et al. [53] propose a different approach, which uses two neural net-

works to learn features from randomly initialized embeddings. Features extracted by the first

module are projected to the orthogonal direction of their counterpart, in order to learn more

relevant, uncommon features. This can be seen as similar to the idea used to generate contex-

tualized embeddings, which we describe in the next section.

Deep language models. Word embeddings represent an important milestone toward the

creation of neural language models. As said, shallow learning-based architectures such as

Word2Vec focused on the embeddings rather than the model itself, creating largely “static”

(i.e., context-independent) vectorial representations. The denomination of embeddings as

static can be attributed to the fact that polysemous words (words with more than one meaning)

map to a same embedding, which can therefore be understood as a combination of the multi-

ple senses of such word the model has encountered during the training process. From a practi-

cal point of view, these embeddings work like lookup tables, where every recognized word is

mapped to a single fixed-size vector that sums up all of the contexts that a particular word has

appeared in during training. Hence, for a given word to be encoded, the output vector is the

same, no matter its context in the sentence.

A variety of deeper architectures have been applied to TC using pre-trained word embed-

dings, in an effort to improve the models’ capacity and to create more meaningful semantic

representation. Among other enhancements, Autoencoder frameworks and Recurrent Neural

Networks have been particularly influential. The latter are prime candidates in the modeling

of sequential data, and they have been applied with success to word embedding techniques

[54, 55].

Contextualized embeddings. As more complex and deep architectures were applied to

improve the learning process of text representation, some researchers proposed to use deep

NN-based LMs to add context to word embeddings. This contextualization process is an aug-

mentation of the previously described “static” embeddings. To obtain a contextualized embed-
ding for a word, the static one is passed through a model that transforms variable-length

sequences of left- and/or right-context words into a single fixed-length vector. Hence, unlike

previous static word vectors, these embeddings are generated from both the static ones and the

parameters of a contextualizer LM, producing distinct embeddings even for the same words

used in different contexts [56]. The relation between contextualized embeddings and static

embeddings is shown in Fig 1. In particular, note how the embedded sentence enters the

model in its entirety, allowing the model to contextualize individual representations based on

the surrounding tokens. Studies have shown that layers in deep language models are special-

ized to capture different linguistic information [57].

While this approach was first tried with recurrent-based LMs, notably ELMo and ULMFiT

[58, 59], it has been rendered ubiquitous by the introduction of purely attention-based models,

made popular by the seminal Transformer architecture [60] and the subsequent development

of the Bidirectional Encoder Representations from Transformers (BERT) [61] and the Genera-

tive Pre-trained Transformer (GPT) [62]. Among other advantages, such deep models are able

to benefit from increasingly large numbers of parameters, usually achieved by multiplying the

number of layers in their architecture, something which was crucially not the case for recur-

rence-based models [63]. These LMs, which we informally term contextualized LMs, are hence
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able to disambiguate polysemous words by looking at the surrounding tokens in the sentence.

Conversely, one should note that contextualized embeddings are not meant to be extracted

“statically”, i.e., as with a one-to-one mapping from word to vector. Instead, the language

model should always be provided the surrounding context of a word in order to produce a

meaningful word vector.

Contextualized LMs are usually pre-trained on a language modeling task (e.g., next word

prediction) and are used as transfer-learning methods in other NLP tasks [64]. Adaptation to

tasks is typically carried out through fine-tuning of the model, or part of it, on domain-specific

data. Various strategies have been proposed, depending on the base model, one of them being

training the backbone model with a task-specific head on top of it, possibly even freezing the

backbone parameters.

Feature extraction in other languages

In this section, we contextualize text representation techniques to their utilization in languages

other than English, highlighting the challenges of training LMs and closing the section with an

overview of models trained on Italian corpora.

Traditional approaches in other languages. As earlier approaches were not capable of

expressing the semantic meaning of words, they can be largely seen as “detached” from lan-

guage (with most linguistic aspects falling on tokenization approaches, as discussed). There-

fore, the performance of methods such as BoW or TF-IDF relies largely on preprocessing and

principled usage of statistical methods. Since not meant to really understand languages, their

utilization does not see much or any difference when used on different ones (though their per-

formance might vary depending on their specifics). In contrast, word embeddings are pre-

trained on large, usually monolingual corpora, and are thus specific to the language repre-

sented within the data.

Popular examples of such corpora are Wikipedia dumps [65] and the Common Crawl

archive [66], whose size allows for more robust and generic representations. It is possible to

manually train these embeddings from scratch (provided that the dataset is of sufficient size)

or fine-tune a set of pre-trained ones; both approaches aim to enrich vectors with dataset-spe-

cific knowledge. Embeddings specialized on the domain data could (and usually do) result in

better performances in downstream tasks such as TC.

Fig 1. Sample generation process for contextualized embeddings.

https://doi.org/10.1371/journal.pone.0270904.g001
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It is hard, however, to determine how much data is required to meet the “sufficient size” cri-

teria, since it specifically depends on the task at hand and the quality of the data. This adds to

the fact that learning word embeddings is a long and computationally expensive procedure.

Because of this, it is common to utilize pre-trained, open-sourced embeddings as a starting

point. In the context of mid-resourced languages such as Italian, pre-trained word embeddings

can usually be obtained reliably. A lower-resourced language might have to resort to manual

training of these embeddings, which may require non-trivial computational resources—a

topic we will address in more detail in the following sections.

Contextualized language models in other languages. Transformer-based language mod-

els have revolutionized how NLP solutions are sought. Unlike its predecessors, this generic

methodological approach is applicable to a wide variety of tasks, often needing very little work

to specialize it towards the specific downstream problem. As mentioned, however, the majority

of research is done in the English language, which is taken as a “good representative” for the

applicability of its results. Adaptations to other languages are created at different speeds and

degrees, as the development of contextualized language models is made difficult by their high

computational complexity and necessity for large amounts of data.

In the following, we will illustrate how impactful these requirements can be for practical

development, analyzing the challenges and possible solutions being developed, as well as going

into detail about the resource landscape for the Italian language.

Pre-training of contextualized language models. Pre-trained language models based on deep

learning need to be trained on large corpora of text in order to achieve a good generalization

capability. For instance, the original implementation of BERT was trained on BooksCorpus

(800M words) [67] and English Wikipedia (2,500M words). The authors emphasize the neces-

sity of utilizing document-level corpora, such as to extract long contiguous sequences which

lead to better generalization. Finding these types of resources is much easier in the case of

English, but mid-resourced languages such as Italian usually have access to sufficient resources

for pre-training on self-supervised tasks. Indeed, this particular challenge will affect more

severely low-resourced languages, rather than mid-resourced ones.

Recent research has begun to take different directions when it comes to pre-training

approaches, attempting to either specialize or generalize pre-training data. While not in the

context of classification but rather that of summarization, Zhang et al. [68] showcase a higher

performance when data and learning objectives utilized in pre-training more closely mirror

the final task of the overall system. This is in contrast to the generic approach of other language

models, which are in many ways agnostic to downstream applications in favor of generality.

Conversely, the recent GPT-3 [69] model tries to leverage massive datasets and processing

power to create a model generic enough to overcome the need for specialized approaches. In

particular, the GPT-3 is meant to address the issue of small downstream datasets, showing

promising results for approaches with low label rates.

Both of these developments reveal insights into what we can expect future challenges to be.

In the first case, researchers have empirically shown better results with specialized data; as we

will showcase in the section discussing our findings on task-specific datasets, that kind of data

is not as easy to come by as general-purpose, task-agnostic text information. In the second

case, the difficulties are tied to the vast computational expenses, which we will discuss in the

next section.

Notably, research has also pushed towards methods that are able to generalize well between

languages. XLM-R [70] is a RoBERTa-based model pre-trained on more than 2 terabytes of

unlabeled corpora in more than 100 languages. The result is a multilingual pre-trained model

suitable for fine-tuning on a variety of multilingual and monolingual tasks. The authors

reported competitive performance with respect to monolingual models. The development of
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multilingual and multipurpose language models suggests the possibility of future research pos-

sibly converging towards fewer, more inclusive contextualized language models. Nevertheless,

all language models gain much from the massive size of the datasets they are trained on, and

the availability of such corpora is still problematic for under-represented languages. Moreover,

we have highlighted how language-specific tools such as monolingual tokenizers may still be

beneficial to downstream task performance, questioning their one-to-one replacement with

purely multilingual approaches.

Computational resources. The computational resources required to develop contextualized

language models of the BERT and GPT families are, without a doubt, incredibly high. Many

recent evolutions of these models that have been proposed have tens of times the number of

parameters of the original ones. While not a linguistic challenge per-se, it is evident that the

conspicuous computational requirements will also act as entry barriers, preventing widespread

research in this area.

While many authors do not disclose the actual training times and hardware infrastructure

utilized by these models, it is safe to estimate that the upward trend in processing power

required will continue [71]. The larger the models, the higher the number of trainable parame-

ters for the network, translating into often prohibitive costs of development. Computational

complexity is clearly challenging because of multiple aspects, spanning from environmental

concerns (tied to the amount of power consumed to produce models that are substituted every

year) to the fact that it is becoming more and more prohibitive to perform proper experimen-

tation because of the cost of a single training procedure.

To put it into perspective, it is sufficient to consider the aforementioned GPT-3 model,

whose largest iteration flaunts close to 175 billion parameters, which amounts to more than

1500 times the trainable parameters of BERT’s base model. Researchers have estimated a posi-

tive correlation between number of parameters and model performance [72], theoretically jus-

tifying the push for larger and larger models. More recently, GPT-3 has been surpassed in size

by even bigger models, such as Google’s GShard [73] and Switch-C [74], which have 600 bil-

lion and 1.6 trillion parameters respectively. Fig 2 shows a visual representation of this trend in

recent models.

While the examples provided are not representative of all Transformer-based language

models, the lack of computational resources can be problematic even in more common scenar-

ios. An example can be made of the fine-tuning procedure, which needs to be performed for

any downstream task; however, working with such large models—even if pre-trained—might

still be challenging just because of how expensive it is to load them into memory. Again, this

severely limits the possibility for experimentation and evaluation in different languages.

Reducing the cost of Transformer-based LMs. In response to this issue, researchers have

devised much more compact models which are still able to achieve similar results, while being

considerably more applicable in practice. DistilBERT [75] leverages knowledge distillation to

reduce the size of BERT models by up to 40% while retaining 97% of its effectiveness. Tiny-

BERT [76] extends knowledge distillation to the task-specific learning stage. A different

approach is proposed by models like ALBERT [77], which introduces parameter-reduction

techniques to reduce the memory consumption and increase the training speed of BERT mod-

els. Similarly, ELECTRA [78] introduces a more sample-efficient pre-training task in place of

masked language modeling (MLM), namely token detection.

In practical scenarios, whenever processing power is limited, utilizing downsized models

such as these might be a solution. This is especially true for models such as ALBERT and

ELECTRA, as they devise clever ways to improve the efficiency of the pre-training task, while

DistilBERT and TinyBERT still require the original model as a “teacher” in the distillation pro-

cess. It is also possible to perform a fine-tuning procedure without involving the language
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model in the learning process (i.e., “freezing” the base model’s weights). This is more akin to

utilizing the underlying word embeddings in their agnostic state (but still contextualized). The

computational resources necessary are therefore vastly reduced, though this severely shrinks

the learning capacity of the overall system.

Language models in Italian. With the revolution brought about by BERT-derived models

and their successors, researchers have quickly begun to study their applicability in specific

tasks. In this section, we highlight a few of the studies made for Italian, as well as some multi-

lingual approaches.

Tamburini et al. [79] studied the performance of BERT-like models in classic NLP tasks,

such as PoS-tagging, NER, and universal dependency parsing, as well as some considerations

on sentiment analysis. They highlight the most prominent pre-trained models available at the

time of writing and find them to allow for a large increase in performance for almost all of

them. An example of these works is ALBERTo [80], an Italian model based on a slightly modi-

fied BERT architecture and trained on tweets for sentiment analysis tasks. GPT models have

also been adapted, with works such as GePpeTto [81], a GPT-2 based model for Italian—

though it is evaluated on generative tasks rather than classification.

As was briefly mentioned, multilingual approaches have also been studied, mostly on Multi-

lingual BERT [61], a LM trained on the concatenation of monolingual Wikipedia corpora

from 104 languages. Pires et al. [82] devise a zero-shot cross-lingual model transfer, in which

the model is fine-tuned for a downstream task in one language and tested for that same task in

a different language. The results of their experiments demonstrate that the model is able to

generalize to different languages (including Italian) quite well, though it performs best on

Fig 2. N. of parameters (log scale) in the largest version of recent contextualized LMs, ordered by release date.

https://doi.org/10.1371/journal.pone.0270904.g002

PLOS ONE A survey on text classification: Practical perspectives on the Italian language

PLOS ONE | https://doi.org/10.1371/journal.pone.0270904 July 6, 2022 15 / 46

https://doi.org/10.1371/journal.pone.0270904.g002
https://doi.org/10.1371/journal.pone.0270904


typologically similar languages. Nevertheless, the best performance is still achieved by fine-

tuning on the target language, hence suggesting that it is preferable when possible. While mul-

tilingual adaptation is possible, authors argue that deeper fine-tuning is needed when com-

pared to monolingual approaches, especially whenever the task is more related to semantics

[82, 83].

Existing models in Italian. Through platforms like Hugging Face [84] and Tensorflow

[85], pre-trained language models based on various architectures are made available for mul-

tiple languages. As it was for previous word embeddings, it has become common practice to

open source such models because of how long and expensive their training procedure is.

Whenever the computational resources are not available, it becomes necessary to rely on the

contributions of others, which may not be as plentiful in all languages. Table 2 showcases

some of the pre-trained models that are available for the Italian language at the time of writ-

ing. Minor changes like case sensitivity or vocabulary size differences are excluded, while the

annotation “M” stands for “multilingual”. Whenever the “# of parameters” column has mul-

tiple entries, it refers to the various model sizes available (usually, a smaller “base” model and

a “large” one).

Theoretically, better results are to be expected if the domain of the downstream task (e.g.,

news articles) is contained in the pre-training dataset; however, this is an aspect that is becom-

ing less and less important, as large amounts of data usually yield better results regardless. Pota

et al. [83], who analyze the performance of various models on a Twitter sentiment analysis

task, report that a generic BERT model pre-trained on large, general-purpose corpora of plain

text can outperform a model pre-trained entirely on tweets like ALBERTo, even though the lat-

ter is trained on a corpus that is closer to the one used in the final task. The authors attribute

this result to the size difference between pre-training datasets.

Summary. The state-of-the-art approach to the projection of text into a feature space

involves the creation of contextualized language models, which must be utilized at inference

time to extract context-specific embeddings on which to perform, for example, classification

tasks. While not specific to classification, many studies have shown how this is the most

important step of the pipeline, and therefore one that requires considerable attention. Recent

trends have gone towards more and more costly models, which, in response, are largely

open-sourced to allow practitioners with fewer resources to make use of these approaches.

However, as shown, rigorous development and experimentation still require those resources

in order to be performed, vastly limiting the possibilities for those who do not have such

computing capabilities.

Table 2. Italian pre-trained transformer models.

Name Paper Source Architecture # of parameters

Italian BERT - [86] BERT 110M

AlBERTo [80] [87] BERT 110M

Italian ELECTRA - [86] ELECTRA 110M

UmBERTo - [88] RoBERTa 110M

GilBERTo - [89] RoBERTa 110M

GePpeTto [81] [90] GPT-2 117M

Recycled GPT-2 [91] [92] GPT-2 117M / 345M

Multilingual BERT (M) [61] [93] BERT 172M

XLM-Roberta (M) [70] [94] RoBERTa 270M / 550M

(M) Multilingual model.

https://doi.org/10.1371/journal.pone.0270904.t002
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Classification step

So far, we have described preprocessing and feature representation approaches, fundamental

to Text Classification but at the same time shared with a wide variety of NLP tasks. The impor-

tance of appropriate text representation cannot be understated; in fact, as previously stated,

recent approaches have shown outstanding results with very simple classifiers, further cement-

ing the notion that effective projection of text into an appropriate feature space is essential.

In this comparatively shorter section, we highlight the changes in how classification is tack-

led in traditional and recent approaches. Unsurprisingly, many end-to-end classifiers, espe-

cially neural ones, are largely based on effective feature representation, further supporting the

idea that semantic understanding of the language is at the base of any NLP task. An informal

—yet intuitive—explanation of this result is that understanding the content of a body of text is

the most important step in the classification pipeline, much like a person would likely be able

to label a piece of text if it understood what it meant.

Traditional classification methods

Traditional learning models put a large focus on preliminary data preparation and feature

engineering phases. While this is also true for modern models, earlier approaches required

much more aggressive preprocessing, with a much higher dependency on the removal of noise

and unimportant words that added no discriminative power to the pipeline. This can be chal-

lenging, as languages encompass a large and varied amount of rules of dependencies. Nonethe-

less, after a set of features has been extracted, it is possible to apply generic classification

approaches. As they are generic, it is hard to attribute any real language-specific insight to

them.

For the sake of completeness, we provide in Table 3 a high-level view of a number of tradi-

tional TC approaches. For a more in-depth description of these methods, we point to Kowsari

et al.’s [5] survey. It is worth mentioning that these methods, still have a place in practical uses

for TC—certainly in environments with small or very specific datasets, where injections of

domain-specific knowledge in preprocessing steps and feature handcrafting may be relevant.

Table 3. Traditional classification techniques.

Model Advantages Disadvantages

Rocchio Classifier [95] Simple and computationally cheap Lacks robustness, not well suited for multiclass classification or multimodal

classes

Naïve Bayes [96] Easy to implement and train, fast calculation process Strong feature independence assumptions

Conditional Random

Fields [97]

Flexible feature design, combining advantages of

classification and graphical modeling

High computational complexity and issues with online learning

Hidden Markov Models

[98]

Well-studied approach, suitable for sequentially

ordered bodies of text

Strong assumptions typical of probabilistic methods

k-Nearest Neighbors [99] Non-parametric, fast under the right conditions, easy

adaptation to multiclass

Unfavorable scaling with high-dimensional spaces, choice of k is arbitrary, a

distance function between text bodies is hard to define

Support Vector

Machines [100, 101]

Effective non-linear modeling even in high dimensional

spaces, robust against overfitting

High memory complexity and requires a non-trivial decision of a kernel function,

not transparent, does not produce probabilities directly

Decision Trees [102] Naturally models categorical features, fast and

interpretable

Very susceptible to noise and overfitting, weak against diagonal decision

boundaries

Logistic Regression [103] Easy to implement and train, does not necessitate re-

scaling of features or fine-tuning

Strong independence assumption of data points, only suitable for linear problems

Random Forests [104] Fast ensembling approach, reduces variance of single

decision trees

Loss of interpretability and inference speed, still prone to overfitting

Ensembles [105, 106] Collection of classifiers are more robust and accurate,

less prone to overfitting

Expensive training, difficult interpretation and careful fine-tuning is required

https://doi.org/10.1371/journal.pone.0270904.t003
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Neural methods

The necessity for classical models to handcraft features has, over time, proven to be especially

limiting. Due to the strong dependence between these features and the domain itself, good

feature engineering often necessitates extensive domain knowledge. In turn, this makes

approaches difficult to generalize to new tasks and languages.

The development of word embeddings therefore marks an important paradigm shift. Much

of the work done by deep approaches is in fact towards automatic extraction of semantically

meaningful representations from text. In this section, we provide an outline of how neural

models, based largely on deep learning, have evolved in recent years, highlighting a trend

where much of the focus is on text representation. This section does not aim at giving a com-

prehensive overview of the discussed neural architectures, as they are not the focus of this

work. We refer to the surveys by Li et al. [4] and Minaee et al. [6] for a more comprehensive

coverage.

Multilayer Perceptrons. In the earlier years of adoption of deep learning models,

researchers developed deep neural networks based on simpler architectures, such as Multilayer

Perceptrons (MLP), which displayed good results thanks to their ability to capture latent fea-

tures automatically [107, 108]. Such models usually treat input text as an unordered Bag-of-

Words, where input words are represented through some feature extraction technique (like

TF-IDF or word embeddings). However, some of these approaches attempt to integrate further

information about the syntactic structure of text, with examples such as Paragraph-Vec [108],

which incorporates the syntactic ordering of words as well as the contextual information of

paragraphs.

Recurrent Neural Networks. More influential, however, were architectures based on

Recurrent Neural Networks (RNNs), as the ability to interpret text as sequences of tokens

allows them to capture latent relationships between contextual words [109, 110].

In general, a simple RNN for text processing is fed a sequence of word embeddings, that are

processed one at a time. At each time step, the model receives the next word vector and the

hidden state of the previous time step. Standard RNN architectures are most frequently

enhanced with more advanced gating mechanisms, the most popular being the Long Short-

Term Memory (LSTM) [111] and Gated Recurrent Units (GRU) [112]. These enhancements

address many of the gradient-related issues faced by vanilla RNN frameworks. The introduc-

tion of bidirectionality in RNNs has also been proven beneficial [113] and has been applied to

LSTMs, with notable results such as ELMo [58], a language modeling approach that relies

on BiLSTMs and is one of the first milestones in the development of contextualized word

embeddings.

Among the most utilized approaches, encoder-decoders based on recurrence [54] have

been particularly influential. The hidden layers of these architectures implicitly learn a seman-

tically and syntactically meaningful representation of text that can be used for classification.

On the downside, recurrent models have inherent limitations due to their sequential nature, as

sequentiality precludes parallelization. Longer sentences can also run into memory constraints

and, more crucially, are seen as RNNs true bottleneck because of how the network tends to for-

get earlier parts of the sequence, making for an incomplete representation [114].

Convolutional Neural Networks. Convolutional Neural Networks (CNNs), though most

commonly used in the field of computer vision, have also seen applications in the context of

NLP and TC [115]. The most straightforward application has convolutional filters applied over

word embeddings, most commonly with size as wide as the embedding dimensionality, as to

always consider the entire vector representation for each word. The main upside associated

with CNNs is their speed and how efficient their latent representations are. Conversely, other
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properties that could be exploited while working with images, such as location invariance and

local compositionality [116, 117], make little sense when analyzing text. Many approaches

have been proposed, one of the most popular being TextCNN [118], a comparatively simple

CNN-based model with a one layer convolution structure that is placed on top of word

embeddings.

Graph Neural Networks. In the last few years, graph representations have seen a resur-

gence in various fields of AI [119, 120]. In particular, Graph Neural Networks (GNNs) have

received increasingly more attention [121], and this has also been the case for TC. GNNs uti-

lize graph structures to capture dependencies and relations between their nodes.

Numerous well-established approaches to neural networks have been generalized to arbi-

trarily structured graphs. Among them, the convolution operation—usually applied to regular

grid structures [122, 123]—is particularly popular because of its effectiveness and convenience

[6]. Convolutions propagate information between nodes, and consecutive convolutions allow

the network to spread the information further away, providing an effective way to model

higher-order connectivity. Recently, successful approaches have been obtained on heteroge-

neous graphs in which nodes are both words and documents; TC is thus cast as a node classifi-

cation task for document nodes.

The real strength of graph networks comes from their feature extraction capabilities, with

examples such as TextGCN [124]. Both word and document embeddings are learned through

convolutions. Researchers have also tried to train BERT and GCN models jointly, as in [125].

GNNs are among the few architectures able to compete with contextualized language mod-

els in downstream tasks and can perform quite well in low label rate datasets [124]. Some of

the major weaknesses of graph-based approaches reside in model complexity, which becomes

an issue with large-scale text corpora due to memory limitations. Simplified models such as

SGC [126] help in this regard, while also mitigating one of the other major issues of GNNS,

that of oversmoothing—where node representations converge to a same value and become

indistinguishable [127].

Transformer-based language models. The already mentioned Transformer, proposed by

Vaswani et al. [60], is considered the most recent major breakthrough in sequence processing

methods and especially in NLP. The Transformer architecture is based on an encoder-decoder

framework with multiple attentive blocks stacked together. Crucially, the main novelty resided

in the removal of any recurrence-based layers for modeling sequentiality, instead relying on

the attention mechanism alone. For further details, we point to surveys such as Gasparetto

et al. [128] and Li et al. [4]. Transformer-based methods have built on the original architecture

while maintaining the same basic principles, and have significantly boosted the performance

achievable on various NLP tasks. During pre-training, these models are able to encode generic

linguistic knowledge that can be transferred to any downstream task via a fine-tuning proce-

dure on task-specific data.

Some of the most influential contextualized language models are based on research that

suggests that limiting the architecture to either encoders or decoders may result in equivalent

performance and lighter models [129]. According to this principle, the previously mentioned

Generative Pre-trained Transformer (GPT) [62] utilizes an architecture based on stacking

multiple transformer-decoder layers, resulting in an autoregressive model that is trained on

a unidirectional next word prediction task. While particularly suitable for generative tasks,

it has also been successfully adapted to TC. On the other hand, the seminal Bidirectional

Encoder Representations from Transformers (BERT) [61] relies instead on a multi-layer

bidirectional Transformer encoder architecture. This model employs specifically tailored

learning tasks—in particular, masked language modeling (MLM) and next sentence predic-

tion (NSP)—in order to incorporate bidirectional conditioning. The adaptation of BERT to
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downstream tasks is very simple. In fact, outstanding results have been achieved in classifica-

tion by simply fine-tuning a model that passes the representations obtained by the encoders

through a single-layer, feed-forward neural network. It is common to allow this training pro-

cedure to also affect the representation learned by the pre-trained language models, such as

to specialize the overall model on the domain of the task being faced. In practice, the changes

to the language model parameters (i.e., everything that precedes the classification head) are

minimal; this is desirable since if it were otherwise the language model would incur too great

a loss of generality.

BERT and GPT laid the foundation for many variants and improvements to their original

framework. Among them, we cite the Robustly optimized BERT approach (RoBERTa) [130],

which explores the importance of hyperparameter choice and improves its learning procedure,

and the GPT-2 [131], which instead improves mostly in terms of data utilized and scale of the

models. More recent developments have also been proposed, both in terms of architecture and

in scale (i.e., size of pre-training data and number of model parameters). See [128] for a more

exhaustive coverage of the latest LMs. When discussing future research directions and chal-

lenges, we will highlight some of the most relevant to the topics of this survey.

Summary of language factors in the TC pipeline

As mentioned at the start of this section, much of the focus of the classification pipeline has

shifted towards effective text representation. Contextualized language models are able to per-

form exceedingly well across different tasks (including TC) with very simple classifiers—most

frequently, a simple feed-forward layer. Crucially, researchers have reported that these results

can be obtained even without large amounts of fine-tuning and parameter optimization, such

as in the work by Tamburini [79], which studies these phenomena in the Italian language. We

also found this to be true in our experiments with two Italian labeled corpora, as will be out-

lined in later sections.

We wrap up the overview of classification methods by drawing some conclusions on the

overall classification pipeline, as viewed when considering different languages. We highlighted

the importance of tokenizers; proper text segmentation is fundamental to the feature projec-

tion step and therefore has direct impact on the final downstream performance of tasks such

as TC. Language-specific tokenization strategies have been shown to have advantages over

generic, language-agnostic approaches. Still, many multilingual language models have relied

on data-driven tokenizers, like BPE and WordPiece, achieving remarkably good results with-

out being rooted in linguistic knowledge. An excellent example is that of ByT5, a recent multi-

task transformer model which follows the byte segmentation approach previously mentioned

and obtains state-of-the-art results [132]. Nonetheless, despite a few efforts in this direction,

the impact of language-specific preprocessing on large language models has not been thor-

oughly explored.

We have also showcased how language modeling with contextualized representation has

obtained outstanding results, further cementing the idea that effective semantic representa-

tions of text are arguably the most important phase of any NLP task. However, we mentioned

how computation complexity can be particularly daunting. Utilizing pre-trained language

models is certainly advantageous and effectively democratizes their adaptation to many down-

stream tasks, but may entail a certain “rigidity” in their adoption. For instance, it should be

reminded that models such as BERT or GPT are closed-vocabulary; replacing the tokenization

strategy is not possible without performing again the entire pre-training procedure. Therefore,

testing how the performance of a downstream task is affected by changes within the classifica-

tion pipeline is likely to be an expensive process.
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Finally, we have highlighted how some researchers are experimenting whether models pre-

trained with task-specific objectives and data can outperform general-purpose models. As of

now, results seem inconclusive, and there is no clear indication of whether this approach

(which is clearly much more complex) will be preferred to the generic approach.

Datasets

The availability of annotated corpora is essential for NLP research. While the development of

deep language models mainly leverages self-supervised strategies, labeled datasets are required

for supervised tasks like TC. In this section, we provide a comprehensive list of resources avail-

able in two European languages and compare them with the resources available in the English

NLP research area. We decided to focus our search on annotated corpora in Italian, which we

regard as a mid-resource language, and French, which we instead consider a high-resource

language.

While a consistent number of written English annotated corpora is available and heavily

referenced in the literature, we find that the quantity of easily accessible resources in the lan-

guages we considered is still lacking (especially in Italian), limiting research on this theme. To

reiterate, this is a fundamentally different issue from the one posed by low-resource languages,

usually characterized by insufficient unlabelled data to even be able to perform self-supervised

procedures, but it is by no means a less important one.

Overview

Text classification tasks. We conduct a scientific literature search of annotated textual

corpora presented or employed in research contributions. Reflecting Li et Al. [4], we focus on

the following common TC sub-domains:

• Sentiment analysis (SA): the task of understanding the emotional content of a piece of text,

usually mapping it to predefined categories representing specific emotions. We include in

this category the tasks of stance and polarity detection, as well as the identification of rhetori-

cal devices, like irony, or linguistic properties, like subjectivity;

• Topic labeling (TL): the task of extracting the topic (or theme) of a document, for example an

article. This task is often related to content recommendation, since it can be used to map tex-

tual contents to user interests;

• News classification (NC): classification of news into specific categories, like user interests or

topics;

• Question answering (QA): extractive question answering can be framed as a classification

problem where the model, given a list of candidate sentences extracted from text and a target

question, must decide which sentence contains the answer;

• Natural language inference (NLI): given a pair of statements, the task is to determine if one is

entailed by the other;

• Named entity recognition (NER): the task of locating and classifying named entities men-

tioned in unstructured text into predefined categories;

• Syntactic parsing (SP): the task of predicting the morpho-syntactic properties of words in sen-

tences, like part-of-speech (PoS) tagging, speech dependencies, and semantic role labeling.

These tasks can be adapted to different domains, and many sub-tasks with different formu-

lations are possible. They are commonly used as benchmarks in NLP research, especially as
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part of multitask natural language evaluation initiatives, like the General Language Under-

standing Evaluation (GLUE) benchmark [133].

Search criteria. In order to balance search time and effectiveness, our search strategy is

composed of three steps:

1. Search for datasets on Google Dataset Search (https://datasetsearch.research.google.com);

2. Search for publications on Google Scholar using keywords along the lines of “Italian text

corpus” and “Italian Text Classification”.

a. The first two pages of results sorted for pertinence are explored;

b. The same is repeated by filtering results based on their publication date, by looking at

contributions published from 2019 onwards;

3. Search on PapersWithCode (https://paperswithcode.com/datasets) for contributions using

the same keywords.

For every publication, we explore all referenced publicly accessible data sources.

Datasets in other languages

In this section we present the results of our search, omitting corpora that are not public or that

are unavailable at the time of our search. We further filter out datasets with less than a few

thousand labeled samples, unless they are highly specialized datasets that we deem potentially

valuable for ML applications.

Italian and French datasets. We list monolingual corpora for Italian and French in

Tables 4 and 5. Table 6 describes multilingual classification corpora containing one or both

of these languages, and possibly others. We mark with a single asterisk (�) datasets available

through a request for access. Additionally, we mark with (��) datasets that are not distributed

for free or require specific affiliation. When defining tasks, we use the abbreviations intro-

duced in the previous section and otherwise use TC to indicate a generic “Text Classification”

task that does not fit any of the defined categories. For the sake of comparison, we give an esti-

mate of the dataset size, based on the published documentation. Size can be expressed as the

number of labeled sentences (“S”), tokens or words (“T”), or documents (“D”) available in the

corpus, and is comprehensive of all training, test, and evaluation splits. For multilingual data-

sets in Table 6, it refers to the number of samples in Italian and French (or, when similarly

sized, an average of the two).

English datasets. A comprehensive list of English TC datasets is provided by Li et Al. [4].

In order to make a comparison, we report in Table 7 some of the most popular English data-

sets, along with their size and related tasks. In this specific case, our search is limited to popular

datasets used within PapersWithCode recent contributions.

Findings

Many of the Italian datasets listed in Table 4 were created for the EVALITA initiative, a period-

ical campaign organized by AILC for the evaluation of NLP and speech tools for the Italian

language. The most recurrent tasks proposed in this initiative fall into the sentiment analysis

and syntactic parsing domains. While most datasets assembled by participants in this initiative

are made openly available and provide great value to the Italian NLP research, they are often

small in comparison to English datasets for the same task, and always fewer in number. SemE-

val is a similar international workshop for the evaluation of semantic analysis systems [240].
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Table 4. Italian datasets.

Name Paper Source Task Size Unit

ABSITA [134] [135] SA 10,000 S

SENTIPOLC [136] [137] SA (irony, subjectivity) 9,400 D

ATE_ABSITA [138] [139] SA, TL 4,300 D

AMI 2020 - [140] SA (misogyny) 9,900 S

R-ITA [141] [142] SA (stance) 1,000 D

ChroniclItaly [143] [144] NER, SA 8,600 D

IHSC [145] [146] SA, SP 6,900 D

HaSpeeDe [147] [148]� SA, SP 8,500/3,500 D

SQuAD-it [149] [150] QA 61,000 D

Fact-Ita Bank [151] [152]� NER, SP, NC 65,000 T

FLaIT [153] [154]� NER, SP 1,500 S

PAISÀ [155] [156] SP 250,000,000 T

KIPoS [157] [158]� SP 200,000 T

iLISTEN 2018 [159] [160] SP 22,000 T

PoSTWITA [136] [161] SP 6,700 D

TUT [162] [163] SP 3,500 S

TE-EVALITA 2009 [164] [165] NLI 800 D

GxG [166] [167] TC (gender) 11,000 D

DaDoEval [168] [169] TC (date) 2,800 D

AcCompl-It [170] [171]� TC (acceptability, complexity) 1,680/2,530 S

ITAmoji [172] [173]� TC (emoji prediction) 275,000 D

� Available through a request for access.

https://doi.org/10.1371/journal.pone.0270904.t004

Table 5. French datasets.

Name Paper Source Task Size Unit

French Twitter SA - [174] SA 1,500,000 D

Allociné - [175] SA 200,000 D

French Sexism Detection [176] [177] SA (sexism) 11,800 D

Event2018 [178, 179] [180]� SA (stance), TC (event) 15,000/137,000 S

CAS [181] [182]� SP, SA (uncertainty, negation) 4,900 D

E-FRA [141] [142] SA (stance) 2,000 D

FQuAD [183] [184]� QA 26,000 D

PIAF [185] [186] QA 3,800 D

Quaero Broadcast News XT - [187]�� NER 1,500,000 T

Quaero Old Press XT - [188]�� NER 1,300,000 T

La Recherche - [189]�� SP 447,000 T

FTB [190] [191]� SP 644,000 T

ParisParl - [192] SP, TC (affiliation) 203,000,000 T

French Corpus MWE [193] [194] SP 166,000 T

French FraCaS [195] [196] NLI 346 D

� Available through a request for access.

�� Require payment or specific affiliation.

https://doi.org/10.1371/journal.pone.0270904.t005
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Multilingual datasets provided for the proposed tasks tend to be small and, while access is pro-

vided, they are not easy to find and use outside the context of these initiatives.

We hereby discuss the availability of task-specific datasets as compared to analogous

English counterparts (Table 7). One should note that some of the datasets presented, especially

in French, are made available through the ELRA-ELDA catalog (available at http://www.elra.

Table 6. Multilingual datasets.

Name Paper Source Languages Task Size Unit

Webis-CLS-10 [197] [198] Fr, En, +2 SA 69,000 D

Amazon Reviews ML [199] [200] Fr, En, +4 SA 210,000 D

SemEval-2016 Task 5 [201] [202] Fr, En, +6 SA, TL (aspect) 2,400 S

Reuters Corpus Volume 2 (RCV2) [203] [204]� It, Fr, +11 NC 28,406/85,393 D

MLSUM [205] [206] Fr +4 NC 425,000 D

KB Europeana Newspapers NER - [207] Fr +3 NER - -

WikiAnn [208] [209] It, Fr, +280 NER 7,5 mln T

DAWT [210] [211] It, Fr, En, +3 NER, EDL 1,5 mln D

WikiNER [212] [213] It, Fr, En, +6 NER, SP 260,000 S

NewsReader MEANTIME [214] [215] It, En, +2 NER, SP, NC 15,000 T

Universal dependencies [216] [217] It, Fr, En, +100 SP �1 mln T

XL-WiC [218] [219] It, Fr, +1 SP 2,000/70,000 S

Aranea [220] [221] It, Fr, +20 SP 120 mln/1,2 bln T

PANACEA [222] [223] It, Fr, +2 SP - -

MKQA [224] [225] It, Fr, En, +23 QA 10,000 D

CLEF QA Test Suites - [226]�� It, Fr, En, +7 QA 160,000 D

XLNI [227] [228] Fr, En, +13 NLI 7,500 D

� Available through a request for access.

�� Require payment or specific affiliation.

https://doi.org/10.1371/journal.pone.0270904.t006

Table 7. English datasets.

Name Languages Task Size Unit Reference

20 Newsgroup En NC 18,800 D [4, 229]

Reuters En NC 10,700 D [4, 230]

R8 En NC 7,600 D [4]

R52 En NC 9,100 D [4]

RCV1 En NC 804,000 D [203]

AG News En NC 127,600 D [231]

TREC-6 En QA 5,500 D [232]

SQuAD 2.0 En QA 150,000 D [233]

Yahoo!Answers En QA 1,460,000 D [234]

Yelp-2 / Yelp-5 En SA 8,600,000 D [235]

Amazon-5 En SA 3,650,000 D [4]

Amazon-2 En SA 4,000,000 D [4]

IMDb En SA 50,000 D [236]

DBpedia En +124 TL 630,000 D [4, 237]

MultiNLI En NLI 433,000 D [238]

CoNLL-2003 En +1 NER 301,000 T [239]

https://doi.org/10.1371/journal.pone.0270904.t007
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info/en). This resource requires an ELRA membership plan and/or the payment of a fee in

order to be accessed.

Syntactic parsing. Corpora for syntactic parsing (SP), like PoS-tagging and lemmatiza-

tion, are well resourced in both languages reviewed in this paper and are featured in several

multilingual treebanks (like Universal Dependencies [216] and Panacea [222]). Furthermore,

the PAISÀ corpus stands out as a large monolingual dataset in Italian for these tasks.

News classification. On the other hand, we noticed a lack of news classification (NC)

datasets in Italian and French. The only notable exceptions are the MLSUM and RCV2 data-

sets. The MLSUM multilingual dataset contains news extracts labeled with their summaries

and topic, and it is available in French but not Italian. On the other hand, the Reuters RCV2

dataset for multilingual news classification contains both Italian and French sub-corpora. This

dataset can only be accessed by sending a request and signing an organizational agreement.

Topic labeling. Likewise, topic labeling (TL) datasets are also scarce in Italian and French.

Wikipedia dumps and DBpedia represent a remarkable source of crowdsourced semi-struc-

tured data that can be employed for topic labeling and TC in general and are available in hun-

dreds of languages. However, labels must first be extracted and merged following some criteria

which have not yet been standardized. Though these corpora have already seen use in the liter-

ature [241, 242], there is no consistent set of annotations to be used as reference. While catego-

ries assigned to Wikipedia pages by contributors are often used as predictive targets, these

frequently contain spurious or improper information that can be treated in many different

ways, or should arguably be removed entirely.

Sentiment analysis. Multiple sentiment analysis (SA) datasets are available in Italian and

French—often targeting user-generated content—for detection of polarity, political stance, or

specific rhetorical devices (like irony). More than ⅓ of the Italian datasets are scraped from

social or e-commerce platforms, especially Twitter.

Question answering. There is at least one large question answering (QA) dataset for both

Italian and French, as well as several multilingual ones which contain both languages. For this

task, the size of these datasets is comparable to the main English QA datasets.

Named entity recognition. Similarly, there are multiple large multilingual corpora for

named entity recognition (NER) tasks, at least for the most classic formulation of this task

aimed at recognizing “person”, “location” and “organization” entities.

Semantic entailment. We found two semantic entailment (NLI) datasets containing the

Italian and French languages, the largest containing 1,000 and 7,500 samples respectively. By

comparison, one of the most popular English NLI datasets (MultiNLI) is more than 50 times

the size of the French one mentioned.

Cross-lingual benchmarks

Multitask evaluation benchmarks like GLUE, SUPERGLUE (for English), and FLUE (for

French) are increasingly popular tools to evaluate models across a wide variety of NLP tasks.

This incentivizes models to share knowledge across different tasks and gain sufficient language

understanding to generalize on a wide range of applications. Notably, the recent publication of

the XTREME and XGLUE benchmarks introduced support to multilingual and cross-lingual

cross-task evaluation. Still, for some tasks, not all languages are available. For example, among

the classification tasks we are interested in, XGLUE supports only PoS-tagging (included in

our SP category) and web page ranking on the Italian language. Additionally, they do not pro-

vide training data in every language, and, for some tasks, data is extracted from other multilin-

gual datasets (namely XNLI, Universal Dependencies, and WikiAnn). Table 8 summarizes

popular language-specific and cross-lingual benchmarks.
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The goal of these initiatives is not to provide more monolingual data for languages with

fewer resources, but rather to encourage the evaluation of cross-lingual models capable of

transferring knowledge across different languages, even those with little or no training data.

Their contribution is important in that it provides a standardized evaluation environment for

deep learning models that could alleviate the common low resource issue [243].

Applicability evaluation

We have previously mentioned the rising computational costs of developing state-of-the-art

NLP solutions. In this section, we simulate a practical case by synthesizing two custom multila-

bel classification datasets. In our research, we have found that multilabel TC in the Italian lan-

guage (and, to some degree, in French) are understudied, in contrast to binary and multiclass

TC. In a similar vein to Tamburini [79], our study is aimed at gauging how easily and how well

these methods can apply to new tasks and datasets with a constrained amount of resources

(i.e., only fine-tuning).

Datasets utilized

We use one monolingual dataset per language for each studied task. We decided to tackle the

multilabel classification task, as it was more interesting for our research work and, to some

extent, is less documented in the literature. An empirical evaluation of the labels in our TL

dataset finds that the categorizations utilized are overlapping and cannot be easily decomposed

into binary sub-classification tasks (e.g., “sports” vs “winter sports”) [247]. A similar consider-

ation can be made of the NC dataset, which was multilabel by construction.

We chose to synthesize these datasets mainly because of the scarcity of other options in Ital-

ian. In the first case, we found that synthesizing a TL dataset from Wikipedia was the only way

of obtaining a reasonably large, general-domain, annotated corpus in Italian. Similarly, the

RCV2 dataset was chosen for the NC task because no other public collection of annotated

news articles was available in Italian.

Topic labeling. We synthesized a dataset for the Topic Labeling task using Wikipedia

dumps in all three languages. For each dump, articles and related topics are extracted using

a modified version of the popular WikiExtractor tool (see https://github.com/attardi/

wikiextractor). After an exploration of the data, we came to the conclusion that Wikipedia cat-

egories are ill-suited for a topic labeling task since they are often too specific and hardly pro-

vide a good topic indication. Therefore, we decided to use a different approach, and annotate

extracted articles with the Wikipedia portals they are assigned to.

Currently, there are roughly 500 portals within the English version of Wikipedia, while

there are more than 500,000 categories. Wikipedia itself states that portals serve as entry points

for articles that belong to the same broad subject [248], thus making them better targets for

Table 8. Linguistic benchmarks.

Benchmark Paper Languages Tasks Cross-Lingual

GLUE [133] En QA, SA, TL, NC

SUPERGLUE [244] En TC, NLI, QA

FLUE [245] Fr TC, SP, NLI, PAR�

XTREME [246] It, Fr, En, +37 NER, SP, NC, QA ✔
XGLUE [243] It, Fr, En, +8 NER, SP, NC, QA ✔

� Paraphrasing.

https://doi.org/10.1371/journal.pone.0270904.t008
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our task. Our final datasets contain only the 100 most populous portals, and article frequency

has been limited to a maximum of 50,000 articles per label. This was done both to contain the

dataset size and to reduce class imbalance.

News classification. For the News Classification (NC) task we utilized the Italian and

French subset of articles in the Reuters multilingual collection (RCV2), as well as the English

monolingual collection contained in RCV1. The English Reuters collection has been for a long

time one of the staple TC corpora utilized for experimental purposes [247, 249], though its

multilingual version has not seen as much attention. The articles are not “parallel”, in the

sense that they do not contain the same content in different languages, but are different articles

altogether.

The RCV1/2 articles are labeled with a variety of tags that describe their content at varying

degrees of specificity. The most consistent and interesting tags across languages were topic

codes; within such codes, subjects are ordered in a hierarchical manner. However, articles are

often tagged inconsistently—the depth of hierarchy within tags ranges between two and four

levels, and documents are sometimes only partially tagged. We decided to retain topics at the

second level of specificity; each article is tagged with all second-level topic codes it contains

and stripped of any other. Only topics that had at least 500 representatives were included in

the final datasets. Articles are deprived of all topics excluded this way, and the article is dis-

carded if it contains no topics after this process.

Analysis of datasets. Final statistics of the described datasets are reported in Table 9. The

main difference between the TL and NC datasets is the length of the articles; an average over

the number of tokens per document reveals Reuters articles are comparatively much shorter

than extracted Wikipedia articles. Indeed, Wikipedia articles are usually much more descrip-

tive, while Reuters articles are presented in a very concise and to-the-point format. As the LMs

we worked with allow for a maximum of 512 tokens as input, we can expect a truncation to be

much more frequent in the case of Wikipedia articles. The information loss should however

not be dramatic, as most discriminative information is usually found at the beginning, where

the article is introduced.

Figs 3 and 4 depict the distribution of the number of topics per article for the ItWiki-100

and RCV2it datasets, respectively. The same statistics for the French and English counterparts

are supplied in the S1 Datasets supplement. Unsurprisingly, most articles have few labels

(between one and three), with a large amount having only one label. The larger Wiki datasets

have a longer tail-shaped distribution, with a few outliers having a large number of labels, but

that overall make up a small part of the datasets (for instance, articles with four or more labels

make up less than 1.4% of the ItWiki-100 dataset).

We further report in the S1 Datasets supplement the distribution of topics, i.e., the number

of articles labeled for each specific topic. All datasets follow a similar distribution, with a num-

ber of well-represented classes and a lower bracket of classes that are comparatively under-

represented. We point out that class imbalance was much more severe in the raw data we

Table 9. Statistics on the examined datasets.

Name Classes Avg n. tokens Samples Task

ItWiki-100 100 354 892,573 TL

FrWiki-100 100 362 1,494,761 TL

EnWiki-100 100 741 329,626 TL

RCV2it 15 123 25,750 NC

RCV2fr 38 224 79,173 NC

RCV1en 57 216 758,149 NC

https://doi.org/10.1371/journal.pone.0270904.t009
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Fig 3. Distribution of the number of labels in ItWiki-100.

https://doi.org/10.1371/journal.pone.0270904.g003

Fig 4. Distribution of the number of labels in RCV2it.

https://doi.org/10.1371/journal.pone.0270904.g004
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processed, with a much smaller number of dominant classes and a much larger number of top-

ics with next to no representation. As it stands, the dataset still remains unbalanced, but in a

way that, in our opinion, poses an interesting challenge.

Experimental setup

For all methods, excluding FastText and classical approaches, the input documents are trun-

cated, keeping only the first 512 tokens (or padded to that size). For training, every dataset is

split into a training, validation, and test set: 40% of the data are reserved for testing, and 20%

of the remaining samples are used for validation. Splits are produced in a way to preserve the

distribution of labels, through a stratification strategy [250, 251]. Training was carried out on

an NVIDIA GeForce RTX 2080 Ti GPU. More details on the training procedure are given in

the S1 Appendix.

Evaluation metrics. One of the most adopted evaluation metrics for multilabel classifica-

tion tasks is that of F1-score, defined as the harmonic mean of precision and recall, as in the

equation below.

F1 ¼ 2 �
Precision � Recall
Precision þ Recall

For multilabel and multiclass problems, it can be computed separately for each class and

then averaged, obtaining the macro F1-score. In such a case, every class contributes equally to

the final score, hence providing a more challenging metric for unbalanced datasets. On the

other hand, a micro average reduction strategy is used when computing the metric globally

with no weighting.

In our tests, we report the F1-score with macro-averaging across all categories along with

the accuracy score, as the latter is an interpretable measure of the overall fraction of correct

predictions. In its computation, the predicted set of labels must exactly match the ground

truth for it to be considered a true positive (this score is sometimes referred to as “subset
accuracy”).

Methods applied. We present quantitative results for an array of models that either are or

have been state-of-the-art approaches to solving the task of TC. A more thorough analysis of

the decision process behind these models is provided in the S1 Appendix. We start by provid-

ing a strong baseline with classical methods, of which we test Naïve Bayes and linear Support

Vector classifiers as representatives. As examples of neural networks preceding the Trans-

former era, we showcase the results of FastText [252], XML-CNN [241] and a BiLSTM-based

classifier. We then trained Transformer-based methods, using open-sourced models pre-

trained on language modeling tasks over large corpora. This last set of methods currently

achieves the best results on the vast majority of downstream NLP tasks.

Every method is trained and tested 4 times per dataset, each time on a newly generated

train and test split, and we list the final average metrics evaluated on the test set, along with the

standard deviation over all runs, in Tables 10 and 11. As an exception, and because of technical

constraints, we train XLM-R only once per dataset, as this model is much heavier than the

already expensive BERT.

Discussion on results

When it comes to classical methods, the results obtained are quite favorable. The one-vs-rest

ensemble of linear SVCs proved to be the strongest baseline, while our application of multino-

mial Naïve Bayes lagged behind quite a bit (though it was considerably faster). Among
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preprocessing operations, we found that lemmatization and n-gram discovery did not produce

significant differences in results, so we do not report their effect in the final tables.

Neural networks that predate the Transformer era showcased strong performances, usually

surpassing traditional methods. In our experiments, exceptions were likely to be attributed to

the size of training data. NNs had better results for larger datasets, giving instead ground to

classical methods whenever training samples were more scarce. Moreover, on smaller datasets

(like RCV2it), we observed a noticeable margin of variance between the results of different

runs of said networks, which were instead very consistent on larger datasets (like our “Wiki-

100” datasets).

For these models, we experimented with different pre-trained embeddings (Word2Vec,

GloVe, FastText), and found that FastText embeddings gave the best result for XML-CNN. In

the case of BiLSTMs, however, we found the best results were instead obtained with GloVe

embeddings, despite their comparatively restricted vocabulary size. Furthermore, BiLSTMs

benefited from the removal of stopwords in their input text, something that we did not find to

be true in the case of XML-CNN. Nonetheless, the gap in the results between the two models

was noticeable but not dramatic.

Unsurprisingly, the attention-based Transformer architectures outshined other methods

on all our datasets. An important aspect of these models that warrants being reiterated is their

ease of application to downstream tasks. In fact, only a few epochs of tuning were necessary to

obtain these results. Even so, they were still the most computationally complex and required

the longest time to fine-tune. While monolingual BERT models performed best, XLM-R

Table 10. Test set macro F1 score for the tested TC methods.

Italian French English

Model ItWiki RCV2it FrWiki RCV2fr EnWiki RCV1en

Naïve Bayes (OVA) 0.620 ± 0.000 0.765 ± 0.004 0.551 ± 0.001 0.661 ± 0.003 0.636 ± 0.001 0.563 ± 0.014

Linear SVM (OVA) 0.824 ± 0.000 0.796 ± 0.008 0.737 ± 0.000 0.724 ± 0.003 0.803 ± 0.001 0.717 ± 0.003

FastText Classifier 0.815 ± 0.001 0.767 ± 0.007 0.757 ± 0.001 0.641 ± 0.007 0.744 ± 0.054 0.696 ± 0.008

BiLSTM (GloVe) 0.836 ± 0.001 0.805 ± 0.002 0.769 ± 0.001 0.700 ± 0.014 0.812 ± 0.005 0.766 ± 0.007

XML-CNN (FastText) 0.827 ± 0.001 0.776 ± 0.009 0.789 ± 0.002 0.669 ± 0.011 0.782 ± 0.004 0.730 ± 0.007

BERT (base) 0.870 ± 0.001 0.840 ± 0.006 0.840 ± 0.001 0.768 ± 0.005 0.855 ± 0.002 0.781 ± 0.004

XLM-R (base) 0.868 0.836 0.832 0.739 0.846 0.772

Standard deviation over runs is reported (± σ). Best results are presented in bold.

https://doi.org/10.1371/journal.pone.0270904.t010

Table 11. Test set subset accuracy score for the tested TC methods.

Italian French English

Model ItWiki RCV2it FrWiki RCV2fr EnWiki RCV1en

Naïve Bayes (OVA) 0.432 ± 0.001 0.629 ± 0.002 0.287 ± 0.001 0.475 ± 0.018 0.392 ± 0.007 0.473 ± 0.019

Linear SVM (OVA) 0.744 ± 0.001 0.717 ± 0.005 0.587 ± 0.001 0.656 ± 0.003 0.669 ± 0.001 0.677 ± 0.002

FastText Classifier 0.741 ± 0.002 0.678 ± 0.005 0.603 ± 0.001 0.611 ± 0.006 0.682 ± 0.053 0.670 ± 0.004

BiLSTM (GloVe) 0.763 ± 0.002 0.727 ± 0.007 0.637 ± 0.001 0.657 ± 0.008 0.680 ± 0.009 0.725 ± 0.005

XML-CNN (FastText) 0.764 ± 0.002 0.712 ± 0.005 0.661 ± 0.003 0.644 ± 0.008 0.666 ± 0.005 0.710 ± 0.001

BERT (base) 0.808 ± 0.002 0.773 ± 0.006 0.724 ± 0.002 0.696 ± 0.007 0.753 ± 0.003 0.735 ± 0.002

XLM-R (base) 0.808 0.773 0.716 0.688 0.743 0.740

Standard deviation over runs is reported (± σ). Best results are presented in bold.

https://doi.org/10.1371/journal.pone.0270904.t011
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proved to have very strong performances, even though it is a multilingual model with a vocab-

ulary diluted across many languages.

Language-specific considerations. On average, we observe that Italian models perform at

the same level as (or slightly better than) English methods. French tasks, on the other hand,

proved to be slightly harder on both datasets. In all cases, the trend of performance between

methods is similar; as expected, contextualized language models perform the best across the line.

We therefore focus this discussion on these models, are they are the most interesting to cover.

Many factors are likely to be influencing the differences in the reported results. First and

foremost, the monolingual models were pre-trained on different corpora of different sizes.

Diving into specifics, the Italian LM was pre-trained on 81GB and 13B tokens of data, taken

from OPUS and OSCAR corpora [86]. The English BERT model is trained on the BookCorpus

and Wikipedia dump (13GB), as outlined in the original paper [61, 245]. The French model is

trained on a mixture of French documents, extracted from Project Gutenberg (a collection of

e-books), OPUS, Wikimedia, and Common Crawl, amounting to 71 GB of data [245]. This lat-

ter model is also trained with a MLM objective only, while the others use both MLM and NSP,

and it has more learnable parameters: 138 million instead of 110. Finally, XML-R was trained

on 2.5TB of data in 100 languages, extracted from the Common Crawl corpus [70]. In it, the

amount of data per language is variable: 300 GB for English, 30 GB for Italian, and 57 GB for

French text. Another important factor to be considered is the difference in the size of our clas-

sification datasets. The RCV2 dataset contains a relatively small number of Italian articles

when compared to both French and English. The number of target labels is also variable across

languages, resulting in TC tasks that are likely to be on a slightly different level of difficulty.

As a consequence, given the conspicuous differences in pre-training, it is hard to make any

consideration about the impact of the languages alone on the results. In this work, we aimed to

give a generic overview from a linguistically inclusive perspective aimed at practical applica-

tions; indeed, we managed to obtain impressive results even without domain knowledge (for

French) and without much fine-tuning. In future works, it would be certainly interesting to

delve into a deeper study to ascertain the role of language and morphology in these models.

Considering that tokenization is the most language-dependent step, this would involve testing

several tokenizers, and pre-training the LMs from scratch on several monolingual corpora

with adjusted language proportions, similarly to [7]. Clearly, this work would be very

resource-intensive.

The similarity in results is not at all surprising, considering how close the three chosen

languages are. Indeed, English has Germanic roots, while Italian and French are Romance lan-

guages (derived from Vulgar Latin), yet have developed very closely and have strong influences

on each other. There are many differences that could be pointed out (gendered nouns and pro-

nouns, liaisons, accents, etc.), but it is fair to consider them morphologically similar languages

since they all belong to the fusional family.

Our results are suitable to prove the ease of application of pre-trained LMs and their conve-

nience with respect to other traditional classification methods, as well as those based on LSTMs

and MLPs with word embeddings. Despite our limited hyperparameter tuning imposed by a

low-resource environment, these methods clearly show their value as one-and-for-all solutions

for supervised TC. Moreover, the multilingual model XML-R was able to capture discriminative

features in all three languages, in spite of the more limited per-language vocabulary.

Future research challenges

The last few years have seen exciting developments in the field of Text Classification and NLP

in general. Large-scale language models have achieved state-of-the-art results throughout NLP
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literature, yet they are not infallible. These approaches face a set of challenges of their own

regarding unexpected behaviors, true semantic understanding and harmful biases hidden in

training data [3, 63]. Partially in response to these issues, new approaches are being researched,

both to improve the reliability of LMs and to democratize their accessibility.

Multitask learning

The domain and language dependence of language models is one notable issue faced by LMs.

Ideally, these models should show general understanding of languages via pre-training on sev-

eral modeling tasks. We have mentioned how one of the limiting factors for fair experimenta-

tion of recent NLP models in languages other than English is the lack of downstream, task-

specific datasets. We have shown such scarcity in Italian, which we expect only to be worse in

lower-resourced languages. In this regard, multitask learning is a novel approach to learning

language embeddings through combining labeled data from multiple related tasks and fine-

tuning simultaneously on all of them, thus producing cross-task embeddings. Liu et al [253]

proposed multitask DNN that showed strong generalization capabilities on domains where lit-

tle-to-no labeled data was provided. They also provide evidence that this strategy profits from

a regularization effect that reduces overfitting on single tasks, thus making embeddings more

universal. The XGLUE [243] and XTREME [246] frameworks extend this concept by intro-

ducing a standard evaluation procedure for cross-task and cross-lingual models. It’s easy to see

how these paradigms could help tackle common problems for NLP research, first and foremost

the scarcity of labeled, task-specific data for various languages.

Multilingual models

As shown, deep language models trained on large multilingual corpora are achieving excellent

results [61, 70, 82], displaying a remarkable ability to extract semantic meaning across multiple

languages. Given the computational complexity incurred by the development of Transformer-

based models, it would perhaps be more desirable to push for the development of models that

are able to generalize well to the widest array of languages possible. Multilingual models could

help to prevent the newfound necessity of having to develop competitive monolingual lan-

guage models for each language, which is becoming increasingly difficult due to the speed at

which their dimension is growing. Furthermore, this would serve to benefit more under-repre-

sented languages, while partially addressing the justifiable ethical and environmental concerns

related to the negative impact caused by the training process of these models [63]. Nonetheless,

we have already addressed some of the limitations of these approaches, and how language-spe-

cific additions (such as a monolingual tokenizer) can improve performance.

New multilingual models are still being developed, often following the trend of what are

colloquially defined as large language models (LLMs). Most of these projects are carried out by

large tech companies, which are able to afford their vast computational costs; however, we

point out notable scientific projects such as BigScience [254], currently being trained on 46

languages and more than 28 petaflops of textual data. It will be interesting to see the results of

open projects such as these.

Few-shot learning

Another direction being researched is that of few-shot learning, where models are shown very

little to no labeled examples in the fine-tuning procedure. Therefore, the aim is the creation of

generic models able to overcome the lack of task-specific datasets; an example is that of the

aforementioned GPT-3 [69], which was one of the first works in recent years to display

impressive results without large amounts of task-specific data or model parameter updating.

PLOS ONE A survey on text classification: Practical perspectives on the Italian language

PLOS ONE | https://doi.org/10.1371/journal.pone.0270904 July 6, 2022 32 / 46

https://doi.org/10.1371/journal.pone.0270904


Other works have followed, training on even larger datasets from diverse sources and experi-

menting with sparsely activated modules to address the computational expensiveness of LLMs

[255–258].

An interesting aspect of these models is that they have shown to have “strong” multilingual

capabilities. Many of these models indeed include corpora in different languages in their pre-

training; however, while their results are certainly impressive, they are still outshined by

monolingual approaches on language-specific tasks.

Reducing the size of language models

Though the trend of scaling larger and larger models still continues to this day, some develop-

ments are proposing smaller, generative LMs that have been shown to perform competitively

when augmented with search/query information from retrieval databases [259, 260]. For

instance, the developers of the Retrieval-Enhanced Transformer (RETRO) showcase perfor-

mances on par with GPT-3, despite their model being 4% of the latter’s size. As such, further

research on the development of more reasonably sized models will be certainly a worthy

endeavor.

Conclusion

In this paper, we overview existing models for TC and study their applicability to other lan-

guages, utilizing Italian as our main point of perspective. Firstly, we discuss the relevancy of

preprocessing operations as arguably the most language-specific steps in the TC pipeline. We

introduce the most common tokenization techniques that are paired with the latest methods

and we further expand on different approaches to project textual features in suitable feature

spaces for machine processing. Deep neural language models are introduced, and, whenever

appropriate, we comment on the challenges and possible solutions to their applicability to

non-English languages, first and foremost their high-resource requirements. A brief overview

of the last step in the pipeline, that of classification, is then given; state-of-the-art approaches

are outlined, commenting on their different levels of language dependence. We then showcase

a number of Italian TC datasets, a language we deem mid-resourced; to substantiate this claim,

we also similarly search for French datasets. We make a comparison between the two as well

as with equivalent English datasets, showing that both French and English have greater avail-

ability of large labeled corpora. Furthermore, we give new quantitative results on multilabel

classification tasks in Italian, French, and English. In particular, we apply a few main represen-

tatives of the methods we described on News Classification and Topic Labeling, two subcate-

gories of TC which are underrepresented outside of the English scope. Finally, we discuss

future research challenges and directions of TC, with an emphasis on how they affect other

languages.
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