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A B S T R A C T

Modern service providers often have to deal with large amounts of customer requests, which they need to
act upon in a swift and effective manner to ensure adequate support is provided. In this context, machine
learning algorithms are fundamental in streamlining support ticket processing workflows. However, a large
part of current approaches is still based on traditional Natural Language Processing approaches without fully
exploiting the latest advancements in this field. In this work, we aim to provide an overview of support Ticket
Automation, what recent proposals are being made in this field, and how well some of these methods can
generalize to new scenarios and datasets. We list the most recent proposals for these tasks and examine in
detail the ones related to Ticket Classification, the most prevalent of them. We analyze commonly utilized
datasets and experiment on two of them, both characterized by a two-level hierarchy of labels, which are
descriptive of the ticket’s topic at different levels of granularity. The first is a collection of 20,000 customer
complaints, and the second comprises 35,000 issues crawled from a bug reporting website. Using this data, we
focus on topically classifying tickets using a pre-trained BERT language model. The experimental section of
this work has two objectives. First, we demonstrate the impact of different document representation strategies
on classification performance. Secondly, we showcase an effective way to boost classification by injecting
information from the hierarchical structure of the labels into the classifier. Our findings show that the choice
of the embedding strategy for ticket embeddings considerably impacts classification metrics on our datasets:
the best method improves by more than 28% in F1-score over the standard strategy. We also showcase the
effectiveness of hierarchical information injection, which further improves the results. In the bugs dataset, one
of our multi-level models (ML-BERT) outperforms the best baseline by up to 5.7% in F1-score and 5.4% in
accuracy.
1. Introduction

The term support ticket describes a request for help from a customer
to a service provider’s support team. These include service tickets,
customer complaints, and incident reports, and are fundamental tools
for any modern company when it comes to managing their relationship
with customers (Al-Hawari & Barham, 2021). Tickets represent the
most valuable point of contact between the users and the staff respon-
sible for the management of a service, allowing for the resolution of
any issue or incident related to it. These types of interactions are ubiq-
uitous across practically any industry field. Though the most common
examples include IT-related support requests and bug reports (Mani,
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Sankaran, & Aralikatte, 2019), these services are also used in domains
such as healthcare (Young, Luz, & Lone, 2019) and governmental
institutions (Powell, Rotz, & O’Malley, 2020).

What we refer to with the generic term of ‘‘tickets’’ are most
commonly messages presented in textual form, often written directly
by customers or technicians, therefore comprising mainly of natural
language (though it should be mentioned that it is also common for
them to be created automatically by a computational agent in response
to a fault or bug). The most prominent channels from which tickets
originate include emails, phone calls, specialized web forms, live chats,
and, as of late, social media platforms (Zicari, Folino, Guarascio, &
Pontieri, 2021). They are most frequently composed of a short title
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and a description that recounts the issue or request by the client and
are usually very noisy and concise. In some cases, along with the
textual help request, tickets may contain additional context data (e.g.,

screenshot) (Mandal, Agarwal et al., 2019).
When a ticket is produced, its categorization and routing to re-

olving experts are tasks of the utmost importance. A swift resolution
nsures customer satisfaction, high productivity, and compliance with
ervice-Level Agreements (SLAs) — which often dictate that issues
e solved within a specific time frame (Gupta & Sengupta, 2012).
onversely, improper routing of tickets may result in wasteful reas-
ignment and unnecessary resource utilization, with adverse financial
onsequences for customers and service providers both (Paramesh,
amya, & Shreedhara, 2018; Paramesh & Shreedhara, 2019). In this
ontext, Ticket Automation (TA) can be defined as the collection of
utomated systems that aim to reduce the number of steps between
he submission of a ticket and its resolution.

Among TA tasks, accurately classifying incoming tickets with a
escriptive label is among the most intuitive and widely studied, as well
s being of particular importance to ensure that customers have their
equests complied with rapidly. Indeed, as the volume of support tickets
as significantly grown (especially in IT companies) (Ali Zaidi, Fraz,
hahzad, & Khan, 2022; Fuchs, Drieschner, & Wittges, 2022), the need
or automated systems able to expedite the ticket resolution process has
nly become more prevalent.

.1. Contributions

In this article, we will provide an overview of the TA landscape,
xploring its most common sub-tasks and listing the most recent devel-
pments that have been applied to this field. Then, we will explore in
ore detail the most common framing of TA, i.e., the automatic cate-

orization of a service request within a shallow hierarchy of topics. The
ask is therefore that of text classification; as such, a preliminary step
s that of learning semantically meaningful representations from the
odies of text of which support tickets are constituted. In this regard,
e seek to explore the most recent developments in the field of Natural
anguage Processing (NLP) concerning text representation, mainly con-
extualized Language Models (LMs) (Devlin, Chang, Lee, & Toutanova,
019; Radford, Narasimhan, Salimans, & Sutskever, 2018). These neu-
al approaches based on the Transformer architecture (Vaswani et al.,
017) have obtained outstanding results in all NLP-related tasks and
re now the de-facto standard approach to NLP transfer learning. As
f now, new Transformer-based LMs are constantly being proposed,
ften with radical changes with respect to the original architecture.
evertheless, the core attention-based foundation (Bahdanau, Cho, &
engio, 2015; Luong, Pham, & Manning, 2015) remains the same. Still,
espite their recent popularity in NLP applications, there is a lack of
ork that leverages these models for the classification of ticket-related
atasets.

For the experimental section of this work, we will examine how
LM such as BERT (Devlin et al., 2019) – one of the most well-

tudied Transformer-based LMs – can be utilized in the context of
upport tickets. First, we explore different document embedding sum-
arization strategies derived from its composing word embeddings.
hile a few works have addressed this topic in the past, we believe

t would be interesting to showcase how different strategies behave
n the ticket domain, which contains text that is by nature noisy and
onversational. Then, as a second contribution, we devise a specialized
ulti-level model, able to extract hierarchical information by combin-

ng the embeddings of the documents as fine-tuned on different levels
f the hierarchy. In this contribution, we tie notions derived from
ierarchical Text Classification (HTC) and apply them to the Ticket
lassification (TC) environment. Finally, we compare the results with a
et of baselines, including traditional approaches as well as more recent
roposals.

The main contributions of this research can be summarized as
2

ollows: a
• Ticket automation overview — We overview different
approaches to TA and provide an analysis of recent contributions
to this task. Moreover, we supply an up-to-date list of recent
methods, framing them within four different TA tasks they aim
to solve, as well as a comprehensive list of public datasets in the
customer care domain;

• Document embedding strategies — We showcase how several
strategies for producing document embeddings from a BERT LM
can impact the model’s performance on document-level classifi-
cation;

• Multi-level classification— We propose a novel global approach
to the TC sub-task, which exploits the hierarchical structure of the
labels;

Our work is among the first to utilize a pre-trained Transformer-
based LM for the classification of support tickets, which we demonstrate
on two public datasets. Despite the noisy nature of the data, we show
that these LMs can perform better than more traditional (i.e., non-deep
learning) methods, often still proposed in current literature. As such,
we hope the insights provided in this work can help researchers to
consider the usage of pre-trained LMs for industrial applications in the
TA domain. We publicly share all the code and datasets used in our
experiments.2

1.2. Structure of the article

The rest of the article is organized as follows. Section 2 provides a
brief introduction to text representation concepts, fundamental to any
approach that aims to solve a downstream task in NLP. In Section 3 we
formalize the TA task, describing its similarities with HTC and describ-
ing the identified sub-tasks. We then present the results of our literature
review about the applications of Machine Learning (ML) algorithms
to the automation of ticket-related tasks, such as topic classification.
We additionally include a list of public datasets suitable for research
purposes, two of which are being leveraged in this work. Section 4
describes our contributions, which consist of the analysis of different
summarization strategies for documents, as well as multiple multi-level
classifiers for ticket categorization. Our experimental procedures are
detailed in Section 5, along with the adopted metrics, preprocessing
choices, and the baseline algorithms we implemented. This section
also contains the results of our experiments, which are then discussed
in detail and compared to other baselines in Section 6. Finally, Sec-
tion 7 concludes our work and summarizes our main contributions and
achievements.

2. Background: Text representation in NLP

A fundamental step for any machine learning algorithm that deals
with text is its representation in a machine-digestible form. In this
section, we provide a brief introduction to text representation tech-
niques, highlighting both traditional approaches and the most recent
advancements.

Text representation procedures have evolved enormously in recent
years. These techniques have been revolutionized by the introduction of
Deep Learning, allowing for semantically and syntactically meaningful
embedding (i.e., vectorial representations) of words and sentences. As
we are interested in employing some of the latest language modeling
techniques, we briefly introduce recent developments in deep learning
methods for the representation of text, which constitute the major drive
for improvement for text classification methods and NLP in general.
This overview is necessarily superficial, and a much more in-depth
exploration of the recent evolution of NLP and text classification pro-
cedures can be found in Gasparetto, Marcuzzo, Zangari, and Albarelli
(2022), Kowsari et al. (2019), Li, Peng et al. (2020), Minaee et al.
(2021).

2 https://gitlab.com/distration/dsi-nlp-publib/-/tree/main/ticket-
utomation-survey-app-22

https://gitlab.com/distration/dsi-nlp-publib/-/tree/main/ticket-automation-survey-app-22
https://gitlab.com/distration/dsi-nlp-publib/-/tree/main/ticket-automation-survey-app-22
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Fig. 1. Exemplification of the two most common objectives in language modeling tasks.
The highlighted word is being predicted based on the surrounding (context) words.

2.1. Weighted word counts

Traditional methods for text classification are based on general-
purpose classifiers, including methods such as Decision Trees (Ho,
1995; Safavian & Landgrebe, 1991), k-Nearest Neighbors (Cover &
Hart, 1967; Li, Yu, & Lu, 2003), Probabilistic graphical models (Sutton
& McCallum, 2012; Torsello, Gasparetto, Rossi, Bai, & Hancock, 2014;
van den Bosch, 2017; Xu, Li, & Wang, 2017), and Support Vector
Machines (Boser, Guyon, & Vapnik, 1992; Cortes & Vapnik, 1995).

These classifiers require a numerical input, thus necessitating text
to be translated into some kind of vectorial form. At a very high level,
text representation techniques practically always begin by indexing
different words and creating a vocabulary by which words can be
referenced by their index. Before the advent of neural approaches,
bodies of text were then transformed into vectors by utilizing relatively
simple statistical depictions, the most popularly used being that of Bag-
of-Words (BoW). This technique essentially amounts to an unordered
word count for vocabulary terms within a document. Most often, these
counts are then weighted utilizing frequency terms based on word
occurrence statistics, such as Term Frequency (TF) and Inverse Term
Frequency (IDF) (Jones, 1972). Through these operations, a single, vec-
torized representation for each document can be obtained. However,
these representations do not contain any real syntactic or semantic
information — all sentence ordering information is lost, and the vectors
do not encapsulate any real meaning of what they represent.

2.2. Word embeddings

A substantial turning point in text representation has been the
development of word embeddings, a feature extraction technique able
to learn semantically and syntactically meaningful vectorial represen-
tations of text. Seminal works such as Word2Vec (Mikolov, Chen,
Corrado, & Dean, 2013; Mikolov, Sutskever, Chen, Corrado, & Dean,
2013) and GloVe (Pennington, Socher, & Manning, 2014) proposed
language modeling approaches from which these embeddings could
be extracted through shallow neural networks. The authors have since
been able to prove that these vectors indeed encapsulate word meaning
— for instance, these representations allow for vector arithmetic such
as ⃗𝑘𝑖𝑛𝑔− ⃗𝑚𝑎𝑛+ ⃗𝑤𝑜𝑚𝑎𝑛 ≈ ⃗𝑞𝑢𝑒𝑒𝑛, which showcase a deeper understanding
of word semantics by the model. Moreover, these representations have
since allowed for immense benefits on downstream task performances,
such as with classification.

Word embedding models are based on the aforementioned concept
of language modeling (Jurafsky & Martin, 2020). Language models
themselves are probability distributions, usually obtained through a
next-word prediction task, even though many possible variations have
been proposed in practice. In the training process of embedding meth-
ods, models are usually tasked to infer a word given its context (i.e.,
surrounding words). While originally LMs would only infer words given
their left context (previous words), modern word embedding models
most commonly utilize both left and right context (Fig. 1).

While much could be said about word embedding techniques, an
influential approach worth mentioning is that of FastText (Bojanowski,
Grave, Joulin, & Mikolov, 2017). Very briefly, the core difference
between FastText embeddings and other earlier representations is the
usage of character 𝑛-grams, i.e., fragments of words. This way, word
embeddings can be seen as a composition of multiple 𝑛-gram em-
beddings, which allows better generalization over rare or unknown
words.
3

2.3. Contextualized language models

Word embeddings have been utilized in a broad range of ap-
proaches, both traditional and neural-based. For many tasks such
as text classification, Recurrent Neural Networks (RNNs) (Sutskever,
Vinyals, & Le, 2014) have long been the go-to model, as they are
effective in dealing with sequentially structured information. RNNs
have been widely utilized with word embeddings, both as classifiers
that use them as input, and as part of the embedding training process.
Convolutional Neural Networks (CNNs) (Gasparetto et al., 2018; Kim,
2014) have also been utilized, though to a lesser extent.

However, transfer learning in NLP – which word embeddings can be
understood as – has had its second turning point in the development
of contextualized word embeddings. Indeed, earlier word embeddings
were unable to discern context, and therefore incapable of properly
representing polysemous words (i.e., words with multiple meanings).
The introduction of context in these representations has allowed to
solve this issue; this had been explored with RNNs with methods such
as ELMO (Peters et al., 2018), but found greater success with the
advent of the Transformer architecture (Vaswani et al., 2017). Among
the advantages of Transformer-based architectures, which are entirely
based on the attention mechanism (Bahdanau et al., 2015; Luong et al.,
2015), stand out the capability for greater parallelism (because of
the absence of recurrence), as well as favorable scaling with network
depth (Kaplan et al., 2020). Indeed, a crucial advantage of Transformer-
based approaches is that they scale very well in terms of performance
with an increased number of parameters, which is most commonly
achieved by adding more layers to the architecture (Bender, Gebru,
McMillan-Major, & Shmitchell, 2021).

2.3.1. Latest advancements
Many Transformer-based LMs have been devised since the orig-

inal architecture was proposed by Vaswani et al. (2017). Among
them, the Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2019) and Generative Pre-trained Transformer
(GPT) (Radford et al., 2018) stand as notable examples because of their
widespread use. Both have been revisited with numerous advances,
such as RoBERTa (Liu et al., 2019), GPT-2 and GPT-3 (Brown et al.,
2020; Radford et al., 2019), T5 (Raffel et al., 2020; Xue et al., 2022)
and XLNet (Yang et al., 2019).

Currently, much of research’s attention has been focused on large
LMs (Carlini et al., 2021), which aim to exploit the high-performance
scalability by training very deep networks on massive datasets, with
examples such as GPT-3 (175 billion parameters) (Brown et al., 2020),
GShard (600 billion parameters) (Lepikhin et al., 2021), and Switch-C
(1.6 trillion parameters) (Fedus, Zoph, & Shazeer, 2022). To make a
comparison, the widely studied BERT LM contains 345 million param-
eters in its largest iteration. Indeed, scale has been arguably a bigger
factor than architectural changes in the latest proposals. For an in-depth
overview of the Transformer architecture and contextualized LMs, as
well as a more detailed description of recent advancements, we refer
the reader to Gasparetto et al. (2022).

3. Analysis of ticket automation literature

Automatic TC can be seen as a specific field of application of text
classification (Cunha et al., 2021; Gasparetto et al., 2022; Pistellato,
Cosmo, Bergamasco, Gasparetto, & Albarelli, 2018; Revina, Buza, &
Meister, 2020). The processing of support tickets is made challenging
by the nature of the bodies of text involved: many of these help
requests are very brief, and almost always contain technical jargon
that should be taken into careful consideration (Cristian, Christian, &
Dumitru-Tudor, 2019).

In this section, we provide an overview of Ticket Automation,
describing its most prominent subtasks as well as listing notable and
recent work in this field. We will put particular emphasis on TC, as
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Fig. 2. Overview of common approaches to HTC, exemplified on a two-level hierarchy.
our research reveals it to be the most common automation proce-
dure in practice. At the end of this section, we also provide a list
of datasets often used in this domain’s literature. First, however, we
describe the similarities between TA and HTC, another sub-field of text
classification.

3.1. Relatedness with hierarchical text classification

It is common for ticket categories to have a hierarchical structure;
these levels identify the incident or help request at different degrees of
specificity. In practice, most real-world ticketing scenarios will have
at most a shallow hierarchy of two or three levels (Bhowmik, Paul,
Usha Nandini, & Prince Mary, 2019).

In this context, Hierarchical Text Classification (HTC) methods are a
group of approaches especially devised to be applied to text classifi-
cation environments characterized by a hierarchical label structure. As
such, these methods are indeed applicable to these scenarios, though
most of these approaches are devised for more complex hierarchies, as
well as often being framed as multilabel tasks, which we found to be
less common in TC. Nevertheless, many concepts within HTC literature
are still useful for the purpose of TC, and we introduce here some basic
concepts.

There are multiple generic approaches to HTC, of which Fig. 2
provides a graphical overview. One of the most traditional ways to
tackle the hierarchy is to simply convert the problem to a multiclass
(or multilabel) classification by flattening the hierarchy itself (Koller &
Sahami, 1997). Obviously, the main downside of this approach is the
loss of hierarchical information. An alternative can be to adopt local
approaches which, on the other hand, construct classifiers at different
levels of the label hierarchy. Classifiers might be per parent, per-node,
or per-level (Javed, Shahzad, & Arshad, 2021). While this approach
can integrate hierarchical information successfully, it is possible for
misclassifications to be propagated incorrectly. Furthermore, having
multiple classifiers might not always be convenient. Global approaches
have been proposed as a solution, devising a single model that is usu-
ally built on a flattened classification basis, but modified to integrate
hierarchical information (Kiritchenko, Matwin, Nock, & Famili, 2006;
Labrou & Finin, 1999).

Briefly, these approaches can be summarized as follows:

• Flattened: Unravel the hierarchy and classify on a flat multi-
class/multilabel problem (Fig. 2(a));
4

• Local (binary): Apply a binary classifier on each label node
(Fig. 2(b));

• Local (per-level): Apply a (possibly multiclass) classifier to each
level of the hierarchy (Fig. 2(c));

• Local (per-parent): Apply a (possibly multiclass) classifier to
each parent node. Similar to the per-level approach, but classifiers
are specialized to each subset of children labels rather than the
entire level (Fig. 2(d));

• Global: Apply a single framework that integrates hierarchical
information (Fig. 2(e)).

Combination strategies will be required whenever adopting multiple
classifiers, the simplest approach being that of considering the result
correct only if the result is consistent with the hierarchy (i.e., the labels
and sub-labels form a path within the tree). In Section 4, we will discuss
our approach to TC. Within this categorization, and as will be shown,
our proposal can be seen as a global approach (which, within itself, is
comprised of per-level classifiers).

3.2. Ticket automation tasks

As previously mentioned, multiple automation procedures have
been devised in the context of TA. In many cases, the straightforward
‘‘topical’’ classification of tickets is sufficient to assign tickets to a
specialized group that can deal effectively with the issue. However,
depending on the circumstances and resources available, more nuanced
and refined techniques can also be applied, often solving more complex
tasks. We briefly outline these tasks, though we will focus mostly on
the former approach. Whenever appropriate, we will discuss methods
within these classes if they provide useful insight into our objectives.

First off, TC itself need not be limited to a topical categorization;
some approaches attempt to capture facets other than the topic of
a ticket, most commonly a priority to determine the urgency of the
incident and a type which, in a related fashion, is utilized to determine
its importance (e.g., information request vs incident report) (Beckers,
Frommholz, & Bönning, 2009; Lyubinets, Boiko, & Nicholas, 2018).
Other methods attempt instead to match tickets directly with an in-
dividual expert, rather than groups of experts based on topics (a task
related to expert finding) (Husain, Salim, Alias, Abdelsalam, & Hassan,
2019). While similar, this task is rendered more complex by the neces-
sity of clearly defining the skills of the expert and the ones required
to solve the issue, often also having to consider the availability of the
expert in question. Some approaches seek to find the optimal (minimal)
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Table 1
Common TA frameworks applied to support tickets.

Task Application

Ticket Classification (TC) Categorize tickets in terms of topic, sometimes also type and priority
Expert Finding (EF) Automatically assign the resolving expert to a ticket
Ticket Routing (TR) Direct a ticket through the shortest path in a network of experts
Ticket Resolution (RE) Find an automatic resolution to a ticket, usually based on past solutions
‘‘routing’’ of tickets through the network of experts (Han, Li, & Sun,
2020; Shao, Chen, Tao, Yan, & Anerousis, 2008). While this might
reduce to expert finding whenever only one expert is necessary, this
is not always the case. In a medical scenario, for example, it is often
important to gather a sequence of opinions from different specialists,
therefore requiring a ‘‘path’’ traversing the network of experts. Lastly,
in some cases, it might be possible to match tickets directly with their
resolution without the need for human intervention (Zhou et al., 2017).
There are various approaches to this latter task, the most common being
either retrieval-based (i.e., match most suitable historical solution) or
generative (i.e., generating an entirely new response, learning from
previous ones). Table 1 provides a summary of the different automa-
tion procedures that may be applied in the context of support ticket
resolution.

3.3. Related work

Most research studies in the context of TC propose new methods or
analyze their functioning within a particular domain. There are a few
reviews and surveys that discuss the subject. Revina et al. (2020), for
instance, deal with TC in the IT domain, exploring text representation
techniques, and the performance of various text classifiers. However,
they limit their review to more traditional classification methods, such
as Support Vector Machines (SVMs) and Random Forests. They discuss
the need for explainable TC, as well as which factors are relevant for
prediction quality. Kubiak and Rass (2018) discuss TC as a part of
a larger work on data-driven techniques for IT-Service-Management.
They also discuss its relatedness to hierarchical classification, and
thoroughly discuss performance evaluation methods suitable for hier-
archical approaches. Again, they mostly discuss traditional methods,
such as SVMs, Bayesian models, k-NN methods and Decision Trees.
In Fuchs et al. (2022), a literature review of technologies in the field of
automated support ticket systems is provided. This review in particular
is largely aimed at automated ticket resolution, rather than classifica-
tion. Young et al. (2019) review text classification procedures in the
context of healthcare incident reporting and adverse event analysis.
The authors list a wide selection of methods that have been utilized
in the healthcare environment and discuss how they can be effectively
utilized. The reviewed works mostly consist of traditional classification
methods.

Among TA tasks, expert finding may be considered the most closely
related to TC, depending on the specific situation and the required
ticket routing solution. A generic overview is provided by Husain et al.
(2019), which review work in the period 2010–2019. They describe
the finding of experts for technical support as an early formulation of
expert finding. In Xu and He (2018), trouble ticket routing is framed
as an expert recommendation task that also integrates TR components,
by learning social profiles for the experts in order to suggest other
experts in case the current one is unable to solve the issue. They
devise several two-stage expert recommendation algorithms to deter-
mine appropriate resolvers for a ticket. They also make the interesting
argument that the more standard approach of classifying tickets within
single problem types might be limiting, due to the negative impact
of misclassifications. Lin, Hong, Wang, and Li (2017) review expert
finding methods, focusing on the parts of this task involved in expertise
resource selection (extracting expertise-related data for experts) and
5

expertise modeling (building models on the data to identify experts).
They examine state-of-the-art algorithms for expert identification up
to 2015, by which they rank previously modeled experts based on the
probability of them being an expert on a query topic.

3.4. Recent TA methods

As mentioned, Ticket Automation refers to a set of algorithmic solu-
tions that automatically process support tickets and customer requests.
In this section, we first describe our study selection procedure; then,
we list recent advancements in Tables 2–4. The tables contain a high-
level overview of these methods and the notable contribution it brings
to the literature. Then, in order to later compare it with our proposal,
we analyze in more detail the most relevant works we have found in
the TC field. Because of the large number of works, we apply strict
constraints in determining their relevance; in particular, we require
that an existing code implementation has been made available for a
proposed method, such as to reproduce those models. In the last part
of this section, we showcase public TA datasets, as found referenced in
the reviewed works.

3.4.1. Study selection
We reviewed literature on TA using Google Scholar,3 DBLP,4 Sco-

pus,5 Web of Science,6 and PapersWithCode.7 We focused on research
published from 2018 onwards, but we still included influential earlier
works when we found them to be frequently referenced. The keywords
queried were ‘‘ticket automation’’, ‘‘ticket classification’’, ‘‘support ticket ’’,
‘‘trouble ticket ’’, ‘‘expert finding ’’ and ‘‘ticket routing ’’. We found that
a considerable number of matching results are articles regarding the
application of ML algorithms to real-world ticketing systems, but do
not provide new solutions or interesting research insights. Moreover,
many of these works report the results of relatively few classification
methods, most of which are traditional or otherwise not very recent
or use paid API-based services. As they do not contribute to our goal,
we have excluded them from our search. Much of the work found
matching the keyword ‘‘expert finding’’ relates to applications of recom-
mendation systems or ranking methods (Marcuzzo, Zangari, Albarelli, &
Gasparetto, 2022) as applied to several domains; we limit our selection
to the methods tested on customer-care data. We summarize the results
of our search in Tables 2–4, which contain articles related to TC, EF,
and TR/RE, respectively.

3.4.2. Description of recent methods
In this section, we analyze recent additions to the TA literature.

Table 2 provides a complete list of the works we reviewed, highlighting
a wide range of methods and contributions. Moreover, we describe in
more detail the methods we considered as baseline comparisons for
our proposed methods. These methods were chosen as they provide a
public code implementation, as well as being directly applicable to our
datasets. As we will discuss, we were not able to reproduce all models
selected this way.

3 https://scholar.google.com
4 https://dblp.org
5 https://www.scopus.com/
6 https://www.webofscience.com
7
 https://paperswithcode.com

https://scholar.google.com
https://dblp.org
https://www.scopus.com/
https://www.webofscience.com
https://paperswithcode.com
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Table 2
Ticket Automation literature on the TC sub-task.

Article Methods included Datasets Contribution Code

Beneker and Gips (2017) NMF, k-means – Clustering and topic modeling methods for TC with TF-IDF features ✗

Montgomery, Damian, Bulmer, and Quader (2018) RF, XGBoost – Ticket escalation prediction with oversampling, feature engineering based
on domain knowledge

✗

Xu, Zhang, Zhou, He, and Li (2018) Clustering – Ticket partition and signature-based construction algorithm, problem type
classification

✗

Paramesh et al. (2018) LR, SVM, RF, NB,
k-NN

– Ensemble (voting) classifier, bagging and boosting ✗

Han, Goh, Sun, and Akbari (2018) CRF, SVM – Entity (software product name) extraction and linking for support ticket
routing

✗

Lyubinets et al. (2018) GRU, ATT Chromium,
Linux

Hierarchical Attention model, comparison with traditional classifiers ✓

Wang, Li, Iyengar, Shwartz, and Grabarnik (2018) MAB – TC modeled as a contextual multi-armed bandit problem ✗

Wang, Zeng et al. (2018) MAB – Two novel multi-armed bandit algorithms ✗

Parmar, Biju, Shankar, and Kadiresan (2018) SVM, k-NN, NB, RF – Comparative analysis of five classifiers to label customer issues with
predefined topics

✗

Mandal, Agarwal et al. (2019) SVM, MLP, CNN – Enrichment of ticket text with data from attached images ✗

Cristian et al. (2019) LSTM, Word2Vec – Hierarchical Classification, ticket similarity method, multilinguality ✗

Young et al. (2019) k-NN, DT, NB, LR,
SVM, NN

– Systematic review of classification methods in the context of healthcare
incident reports

✗

Kallis, Di Sorbo, Canfora, and Panichella (2019) FastText GitHub Plugin app to automatically label GitHub issues through FastText, issues
dataset

✓

Pikies and Ali (2019) String Matching – Comparison of string matching and similarity algorithms ✗

Werner, Li, and Damian (2019) k-NN, MLP, LR, RF,
SVM, Ensemble

– Comparison of several algorithms for prediction of ticket escalation based
on the extracted sentiment

✗

Mukunthan and Selvakumar (2019) Multi-level Petri net – Assignment scheme based on Petri Net model ✗

Xu, Mu, and Chen (2020) k-NN – Integration of several similarity measures through data-driven policy ✗

Revina et al. (2020) k-NN, DT, NB, LR,
SVM

– Comparative analysis of text representation techniques (TF-IDF, Word2Vec,
FastText) and classifiers, linguistic feature extraction

n/a

Asres et al. (2021) GB, Word2Vec – Ticket opening prediction using time windows for feature engineering ✗

Perez, Jean, Urtado, and Vauttier (2021) TF-IDF, MLP, SVM,
SGD, RF, RR, kNN

– Binary bug classification, genetic algorithm optimization of MLP
hyperparameters

✓

Yang (2021) SVM, Word2Vec – Fuzzy SVM to handle outliers and noise ✗

Zicari et al. (2021) CNN, MLP Endava Oversampling of imbalanced classes, ensembles ✗

Tolciu, Săcărea, and Matei (2021) LSTM, TSNE – Supervised classification of German tickets, clustering of embeddings to
detect similar classes

✗

Meng et al. (2021) LSTM – Learning character- and word-level representation with bi-LSTM ✗

Ricciardi Celsi et al. (2021) Bayesian Network – Prediction of ticket reopening, comparison of different methods,
development of efficient BN

✗

Gamboa et al. (2022) k-NN AMS, LTI Improve k-NN performance with distance function and determination of a
suitable 𝑘 value

✗

Implemented baselines. DeepTriage’s authors (Mani et al., 2019) pro-
ose a deep bidirectional RNN enhanced with the attention mechanism
or TC. An initial preprocessing step removes stopwords and tokenizes
ext through Stanford’s NLTK package (Bird, 2006). Embeddings for
ach word are then initialized using the Word2Vec algorithm (Mikolov,
hen et al., 2013) and fine-tuned for a few epochs. These word embed-
ings are then passed to a bidirectional LSTM which acts as an encoder,
ffectively performing a language modeling task. The outputs of the
STM layer are aggregated and weighted using the attention mecha-
ism (Bahdanau et al., 2015) to produce the final ticket representations,
hich are then classified using a linear layer with softmax activation.
he Cross-Entropy loss is used during training. The method is validated
n three public bug report datasets, which are extracted from the list
f reported issues on the Chromium and Firefox browsers, as well as
ithin Mozilla Core software components. To construct the dataset, the
uthors only consider fixed bugs, and the target label for each ticket is
he developer ID that has resolved it.

Kallis et al. (2019) propose TicketTagger, a GitHub plugin for the
utomatic assignment of labels to GitHub issues. The tool uses the
astText (Bojanowski et al., 2017) library to assign one of three cate-
6

ories based on the title and description of each issue. The labels, used
by repository maintainers to organize open issues, can be either ‘‘bug
report ’’, ‘‘enhancement ’’, or ‘‘question’’. The FastText classifier extracts
𝑛-grams from documents and learns representations fine-tuned on the
target dataset. It then averages these embeddings and feeds them to a
linear classifier with a softmax output to obtain the final probabilities
for each label (Joulin, Grave, Bojanowski, & Mikolov, 2017).

Lyubinets et al. (2018) describe a hierarchical attention model,
combining hierarchical RNNs with attention blocks. As a preprocessing
step, the dataset is lowercased, cleaned of noisy words and stopwords,
and tokenized using the NLTK package (Bird, 2006). Then, a bidirec-
tional layer with Gated Recurrent Units (GRU) (Cho, van Merriënboer,
Bahdanau, & Bengio, 2014) is used to learn word representations based
on the context of each word in the sentence (this is the word encoder
module). An attention mechanism is used to weigh the contribution
of each word to obtain a latent sentence representation. Subsequently,
another encoder identical to the previous one is used at the sentence
level, and attention is applied to learn overall document embeddings.
Finally, similar to the previous works, they use a linear layer with soft-
max activation for classification (in a multiclass setting). The authors
validate this approach on the Linux Bugs dataset using the ‘‘Priority’’

and ‘‘Product’’ fields, and on the ‘‘Type’’ attribute on the Chromium
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Table 3
Ticket Automation literature on the EF sub-task.

Article Methods included Datasets Contribution Code

Mani et al. (2019) ATT, LSTM Chromium,
Mozilla, Firefox

Bidirectional LSTM with attention, comparison with baselines, new datasets ✓

Husain et al. (2019) n/a n/a Review of main research on applications of EF n/a

Mandal, Malhotra, Agarwal, Ray, and Sridhara
(2019)

MLP, LSTM, CNN,
SVM

– Ensembles of classifiers to assign tickets to a sparse and frequent resolver
groups

✗

Li, Jiang, Sun, and Wang (2019) LSTM, CNN StackExchange Combination of question’s raiser, content and answerer embeddings for EF ✗

Han and Sun (2020) GCN – Combination of graph- and text-matching to score tickets and expert
groups

✗

Agarwal, Bandlamudi, Mandal, Ray, and Sridhara
(2020)

Siamese-LSTM,
SVM, RF

– Siamese LSTM to support classification of tickets with infrequent labels, RF
with Gini impurity for explainable rule mining

✗

Kundu, Pal, and Mandal (2021) Link analysis,
LDA

– Combination of topic, reputation and authority based on QA network ✗

Rostami and Neshati (2021) Probabilistic
model

StackOverflow Intern candidates ranking using community QA data, ensemble method ✗

Ghasemi, Fatourechi, and Momtazi (2021a) Node2Vec,
Word2Vec, MF

StackExchange Usage of social information and document information for EF in
community QA

✗

Ghasemi, Fatourechi, and Momtazi (2021b) Word2Vec,
Node2Vec, MF

StackExchange User embeddings from community QA social graph to improve text-based
EF

✗

Fallahnejad and Beigy (2022) LSTM, ATT StackExchange Learning of semantic relationships between words in answers and experts’
skills

✓

Liu, Tang, Liu, Ding, and Tang (2022) BERT, LDA StackExchange Combination of experts’ topic interests and authority-based model to
improve ranking

✗

Askari, Verberne, and Pasi (2022) BERT LegalCQA Creation of query-dependent user profiles using their answers and the
comments to their answers

✓

Peng et al. (2022) TRAN StackExchange Transformer-based multi-view encoders to learn relation between experts
and answered questions

✓

Table 4
Ticket Automation literature on the RE and TR sub-tasks.

Article Methods included Datasets Contribution Code Task

Zhou et al. (2017) MLP, CNN – Mapping tickets to resolution actions using a quality-model estimation ✗ RE

Han and Sun (2017) n/a n/a Framework for the evaluation of TR and human-assisted algorithms ✗ TR

Madaan, Singh, Kumar, and Dasgupta (2017) Word2Vec – Retrieval of tickets and solutions from noisy hardware tickets with
recall- and precision-oriented classifiers

✗ RE

Xu and He (2018) Network analysis – Combination of expertise profiles and social profiles from tickets
resolution sequences

✗ RE

Xu, He, Zhou, and Li (2018) Network model,
similarity

– Routing models using textual descriptions and historical routing
sequences

✗ TR

Watanabe et al. (2018) HMM – Resolution action suggestion with sentence alignment strategy ✗ RE

Wang, Shwartz, Grabarnik, Nidd, and Hwang
(2019)

CNN, XGBoost, k-NN,
MLP, RF, SVM, DT

– Combination of CNN for feature learning and traditional methods for
classification step

✗ RE

Han et al. (2020) Network analysis – Ranking method for TR, group feature engineering ✗ TR, EF

Ferland, Sun, Fan, Yu, and Yang (2020) LSTM, LDA, k-NN,
Siamese NN

– Ensemble model for ticket resolution using supervised and
unsupervised methods

✗ RE

Ali Zaidi et al. (2022) Similarity, LSTM – Flexible framework for action suggestion, action extraction module ✓ RE

Bannihatti Kumar, Yarramsetty, Sun, and Goel
(2021)

BERT, GPT – Multi-task model for experts support in problem resolution with
multi-task training

✗ RE

Subbarao, Venkatarao, and Suresh (2022) k-means, LDA, NMF – Prediction of incident resolution action using topic modeling ✗ RE

Fuchs et al. (2022) n/a n/a Review of ML applications in Automated Ticketing Systems n/a TR, TC
dataset that was used by DeepTriage’s authors (Mani et al., 2019).
Unfortunately, we were unable to reproduce this framework using the
published code because of dependency issues.

3.5. Datasets used in research

Table 5 showcases datasets utilized in the works we have reviewed
in this manuscript. The table only reports openly available datasets,
describing their size, whether they are multilabel and hierarchical in
nature, the generic automation task as previously defined, and the
7

topical domain that describes its content. It is worth noting that many
works in TA literature apply their methods to proprietary datasets,
which are therefore not available.

4. Proposed approach

In previous sections, we provided an overview of the automatic
support ticket resolution landscape. In this section, we propose a novel
method for the specific task of automated topical classification of
tickets within shallow hierarchies. Our approach is based on pre-trained
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Table 5
Public TA datasets referenced in the reviewed works.

Dataset Reference N. samples Multilabel Hierarchical Task Domain

Financial Sundaramahadevan (2022) 78,313 ✓ ✗ TC Finance
Endava Żak (2018) 48,549 ✓ ✓ TC Helpdesk
IT company Polato (2017) 21,348 ✓ ✓ TC Helpdesk
GitHub Kallis et al. (2019) 30,000 ✗ ✗ TC Issues/bugs
LTI GitHub.com (2020) 48,543 ✗ ✗ TC Helpdesk
AMS Sunil (2020) 12,810 ✗ ✗ TC Helpdesk
Chromium Mani et al. (2019) 383,104 ✗ ✗ EF Issues/bugs
Mozilla Mani et al. (2019) 314,388 ✗ ✗ EF Issues/bugs
Firefox Mani et al. (2019) 162,307 ✗ ✗ EF Issues/bugs
Enron Klimt and Yang (2004) 500,000 ✗ ✗ MC E-mail
StackExchange Stack Exchange Inc. (2022) (77 GB) ✓ ✗ TC, EF (QA) Coding
LegalCQA Askari et al. (2022) 9,897 ✗ ✗ EF (QA) Legal
Linux Lyubinets et al. (2018) 16,456 ✓ ✓ TC Issues/bugs
Bitext Bitext Innovations (2019) 20,000 ✗ ✗ TC Helpdesk
StackOverflow Gharebagh, Rostami, and Neshati (2018) 2,2M ✗ ✗ EF (QA) coding
t
e

l
A
t

Transformer-based LMs, which are currently state-of-the-art in terms
of text representation. In particular, while the LMs are tasked to ex-
tract a semantically meaningful representation, our main addition is a
multi-level framework that exploits hierarchical information contained
within the label structure to perform a more accurate classification.
In addition, we wish to explore various alternatives proposed in the
literature for the creation of unified document embeddings to be used
for the purpose of classification. These experiments were essential to
our investigation, as they allowed for much better results in prac-
tice. Moreover, they provide useful insights into the development of
individual document embeddings in this specific domain.

The following section will introduce our experimental approach. We
first detail the datasets utilized and the baselines implemented. Then,
we discuss multiple strategies to combine word embeddings as derived
from a BERT model. Note that, though our specific approaches utilize
BERT as a basis, they are agnostic to any LM capable of producing
embeddings for words in a document. We conclude the section by
describing our proposed approaches in more detail.

4.1. Datasets used

We evaluated our methods on the Financial (Sundaramahadevan,
2022) and Linux Bugs (Lyubinets et al., 2018) datasets. We utilized the
scraping script provided by Lyubinets et al. (2018) to produce a larger
dataset of bugs, while we derive the Financial dataset from the one
made available on Kaggle.8 General statistics for the datasets can be
found in Table 6, where we also report statistics after the preprocessing
operations described in the next section. A sample of labels organized
in their hierarchical structure is shown in Figs. 3 and 4.

Financial dataset. The Financial dataset contains 78,313 anonymized
customer complaints from a financial company, which are essentially
support tickets, although only 21,071 of these have a valid message
written in natural language. All 9tickets in the dataset have been
annotated by customers and/or helpdesk personnel with a ‘‘Product’’
and a ‘‘Service’’ category. While the original dataset has been used
for topic modeling tasks based on the products/services of the tickets,
we use these labels as the prediction target of our models. We utilize
the product field as the main label (e.g., ‘‘Debt collection’’, ‘‘Mortgage’’,
etc.), and the sub-product field as a sub-label (e.g., ‘‘Credit card debt ’’,
‘‘Checking account ’’, etc.). It is worth noting that the hierarchy of this
dataset is rather weak, and we found the classification task to be hard
in terms of predicting categories. There are multiple labels with similar
or ambiguous meanings; for instance, there are pairs of labels such

8 https://www.kaggle.com/datasets/venkatasubramanian/automatic-
icket-classification
8

as ‘‘Credit card’’ and ‘‘Credit card or prepaid card’’, or even multiple
similar categories such as ‘‘Mortgage’’, ‘‘Mortgage debt ’’, ‘‘FHA mortgage’’,
‘‘Other mortgage’’ and ‘‘Other type of mortgage’’. Clearly, choosing the
correct label would be non-trivial even for a human labeler. Below is
an example extracted from this dataset:

Product (label): Vehicle loan or lease
Sub-product (sub-label): Loan
Description Vehicle was financed on [XXX] and last payment was
[XXX] balance was [XXX]. Chase auto never release the Title of the
vehicle. I called chase Auto finance division in year their answer was
last payment was not clear. I asked them if they sent any written notice
by mail if they did it send that but they never replied back.

The linux bugs dataset. The Linux Bugs dataset contains bugs from the
Linux kernel bug-tracker,9 and was first proposed by Lyubinets et al.
(2018). The one used in this work is an expanded version that we
obtain by further crawling the online bug-tracking portal, and contains
more than double the number of bug reports with respect to the
original version. The support tickets are classified by users in terms
of importance, related product, and specific component. We utilize the
‘‘Product’’ field as the main label (e.g., ‘‘Network’’, ‘‘Drivers’’, etc.), and
he ‘‘Component’’ category as a sub-label (e.g., ‘‘BIOS’’, ‘‘Scheduler ’’,
tc.). Again, below is an example:

Product (label): SCSI Drivers
Component (sub-label): Other
Title: MPT2SAS drops all HDDs when under high I/O
Description: I have this issue that refused to be solved no matter what
I do. My ASRock comes with onboard SAS controller (LSI 2308), since
I recieved it always does this one thing: Drops all HDDs connected
to it. It happens only under heavy IO operations after a few minutes.
I can recreate it easily by running either dd, md5deep or even btrfs
scrub. Kernel locks, can’t even shut it down from console and a quick
ls /dev/disk/by-id shows that all the HDDs connected to the SAS
controller have disappeared. It happens with the stable kernel (3.9 and
3.10.3) and the mainline (3.11-rc2) as of this day. It’s not a hardware
issue, because I installed a Windows Server 2012 on the same machine
with a few HDDs I have laying around and beat the controller to
the ground and it never hanged. So I know it’s a Linux-specific issue.
Dmesg logs before and after the issue are attached. Thank you.

For both datasets, the aim of our classifiers is to predict the flattened
abel, which is obtained by concatenating the label with the sub-label.
s previously mentioned, we refer to this as the T2 task. For example,

he bug report above would be labeled as ‘‘SCSI-Drivers_Other’’.

9 https://bugzilla.kernel.org

https://www.kaggle.com/datasets/venkatasubramanian/automatic-ticket-classification
https://www.kaggle.com/datasets/venkatasubramanian/automatic-ticket-classification
https://bugzilla.kernel.org
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Fig. 3. Example of the hierarchical structure of 3 labels in the Linux Bugs dataset.
Fig. 4. Example of the hierarchical structure of 4 labels in the Financial dataset.
Table 6
Statistics for the datasets utilized in the experiments.

Dataset Version Samples Avg chars Labels Sub-labels Flattened labels

Linux Bugs (Lyubinets et al., 2018) Originala 38,194 2,541 20 177 190
Finalb 35,050 2,536 17 73 85

Financial (Sundaramahadevan, 2022) Original 20,925 1,342 17 67 81
Final 20,576 1,344 13 35 42

aAfter removal of tickets that are unlabeled, missing a message body or duplicated.
bAfter the removal of rarest classes and the preprocessing operations shared across methods.
4.1.1. Preprocessing

We followed a process similar to the one adopted by Mani et al.
(2019) for the initial cleanup of both datasets. This preprocessing
is aimed at removing noise and non-informative bits of text while
9

maintaining sentence structure intact as much as possible. Indeed, this
is necessary for recent, contextualized LMs to be effective (Gasparetto,
Cosmo, Rodola, Bronstein, & Torsello, 2017; Gasparetto et al., 2022).

The raw datasets are filtered by removing duplicates and any entry
where the main body of the ticket is void. Titles and descriptions
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Fig. 5. Tickets processing pipeline used with our BERT-based models.
are concatenated to generate a single content descriptor for tickets
in the case of the Linux dataset (as Financial tickets have no title).
Furthermore, in order to reduce the already severe imbalance within
these datasets, we apply a threshold constraint: labels and sub-labels
with fewer than a certain number of representative tickets are excluded.
The threshold chosen for the comparatively smaller Financial dataset
was 30, while it was 100 for the larger Linux dataset. Bar charts
describing the distribution of all labels are attached in the supplemental
material.

The DeepTriage-inspired (Mani et al., 2019) text sanitization pro-
cedure consists of the removal of URLs, some HEX codes, as well as
a lowercasing of all words. Following the procedure from Lyubinets
et al. (2018), which initially proposed the Linux Bugs dataset, we
also experimented with a more aggressive preprocessing approach to
remove ‘‘garbage’’ text from Linux bug reports, which mainly consists
of the removal of memory addresses. Though the filter works well, we
did not register improvements whenever including this procedure and
therefore decided to exclude it from the finalized pipeline. We also note
that traditional methods showcased an improvement when excluding
stopwords from the list of processed tokens. The effect of our basic
preprocessing can be visualized in the sample ticket below, which is the
same as the one shown in the previous section, annotated with the label
used as target for classification. The size and statistics of the dataset we
used in our experiments are summarized in Table 6 (final version).

Category (flattened label): SCSI-Drivers_Other
Ticket body: mpt2sas drops all hdds when under high i/o i have this
issue that refused to be solved no matter what i do . my asrock comes
with onboard sas controller (lsi 2308) , since i recieved it always does
this one thing : drops all hdds connected to it . it happens only under
heavy io operations after a few minutes . i can recreate it easily by
running either dd , md5deep or even btrfs scrub . kernel locks , can’t
even shut it down from console and a quick ls /dev/disk/by-id shows
that all the hdds connected to the sas controller have disappeared . it
happens with the stable kernel (3.9 and 3.10.3) and the mainline (3.11-
rc2) as of this day . it’s not a hardware issue , because i installed a
windows server 2012 on the same machine with a few hdds i have
laying around and beat the controller to the ground and it never
hanged . so i know it’s a linux-specific issue . dmesg logs before and
after the issue are attached . thank you .

After preprocessing, all models require a tokenization step. In the
case of LMs like BERT, the tokenizer utilized was the one associ-
ated with the original work (i.e., WordPiece for BERT) (Schuster &
Nakajima, 2012). In the case of DeepTriage and traditional meth-
ods, we utilized NLTK’s word_tokenize function (Bird, 2006). In short,
this approach is an improved word-level tokenization based on reg-
ular expressions to split text as in Treebank-3 (Marcus, Santorini,
Marcinkiewicz, & Taylor, 1999). The overall classification pipeline for
our experiments is visualized in Fig. 5.
10
4.2. Baselines

In order to validate our results, we tested a set of baselines drawn
from similar works which have obtained state-of-the-art results on
the specific TC task, as well as some broader state-of-the-art text
classification approaches. We report results for the following:

• SVM (Boser et al., 1992): Similarly to Lyubinets et al. (2018),
we test an approach based on a TF-IDF (Jones, 1972) document
representation, which is then fed to SVM classifiers with linear
kernel. The method utilizes a one-vs-rest approach, creating a
classifier for each node of the hierarchy (similar to Fig. 2, but
only on the flattened representation). The best parameters are
sought through a grid search prioritizing macro 𝐹1, and are then
utilized to retrain the model (test data is never seen during this
procedure). As additional preprocessing, this method removes
stopwords and seeks bi-grams within tokens;

• TicketTagger/FastText (Kallis et al., 2019): We follow the ap-
proach of the authors of TicketTagger, which is a straightforward
application of FastText (Bojanowski et al., 2017). The classifier
itself is quite simple and consists of an MLP optimized to utilize
FastText’s embeddings (Joulin et al., 2017). In our experiments,
we use the ‘‘autotune’’ option provided, extracting a selection
of 20% of the training samples for validation (as with other
methods);

• DeepTriage (Mani et al., 2019): The main architecture is based
on a Deep Bidirectional Recurrent Neural Network (DBRNN-A),
enriched with the attention mechanism and LSTM units. Text rep-
resentation is achieved by creating fresh Word2Vec embeddings,
first trained and then fine-tuned on the recurrent architecture.
In their work, the authors build their model in the context of
predicting a developer available and able to resolve the bug,
therefore resembling EF more closely. Nonetheless, as an (ex-
treme) multiclass method developed in the same context, we
applied it to our setting.

• BERT (flattened) (Devlin et al., 2019): This is a straightforward
application of the BERT LM for sequence classification, which is
based on the attachment of a classifier head on top of the LM. The
classifier head is a single feed-forward layer, and the entire model
is trained to predict the flattened, second-level labels. This is the
standard approach to classification with BERT. We experimented
with various document embedding summarization strategies, as
discussed before;

• XLNet (flattened) (Yang et al., 2019): The approach is the same
as with BERT. XLNet is an autoregressive model, more akin to
traditional LMs, but devises a clever pre-training approach based
on word token permutations in order to introduce bidirectional
information (i.e., both left and right context). We experimented
with a few document embedding summarization strategies (see
Appendix A), but only displayed the results of the best-performing
one in the main body of this article (which utilizes the last token
as a representative).
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Table 7
Summarization strategies for document embeddings.

Basis Strategy Emb. size Description

cls
last

𝑑
[CLS] token embedding from last layer (default strategy)

avgℎ Average of the [CLS] token embeddings from the last ℎ layers
concatℎ 𝑑 ∗ ℎ Concatenation of the [CLS] token embeddings from the last ℎ layers

avg
last

𝑑
Average of all token embeddingsa from the last layer

avgℎ Average of the average of token embeddings from the last ℎ layers
concatℎ 𝑑 ∗ ℎ Concatenation of the average of token embeddings from the last ℎ layers

max
last

𝑑
Column-wise maximum of all token embeddingsa from the last layer

avgℎ Average of the max of token embeddings from the last ℎ layers
concatℎ 𝑑 ∗ ℎ Concatenation of the max of token embeddings from the last ℎ layers

max_min last
𝑑 ∗ 2

Concatenation of the max and min of embeddings from the last layer
avgℎ As above, but averaging vectors from the last ℎ layers

max_avg last
𝑑 ∗ 2

Concatenation of the max and average of embeddings from the last layer
avgℎ As above, but averaging vectors from the last ℎ layers

sum_sum_norm last 𝑑 Sum of token embeddings divided by the sum of the norm of embeddings
concatℎ 𝑑 ∗ ℎ Like last but concatenating the last ℎ layers

sum_norm last 𝑑 Sum of token embeddings divided by its norm (i.e., normalized sum)
concatℎ 𝑑 ∗ ℎ Like last but concatenating the last ℎ layers

aExcluding special symbols (e.g. [CLS] and padding).
.2.1. Other methods considered
In addition to the ones reported, we also tested a number of other

pproaches. The results are not listed because the methods either
btained unsatisfying performances or we were not able to reproduce
he same results as reported in the original work. Other traditional ap-
roaches such as Naive Bayes (Xu et al., 2017) and Random Forests (Ho,
995) resulted in below-average performances. We were unable to run
he code published by Lyubinets et al. (2018), and thus unable to verify
heir proposed method.

.3. Document embedding summarization strategies

Before a body of text can be embedded in any way, it must first be
plit into atomic units (words or parts thereof); this task is performed
y specialized modules called tokenizers. In the case of BERT models,
okenization is based on the WordPiece algorithm (Devlin et al., 2019;
chuster & Nakajima, 2012). Without going into detail, this is a sub-
ord tokenization strategy, which has been trained on a vast corpus of
ocuments to extract an efficient (in terms of vocabulary size) subset
f tokens. These algorithms operate on the assumption that common
ords should be kept in the vocabulary as-is, while rare words should
e split, in order for a more significant representation of its composing
egments to be learned.

A trained tokenizer truncates each input document to a certain
hreshold of maximum tokens as determined by the specific model, also
adding any shorter sequences to the same length (in this case, 512).
he BERT tokenizer additionally pre-pends to each input sequence a
pecial symbol, the [CLS] token, which is expected to predict the
arget binary label of the Next Sentence Prediction task (NSP) during
re-training (Devlin et al., 2019).

Tokenized text is presented as a sequence of ids, each one mapping
o a word (or special symbol) in the BERT vocabulary — which is com-
osed of about 30,500 English words and symbols in the HuggingFace
odel we adopted.10 In its smallest version (BERT-base), BERT consists

f twelve stacked encoder blocks, each one producing contextualized
mbeddings for input tokens, including the [CLS] token. Being pre-
rained to capture sequence-wise information for a binary classification
ask, the [CLS] representation of the last layer is considered a good
andidate to be used in a general classification task.

This was the strategy adopted by the authors of the BERT archi-
ecture, which also tested the model in a multiclass setting. In their

10 https://huggingface.co/bert-base-uncased
11
work, the [CLS] embedding is passed through the NSP prediction head
and to a final linear layer with softmax activation (Devlin et al., 2019).
This strategy has been widely accepted as the ‘‘default’’ way to adapt
BERT-like models to downstream classification tasks. However, some
researchers suggest that other strategies may be preferred. Tanaka,
Shinnou, Cao, Bai, and Ma (2019) test several strategies to enrich
BERT embeddings with a BoW feature vector, as well as averaging
together word embeddings in the last and second-to-last layers; they
report considerable improvements in classification over the default
strategy. Similarly, Reimers and Gurevych (2019) also argue that the
[CLS] embedding makes for a sub-optimal sentence representation,
and propose SentenceBERT for the generation of sentence embeddings.
Moreover, some researchers have suggested that the different encoder
layers within the architecture can become ‘‘specialized’’ in the extrac-
tion of particular linguistic features, like syntactic and semantic ones,
hence potentially providing additional information for classification (de
Vries, van Cranenburgh, & Nissim, 2020; Jawahar, Sagot, & Seddah,
2019).

In this work, we test several strategies to obtain document embed-
dings from word embeddings and compare them with the standard
approach using the [CLS] token. The tested strategies are described in
detail in Table 7. Most of them are inspired by experiments in previous
work (Miraj & Aono, 2021; Tanaka et al., 2019). On the other hand,
the sum_sum_norm and sum_norm strategies were devised following the
intuition that embeddings could be considered oriented vectors in a
high dimensional space, and that the meaning of a document could be
approximated by summing these vectors and normalizing the sum in
different ways. Our findings will be outlined in Section 5.

4.4. Multi-level models

TC datasets most commonly contain several labels organized in a
hierarchical structure. For instance, the two ticket datasets used in
this work are labeled with two levels of categories: a macro category,
and a secondary, more fine-grained topic indicator. These datasets are
derived from a real-world ticketing system and bug report repository
respectively; thus, they provide a good indication of common structures
within these environments.

In the following paragraphs, we will describe how the categorization
of documents in this two-level hierarchical setting can be improved
by combining models that work on different levels. All models use
pre-trained LMs (in this case, BERT) to extract features from each doc-
ument’s text. Classification is achieved by adding a single linear layer

with softmax activation and fine-tuning the model, a widely utilized

https://huggingface.co/bert-base-uncased
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Fig. 6. Two-level classification models.
approach (Devlin et al., 2019; Gasparetto et al., 2022). Unless specified
otherwise, we assume that BERT embeddings are also trainable during
the fine-tuning procedure — again, as it is standard in these cases.

As a first step, we define two multiclass classification objectives with
their respective set of target classes:

1. T1: prediction of first-level target class (i.e., the macro-label);
2. T2: prediction of second-level target class (i.e., the sub-label).

Note that, to avoid redundancy in T2, we flatten the tree of categories
to obtain the final sub-labels. Through this process, any duplicate
pair of sub-labels is transformed into two separate classes (e.g., if two
labels both have the ‘‘other ’’ sub-label). Notably, if all sets of sub-labels
are already disjoint, this procedure does not increase the number of
sub-labels.

We experiment with three multi-level classifier frameworks:

• The first one combines two classifiers that were previously trained
on T1 and T2, respectively (ML-LM);

• The second one is trained on T2 and is supported by a classifier
pre-trained on T1 (SupportedLM);

• The third classifier is similar in spirit to the first one but is trained
end-to-end on both tasks with a single LM (DoubleHeadLM).

4.4.1. Multi-level language model
The first Multi-Level LM, which we call ML-LM, is shown in Fig. 6(a).

It utilizes two LMs. The first one is trained to predict the first level of
labels (T1), while the second one is trained to predict second-level tar-
get classes (T2). Again, task T2 operates on a flattened representation
to avoid sub-label duplicates.

After the models have been trained disjointly on the separate tasks,
their respective weights are frozen. In ML-LM, the document em-
beddings obtained by these models (using one of the summarization
strategies of Table 7) are concatenated together and fed to a linear
layer, which is then trained on T2. To reiterate, at this point only the
parameters of the classification head are learnable, meaning computa-
tional costs are much more affordable. Note that the classifier outputs
from both base models are discarded since we are interested in the
pre-classification embeddings only.

4.4.2. Supported language model
The SupportedLM approach utilizes a LM previously fine-tuned

on T1 as ‘‘support’’ to a secondary LM, which has not yet been fine-
tuned. The second model is trained on the T2 task as before, but with
additional information derived from the support model. The document
embeddings from the two models are concatenated before the final
classification layer. In this case, this step effectively adds extracted
features from the first-level label, giving the second model a chance to
12
rectify its prediction on T2 based on the feedback from the first model.
The architecture of the model is showcased in Fig. 6(b).

4.4.3. Double-head language model
In the DoubleHeadLM approach, a single LM is used to produce

document embeddings that are fed to two intermediate linear classi-
fiers, one for each task. The two outputs of this prediction step are then
concatenated and fed to a final linear classifier trained on the second
task. The whole model is trained end-to-end, with three loss objectives,
one for each classifier. The goal of this approach is to enforce a
regularization effect on the produced embeddings so that they better
reflect all the information needed to predict both levels of labels. The
final classifier combines the predictions of the intermediate classifiers
to predict the correct labels. Fig. 6(c) showcases the architecture of this
model.

5. Experimental results

In this section, we showcase the results of our models. After dis-
cussing our performance metrics, we illustrate our results. A thorough
discussion of our findings and implications are provided in Section 6.

Experiments are run on a machine with an Intel i9-9900K CPU,
an Nvidia GeForce RTX 2080 Ti GPU and 64gb of RAM, with CUDA
10.1 and Python 3.10 used at runtime. The SVM algorithm is based
on Scikit-learn’s (Pedregosa et al., 2011) linearSVC implementation,
while DeepTriage is developed in Keras (Chollet et al., 2015). All con-
textualized language models (including BERT, XLNet and their custom
variations) are developed in PyTorch 1.11 (Paszke et al., 2019).

5.1. Metrics

In order to benchmark the presented methods, we utilize standard
classification metrics, i.e., accuracy, precision, recall, and 𝐹1-score. As
we are performing a typical supervised task, we can consider the truth-
fulness of the predictions against the ground truth from the datasets. In
binary classification, the two classes are denoted as positive (P) and
negative (N), in which the former expresses a correct prediction. The
accuracy metric is expressed as the ratio of correct predictions, both
true positives (TP) and negatives (TN), with respect to the total number
of predictions, as follows:

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Other metrics (precision and recall) have a larger focus on the im-
pact of false predictions. Precision measures the proportion of positive
predictions which were truly positive (i.e., correctness), while recall
measures the proportion of overall positives captured by the model (i.e.,
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Table 8
Test set resultsa with BERT classifier on T2 comparing summarization strategies on the Linux Bugs dataset. Best results are
outlined in bold.

Basis Strategy Acc F𝟏 Prec Rec

cls

last (p)b 0.518 [± 0.006] 0.354 [± 0.009] 0.386 [± 0.009] 0.365 [± 0.006]
last 0.566 [± 0.012] 0.446 [± 0.018] 0.479 [± 0.027] 0.452 [± 0.017]
avg2 0.531 [± 0.010] 0.393 [± 0.012] 0.420 [± 0.018] 0.398 [± 0.012]
concat2 0.535 [± 0.010] 0.400 [± 0.014] 0.426 [± 0.015] 0.401 [± 0.012]
concat3 0.571 [± 0.008] 0.456 [± 0.013] 0.498 [± 0.013] 0.458 [± 0.015]
concat4 0.568 [± 0.009] 0.457 [± 0.014] 0.490 [± 0.013] 0.458 [± 0.017]
concat5 0.565 [± 0.012] 0.456 [± 0.013] 0.486 [± 0.011] 0.458 [± 0.018]
concat6 0.560 [± 0.011] 0.453 [± 0.015] 0.486 [± 0.013] 0.453 [± 0.017]
concat10 0.562 [± 0.008] 0.455 [± 0.014] 0.485 [± 0.015] 0.457 [± 0.016]

avg
last 0.525 [± 0.008] 0.387 [± 0.010] 0.420 [± 0.015] 0.388 [± 0.010]
avg2 0.522 [± 0.005] 0.383 [± 0.013] 0.409 [± 0.021] 0.387 [± 0.010]
concat2 0.523 [± 0.007] 0.390 [± 0.009] 0.411 [± 0.015] 0.394 [± 0.011]

max
last 0.522 [± 0.011] 0.385 [± 0.014] 0.415 [± 0.011] 0.391 [± 0.014]
avg2 0.519 [± 0.007] 0.375 [± 0.013] 0.395 [± 0.021] 0.387 [± 0.014]
concat2 0.518 [± 0.006] 0.373 [± 0.015] 0.401 [± 0.021] 0.383 [± 0.012]

max_min last 0.522 [± 0.010] 0.377 [± 0.011] 0.395 [± 0.019] 0.395 [± 0.010]
avg2 0.522 [± 0.009] 0.374 [± 0.010] 0.395 [± 0.019] 0.385 [± 0.011]

max_avg last 0.516 [± 0.007] 0.381 [± 0.012] 0.406 [± 0.017] 0.390 [± 0.012]
avg2 0.519 [± 0.006] 0.379 [± 0.007] 0.402 [± 0.011] 0.392 [± 0.007]

sum_sum_norm last 0.278 [± 0.018] 0.070 [± 0.006] 0.076 [± 0.006] 0.087 [± 0.007]
concat2 0.252 [± 0.032] 0.050 [± 0.007] 0.046 [± 0.007] 0.071 [± 0.008]

sum_norm
last 0.406 [± 0.018] 0.171 [± 0.017] 0.192 [± 0.023] 0.206 [± 0.016]
concat2 0.379 [± 0.013] 0.135 [± 0.019] 0.149 [± 0.022] 0.179 [± 0.021]
concat5 0.388 [± 0.015] 0.135 [± 0.015] 0.149 [± 0.015] 0.180 [± 0.014]

aThe standard deviation over the 6 runs is reported in brackets.
bPooled, as in the standard approach for BERT classification (i.e. cls pooled).
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completeness). Finally, the 𝐹 -score is a combination of precision and
recall. In particular, the most commonly utilized version of this metric
is the 𝐹1-score, which combines these values by taking their harmonic
mean:

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹1-score = 2 ⋅ Precision ⋅ Recall
Precision + Recall

In the case of multiclass problems (such as the ones examined in
his work), the metrics above can be applied separately to each class
nd averaged. In this work, we utilize macro averaging, meaning that

all classes contribute to the average in the same manner (i.e., without
weighing for class imbalance).

5.2. Results

This section contains the results of our experiments. We compute
metric values using two repetitions of 3-fold cross-validation: in every
run 33% of data is used as test set, and the remaining part is used
for training. We select this specific number of folds to reduce the time
needed to train and test all models, since the procedure is repeated
twice for each one. This allows us to account for the variability of
results and still contain the overall training time. Splits generated
for testing or validation are sampled using stratification, to ensure
that labeled documents are selected in the same proportion as they
appear in the whole dataset. All results reported in this section are
obtained by averaging the measured metrics over all six runs. Before
testing, we used 20% of the training split as validation set to select the
models’ hyper-parameters. More details on the validation procedures
are provided in the supplemental material for this work.

5.2.1. Document embedding summarization strategies results
Table 8 lists results obtained by training BERT-based classifiers

on the T2 task with different document embedding summarization
strategies. Again, before measuring performance on the test split, we
used 20% of the training set to determine the optimal values for the
13

following hyperparameters: w
• Number of fine-tuning epochs;
• Learning rate (choosing between 5𝑒−6, 1𝑒−5, 2𝑒−5, 5𝑒−5);
• Whether to apply stronger preprocessing procedures;
• Whether to train the model with weighted cross-entropy.

The learning rate values experimented with were inspired by the
nes used in the original BERT paper, scaling them to suit our re-
uced training batch size. We apply the same preprocessing used in
eepTriage (Mani et al., 2019), and we verify whether the additional
leaning operations proposed by Lyubinets et al. (2018) are beneficial.
e additionally try an approach that weighs each class’s contribution

o the cross-entropy value according to their support, so that less
ccurring classes contribute the most. Finally, to select the best number
f epochs, we train using early stopping based on the loss value, with
atience set to 2 epochs (as fine-tuning procedures usually run for
ery few epochs). We test all the combinations of the above-mentioned
arameters on the validation set using a 3-fold CV. We validate using
oth the cls last and avg last strategies (among the ones listed in
able 7).

In both cases, the best results were achieved by training for no more
han 3 epochs, with the learning rate set to 2𝑒−5, unweighted loss, and
o additional preprocessing. Therefore, we used these settings for all
ests reported in Table 8. As the cls concat2 strategy was the best among
trategies that utilized multiple hidden layers, we further tested this
trategy for varying values of ℎ. As it turns out, the cls concat3 strategy
utperforms the previous one.

.2.2. Multi-level models results
We present in Table 9 results obtained with the multi-level clas-

ifiers. We test these configurations using the ‘‘bert-base-uncased’’
odel (Devlin et al., 2019) available on HuggingFace (Wolf et al.,
020). Models are tested using only the best-performing averaging
trategy, based on the results presented in the previous section.

As with the previous tests, we use the unweighted cross-entropy loss
nd make no additional preprocessing. The base LMs and respective
lassifiers utilized in the first and second architecture are first trained

ith the same hyperparameters chosen for the T2 task. When specified,
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Table 9
Test set resultsa with multi-level classifiers on T2 with cls concat3 averaging strategy. Best results are outlined
in bold.

Model Acc F𝟏 Prec Rec

Linux Bugs

ML-BERT 0.602 [± 0.010] 0.500 [± 0.014] 0.518 [± 0.012] 0.501 [± 0.013]
SupportedBERT 0.611 [± 0.007] 0.485 [± 0.013] 0.525 [± 0.010] 0.487 [± 0.014]
DoubleHeadBERT 0.549 [± 0.008] 0.400 [± 0.013] 0.442 [± 0.010] 0.410 [± 0.014]

Financial

ML-BERT 0.633 [± 0.029] 0.267 [± 0.020] 0.311 [± 0.027] 0.268 [± 0.019]
SupportedBERT 0.649 [± 0.021] 0.249 [± 0.010] 0.303 [± 0.019] 0.251 [± 0.010]
DoubleHeadBERT 0.576 [± 0.011] 0.184 [± 0.009] 0.221 [± 0.023] 0.193 [± 0.010]

aThe standard deviation over the 6 runs is reported in brackets.
Fig. 7. Visual comparison of the accuracy and macro F1 score of various approaches to document embedding summarization on the Linux Bugs dataset. Abbreviations: l = last, a
= average, c = concat, s = sum.
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the LMs then have their weights frozen for the remainder of the training
process. To reiterate, these are LM1 and LM2 in the first architecture,

hile this applies only to LM1 in the second architecture (Fig. 6). We
erform a separate hyperparameter tuning for learning rate and number
f epochs for the final classifier of these architectures (i.e., the bottom
LF T2 in the figures), testing them as before on the validation set and
tilizing a 3-fold CV. During tests the models are trained for 2 epochs
ith learning rate set to 2𝑒−5 for SupportedLM and DoubleHeadLM
nd 2𝑒−4 for ML-LM.

.2.3. Baselines results
We report in Table 10 the results obtained using the baselines

utlined before. We perform a hyperparameter search for all neural
odels to select the best learning rate. For FastText, we report test

esults after performing the auto-tune procedure for 25 min on 20%
f the training set. Before testing, the model is retrained on the entire
raining set with the best hyperparameters. XLNet is validated on the
ame learning rates used for BERT, and we use the same early-stopping
trategy to select the number of epochs. We used the loss value as the
arget score in validation with neural networks, and we use the F1-
core for the other baselines. Other details on our parameter validation
xperiments are detailed in the supplemental material we provide. We
lso tested a set of averaging strategies for XLNet, which are reported
14

n Appendix A. The default strategy suggested by the authors, which i
tilizes the last token as document representation, provides the best
esults and is the one reported in this section.

. Discussion

We summarize in Fig. 9 the results of both baseline methods as well
s our proposed approaches. The results demonstrate that our proposed
ethods can be quite a bit more effective than baselines trained on

he ‘‘flattened’’ version of the datasets. We observed an improvement
n the Linux Bugs dataset especially, and on the Financial dataset as
ell (though to a lesser extent), despite the latter not being strictly
ierarchically labeled. Our findings confirm that models trained on the
2 task can benefit from the integration of information from a model
pecialized in the T1 task.

.1. Our models

On the Linux Bugs dataset, our experiments show that ML-BERT
nd SupportedBERT respectively achieve 9.7% and 6.4% of F1-score
mprovement over the flattened classifier with the best averaging strat-
gy. The improvements in terms of accuracy instead amount to 5.4%
ML-BERT) and 7.0% (SupportedBERT). The results on the Financial
ataset follow a similar trend; the two models achieve 11.3% and 3.8%
mprovement in F -score over the flattened classifier, while accuracy
1
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F

Fig. 8. Test set results on the Linux Bugs dataset, utilizing BERT fine-tuned with a linear classifier. The graph represents the change in accuracy (left) and macro F1 (right) scores
with the number of hidden layers concatenated for the cls_concat strategy. In this case, 1 stands for the raw [CLS] token (not pooled). The ‘‘x’’ marks represent the upper and
lower bound given by standard deviation.
Fig. 9. Visual comparison between the tested methods in test set accuracy (left) and macro F1 (right) for the Linux Bugs and Financial dataset. Abbreviations: DeepT = DeepTriage,
T = FastText, ML-LM/Supp/DoubleH = our proposed strategies. As before, BERT and XLNet refer to the standard usage of those models with a single-layer classifier head.
Table 10
Test set resultsa on baseline algorithms. Best results are outlined in bold.

Model Acc F𝟏 Prec Rec

Linux Bugs

DeepTriage 0.516 [± 0.004] 0.447 [± 0.006] 0.493 [± 0.007] 0.432 [± 0.006]
SVM 0.551 [± 0.004] 0.473 [± 0.006] 0.552 [± 0.013] 0.459 [± 0.006]
FastText 0.433 [± 0.003] 0.291 [± 0.003] 0.381 [± 0.014] 0.281 [± 0.002]
XLNet 0.556 [± 0.006] 0.453 [± 0.006] 0.480 [± 0.009] 0.453 [± 0.001]
BERT (cls pooled) 0.518 [± 0.006] 0.354 [± 0.009] 0.386 [± 0.009] 0.365 [± 0.006]
BERT (cls concat3) 0.571 [± 0.008] 0.456 [± 0.013] 0.498 [± 0.013] 0.458 [± 0.015]

Financial

DeepTriage 0.494 [± 0.027] 0.203 [± 0.011] 0.262 [± 0.023] 0.194[± 0.013]
SVM 0.528 [± 0.010] 0.254 [± 0.010] 0.364 [± 0.019] 0.227 [± 0.007]
FastText 0.542 [± 0.006] 0.157 [± 0.022] 0.202 [± 0.028] 0.153 [± 0.019]
XLNet 0.592 [± 0.021] 0.261 [± 0.030] 0.317 [± 0.030] 0.258 [± 0.038]
BERT (cls pooled) 0.591 [± 0.004] 0.237 [± 0.011] 0.264 [± 0.021] 0.240 [± 0.012]
BERT (cls concat3) 0.595 [± 0.009] 0.240 [± 0.007] 0.290 [± 0.032] 0.242 [± 0.009]

aThe standard deviation over the 6 runs is reported in brackets.
15
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score improves by 6.4% and 9.1%, respectively. Overall, ML-BERT and
upportedBERT achieve the highest F1 and accuracy scores among
ll baselines, with a slight tendency by ML-BERT towards higher F1
nd, conversely, by SupportedBERT to favor accuracy.

The best baseline method in terms of accuracy is the cls_concat3
lattened classifier. In terms of F1-score, the SVM classifiers are the
est on the Linux Bugs datasets, while XLNet is the best on the Fi-
ancial dataset. Still, ML-BERT outperforms them by 5.7% and 2.3%,
n each dataset respectively. A notable exception can be seen in the
erformance of XLNet on the Financial dataset. When gauged against
1-score, XLNet performs better than both the cls_concat3 classifier and
upportedBERT, and only 2.2% worse than ML-BERT. The non-strict
ierarchical structure of the Financial dataset most likely affects the
erformance of our framework, which targets the dependency among
abels directly.

The performance of DoubleHeadBERT is overall lackluster. In
his regard, we can assume that the embeddings contain the most
seful information classification-wise. Our experiments suggest that
ombining the classification output (i.e., the logits) of two separate
lassifiers does not provide enough semantic information for a third
lassifier to make the required adjustments to the prediction.

.2. Baselines

Performance metrics across baselines are quite close; in some cases,
e found that more recent approaches would perform worse than the
VM-based classifier, which instead performed remarkably well on both
atasets. The most crucial advantage that we would expect BERT to
ave over models based on traditional text representations is the ability
o extract more expressive features that can embed both contextual
nd sequential information from the tokens. However, the Linux Bugs
ataset is very noisy, with many grammatical inconsistencies and tech-
ical readings, like stack traces or memory addresses. These likely make
ittle sense for a LM pre-trained on more structured natural language.
n the other hand, the SVM-based approach utilizes BoW features
eighted with TF-IDF; therefore, the classifier only looks at global word

requency without considering any structural information. Indeed, it is
onceivable that the strength of the SVM classifier can be explained
y the lack of particular expressiveness in the structural information of
hese datasets. While the Financial dataset is less cluttered in terms of
echnical jargon, it is still rather noisy, while also being characterized
y many structurally unsound sentences. Still, sentence structure is
ore expressive here, as demonstrated by the stronger performance

f both our baseline LMs and our proposed approaches. Again, as
entioned in Section 4.1, the labeling of this dataset is not ideal for

he task, which explains the poor performances in terms of precision
nd recall.

The FastText classifier obtained worse performances than other
ethods on both datasets. Given the amount of noise in the datasets
e experimented with, it is possible that fine-tuning the embeddings
efore applying them to the classification task may improve the results
f this approach — similar to what we do in our Transformer-based
pproaches.

DeepTriage obtains decent results, though not on par with BERT-
ased models. This was to be expected, as Transformers are capable of
igher semantic and syntactic understanding as compared to recurrent
odels, and therefore create more meaningful representations for the
ocuments. A noteworthy disadvantage of DeepTriage is indeed its
ecurrent nature; the computational expensiveness for training becomes
uickly unmanageable when attempting to process longer sequences.
hile the original authors limit sentence length to 30 tokens, our

reliminary tests showcased major improvements when allowing for
onger sentences in the model, leading us to increase this threshold to
00 in our tests. The results are still noteworthy, as they are rather
lose to the best-performing flattened classifier (more so in terms of
16

1-score). t
In terms of framework, the approach based on XLNet is quite similar
o the standard BERT approach. In our experiments, it was only tested
n the flattened dataset, but it can be adapted for use with the proposed
ulti-Layer architectures. However, XLNet is not pre-trained on a NSP

ask like BERT, and has no [CLS] token ready for classification;
herefore, one of the summarization strategies outlined in Appendix A
hould be used. In general, we observe that XLNet performs better
han BERT with the cls pooled strategy, and its metrics are very similar
o the one obtained with BERT’s cls last method. XLNet likely suffers
rom the same issues that BERT has on these datasets, i.e., is hindered
y technical jargon and very concise sentence formulation. Still, as
entioned before, the model manages to beat our SupportedBERT

pproach on the Financial dataset in terms of 𝐹1-score, and is rather
lose to ML-BERT. As the hierarchical structure of this dataset is
ather weak, this likely showcases that a better understanding of the
ocuments (i.e., better document embeddings) is more important than
ntegrating the already inconsistent structure of the labels.

.3. Document embedding summarization strategies

The choice of document embedding summarization strategy has
considerable impact on classification performance, a fact that is

onfirmed by our tests on the Linux Bugs dataset (results in Table 8 and
ig. 7). Using the cls concat3 strategy improves F1-score and accuracy
y 28.8% and 10.2% with respect to the standard classification method,
hich utilizes the [CLS] token after pooling from the last hidden

ayer only. We point out that the ‘‘raw’’ [CLS] token (not pooled) is
uperior to its pooled counterpart on this particular dataset; we have
iscussed the reasons behind the usage of such ‘‘pooled embeddings’’
n Section 4.3. We also observe that both the avg last and avg concat2
trategies improve in precision and recall over the widely used cls
ooled approach, with the latter being the second best strategy for F1-
core. However, in our experience, the avg strategy does not seem to
ork well with an approach based on concatenating the average of
ultiple hidden layers, and therefore only report the result obtained

y concatenating two hidden layers.
The aim of our experiments was to measure the importance of

he summarization strategies for word embeddings. By analyzing com-
ination strategies based on normalized sums, averages, and other
perations, we sought to verify whether we could effectively ‘‘follow
path’’ in the high-dimensional vectorial space to obtain a meaningful

epresentation for a document. In more detail, word embeddings can be
een as points in a 𝑛-dimensional space; sequences of words can then
e interpreted as a path of oriented vectors in the same space. Under
his assumption, averaging embeddings is a reasonable way to obtain a
ingle document vector representing the overall direction of a sequence
f words. However, an average also accounts for the magnitude of word
mbeddings. To reduce its importance and focus on the direction of
ectors, we also normalize the sum of vectors in two different ways.
e obtain worse results, suggesting that the length of vectors should

e considered for a good document representation. We also report
esults using other approaches that have been used in the literature, like
aximum and minimum, even if we find the geometrical interpretation

f these operations to be less theoretically justifiable.
An interesting takeaway of these results is the effectiveness of the

CLS] token as a summarization of the document in BERT models.
oreover, this is true for all (or at least, a majority of) hidden layers of

he model, as demonstrated by the effectiveness of combining multiple
CLS] tokens. Overall, we found the difference in results utilizing dif-

erent summarization strategies to be quite striking. As we mentioned,
ome authors have suggested the ability of different hidden layers to
apture more ‘‘specialized’’ linguistic features (de Vries et al., 2020;
awahar et al., 2019). On these grounds, it is possible to hypothesize
hat providing the information from multiple hidden layers allows the
odel to understand these specialized features better, therefore leading
o better classification. Upon examining Fig. 8, however, we observe a
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Table A.11
Test set resultsa with XLNet classifier on T2 comparing averaging strategies on the Linux Bugs
dataset.

Strategy Acc F𝟏 Prec Rec

last 0.556 [± 0.006] 0.453 [± 0.006] 0.480 [± 0.009] 0.453 [± 0.001]
first 0.383 [± 0.299] 0.299 [± 0.257] 0.313 [± 0.264] 0.304 [± 0.262]
mean 0.558 [± 0.152] 0.456 [± 0.118] 0.488 [± 0.132] 0.455 [± 0.115]
cls_index 0.556 [± 0.236] 0.451 [± 0.199] 0.478 [± 0.205] 0.459 [± 0.206]

aThe standard deviation over the 3 runs is reported in brackets.
p
T
w
o
c
u
p
o
a
s
p
B
h
r

C

D
i
–
S
P
r
V

D

c
i

D

A

i
p
u
f
d

a
n
2
m

eculiar trend in performance, with the addition of more layers failing
o provide a steady improvement. This could be attributed to (a) the
act that later hidden layers represent more useful features, or (b) that
oncatenation (as well as our other tested strategies) is not the ideal
pproach in combining the information provided by these layers.

.4. Future work

Many of the points discussed in this section lead to fascinating
uestions, many of which we would like to explore in future works.
irst of all, other LMs can be used with the SupportedLM and ML-LM
rchitectures; it would be interesting to verify further the effectiveness
f these frameworks. As an example, ByT5 is a model which feeds
aw bytes directly to the LM, effectively bypassing many issues of
haracter- and word-based models (Xue et al., 2022). As the vocabulary
s based on UTF-8 bytes, this approach is much less affected by OOV
ssues, which are particularly relevant for applications to noisy texts,
ike support tickets. Other pre-trained models could also be tested,
specially those specialized in shorter sequences of text. However,
ecent research seems to suggest that larger, more general LMs trained
n huge corpora perform better in downstream tasks (Gasparetto et al.,
022), regardless of sentence length. In this regard, we would also like
o investigate the performance of larger LMs over both the flattened
nd hierarchical classifiers, such as to determine whether the injection
f hierarchical information can scale up as well.

Another interesting point to expand on is related to the signifi-
ance of hidden layers within contextualized LMs. While many works
lready explore these aspects (Schiavinato, Gasparetto, & Torsello,
015; Tenney et al., 2020), it would be interesting to attempt to
inpoint the significance (or an approximation) of these features in
erms of semantic representation, such as to understand how they can
mprove downstream task performance. Moreover, advanced tools that
llow in-depth analysis of LMs such as the Language Interpretability
ool (Tenney et al., 2020), Errudite (Wu, Ribeiro, Heer, & Weld, 2019),
nd iSEA (Yuan, Vig, & Rajani, 2022) have recently been developed and
ade available, and would allow to perform a meaningful (in terms of
ord and sentence semantics) error analysis of the models.

Finally, we point out that the supervised approach may not be the
ost suitable for real-world applications, since companies may not

now the set of target labels or may want to change it dynamically.
ence, it would be interesting to compare the effectiveness of clustering
ethods in a hierarchical setting such as ours. Document embeddings

ould be generated with several strategies and then clustered in a
esired number of label groups. The best possible assignment between
arget labels and clusters could be sought, and the procedure could be
pplied again within each cluster to match sub-labels.

. Conclusions

In this article we provide an up-to-date view of recent research
n the field of Ticket Automation, categorizing the current literature
epending on the sub-task it aims to solve. Specifically, we identify
our sub-tasks that are commonly applied to support tickets. Then, we
elve into one of these sub-tasks, that of ticket classification, which
ims to assign a topical categorization to tickets in order to speed up
17

heir resolution. We explore the application of contextualized LMs – in o
articular, BERT and XLNet – on two public hierarchical TC datasets.
he first contains bug reports crawled from a notable bug-reporting
ebsite, and has a more meaningful hierarchy to its labels. The sec-
nd is a collection of anonymized customer requests sent to financial
ompanies, where the labels are less well-structured. We explore the
sage of the BERT model for classification with several strategies to
roduce document-level summaries from word embeddings. Our results
n both datasets show that the chosen embedding strategy can have
considerable impact on the reported metrics. As such, the best one

hould be determined using a validation procedure, akin to other hy-
erparameters. Moreover, we test three multi-level classifiers based on
ERT that we use to predict hierarchically-dependent labels, and show
ow two of our proposed model-agnostic frameworks solidly improve
esults over the flattened classifiers.
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ppendix A. Experiments with XLNet

To provide a fair representation of XLNet’s classification capabil-
ties, we tested a number of document representation strategies as
rovided by the HuggingFace (Wolf et al., 2020) library. In partic-
lar, the library provides a SequenceSummary module which allows
or the following summarization strategies (quoted directly from the
ocumentation):

• last – Take the last token hidden state (like XLNet);
• first – Take the first token hidden state (like BERT);
• mean – Take the mean of all tokens hidden states;
• cls_index – Supply a Tensor of classification token position

(GPT/GPT-2).

As referenced, XLNet’s default strategy is to utilize the last token as
summary of the sentence/document (by virtue of its auto-regressive

ature) (Li, Choi, Lee, & Ahn, 2020; Pistellato et al., 2019; Yang et al.,
019). Similarly, in our experiments, we found this strategy to be the
ost stable and consistent. Table A.11 contains the results of our tests
n these summarization strategies. While the embedding averaging
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strategy has slightly better results on average, it has a considerably
higher standard deviation, hence proving to be less reliable. Overall, we
find that only the last strategy performed consistently across different
runs, while results with other strategies fluctuated substantially with
different splits. This seems to agree with the considerations made by XL-
Net’s authors, i.e., that the representation of the last token in a sentence
is the best one to capture the global meaning of a document. The setup
of the experiments is almost identical to the one presented in the main
text, with the only difference being that the cross-validation procedure
is not repeated twice, but rather performed only once (because of time
constraints). The model is left to train for up to 5 epochs with early
stopping (always stopping at the second or third epoch).

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eswa.2023.119984.
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