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Abstract: Linear chain molecules play a central role in polymer physics with innumerable industrial
applications. They are also ubiquitous constituents of living cells. Here, we highlight the similarities
and differences between two distinct ways of viewing a linear chain. We do this, on the one hand,
through the lens of simulations for a standard polymer chain of tethered spheres at low and high
temperatures and, on the other hand, through published experimental data on an important class of
biopolymers, proteins. We present detailed analyses of their local and non-local structures as well
as the maps of their closest contacts. We seek to reconcile the startlingly different behaviors of the
two types of chains based on symmetry considerations.

Keywords: symmetry; geometry; local and non-local structure; contact maps

1. Introduction

Polymer science [1–4], the study of chain molecules, including linear polymers, is a
flourishing subject that has led to life-changing progress in several technologies, including
plastics, textiles, and the design of novel materials. At the same time, linear chain molecules
form the very basis of life, including both the DNA molecule, whose information is trans-
lated into the sequence of amino acids, and proteins, which serve as amazing molecular
machines in living cells. While conventional polymer models with stiffness have proved to
be adequate for describing the relevant physics of the DNA molecule [5–7], the physical
behavior of canonical polymers and proteins is strikingly different. In contrast to DNA, the
structural changes during protein folding occur on multiple length scales at once, making
it difficult to separate the relative contributions of the myriad interactions [8–13].

A linear chain is composed of many interacting monomers that are tethered together
in a railway train topology. If the only interaction is self-avoidance, a single chain is in a coil
phase whose large-scale behavior is in the same class as a self-avoiding walk. Upon adding
an attractive interaction between pairs of non-adjacent monomers, the chain undergoes
compaction into a highly degenerate compact phase at low temperatures [14–44]. While the
notion of phases and phase transitions for a polymeric chain strictly refers to a chain with an
infinite number of monomers, proteins are modest length chains, which yet exhibit several
common characteristics. Notably, the compact state of proteins is modular and made up of
two kinds of secondary building blocks: topologically one-dimensional helices [45] and
two-dimensional sheets made up of zig-zag strands [46]. The helices and the strands are
connected by turns or loops [47–50]. The nature of the ground states of compact polymers
is qualitatively distinct from that of proteins and ordinarily does not exhibit any secondary
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motifs. The common characteristics of proteins are believed to derive from the shared
backbone of distinct amino acid sequences.

Here, we present an analysis of these two distinct classes of behaviors to understand
their similarities and distinctions. We do this in two complementary ways. For conventional
polymers, we study the simplest model of tethered hard spheres of diameter σ and a bond
length equal to the sphere diameter. Following the standard nomenclature, we call this the
tangent sphere model. We impose an attractive interaction between all pairs of non-adjacent
monomers through a square well of range 1.6 σ and depth −1, which sets the energy scale
without loss of generality.

A sphere is isotropic and looks the same when viewed from any direction. There is,
nevertheless, a preferred axis at the location of each main chain sphere corresponding to the
tangent along the chain or the direction along which the chain is oriented at that location.
Replacing the spheres with objects such as unidirectional coins and uniaxial discs, allowing
neighboring spheres to overlap, or adding side chains to the spheres along the main chain
are all steps that break the spherical symmetry and yield ground state structures, which
resemble protein structures to varying degrees [51–61]. To avoid clouding the issue by
studying an approximate model for proteins, we resort instead to a careful analysis of
experimental data of over 4000 protein native state structures (see Section 2). A side-by-side
comparison of the local structures and non-local contacts of proteins to those of the tangent
sphere model at both low and high temperatures provides a vivid picture of the different
views of a chain molecule. Our goal here is to assess how well the tangent sphere model
describes the protein backbone.

2. Materials and Methods
2.1. Our Protein Dataset

Our protein data set consists of 4391 globular protein structures from the Protein Data
Bank (PDB), a subset of Richardsons’ Top 8000 set [62] of high-resolution, quality-filtered
protein chains (resolution < 2Å, 70% PDB homology level) that we further distilled out to
exclude structures with missing backbone atoms, as well as amyloid-like structures (for
the full list of the PDB identifiers of protein structures in our database see Table S1 in the
Supplementary Materials of Refs. [58,63]). The program DSSP (CMBI version 2.0) [64] has
been used to determine the backbone hydrogen bonding pattern and thus place each protein
residue in context within a protein chain: within an α-helix, it is labeled an ‘α-residue’;
within a β-strand, it is labeled a ‘β-residue’; or elsewhere, it is tagged as a ‘loop-residue’.

2.2. Numerical Simulations of a Chain of Tethered Tangent Spheres

To obtain a set of independent equilibrium configurations of a chain of tethered tangent
spheres comprised of n = 80 spherical beads, subject to an attractive potential for a wide
range of temperatures, we have employed standard replica exchange (RE) (or parallel
tempering) canonical simulations [65,66]. Most of our simulations were carried out with a
chain of 80 hard spheres of diameter σ. The model is a tangent sphere model because the
bond length is also constrained to be equal to σ. At any temperature, the spheres do not
self-intersect and are hard. We introduce a generic attractive square-well attraction of range
Ratt = 1.6σ between all pairs of spheres and magnitude ε, which sets the characteristic energy
scale. The attractive interaction causes the chain to become compact at low temperatures.

The RE calculation [65,66] relies on a set of canonical simulations run in parallel at a set
of M carefully chosen different temperatures, Ti, i = 1, 2, . . . M. Each simulation represents
a replica or a system copy in thermal equilibrium. The key advantage is the possibility of
swapping replicas at different temperatures without affecting the equilibrium condition
at each temperature. This permits rapid equilibration even when there is a rugged free
energy landscape. In each Monte Carlo (MC) simulation of one replica, new moves are
accepted with the standard Metropolis acceptance probabilities [67]. We ensure that the
number of swaps that entail the exchange of replicas is large enough to ensure the fidelity
of the statistics. The efficiency of the RE scheme depends on the number of replicas, the
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selected set of temperatures as well as of the swap moves frequency. For best performance,
the acceptance rate of swaps is tuned to be around 20% [68]. The RE simulation results are
conveniently analyzed using the weighted histogram analysis method [69]. We employed
30 replicas with a finer temperature mesh at lower values of the reduced temperatures
(kBT/ε) in the range kBT/ε = 0.3–0.5 with a separation of neighboring temperatures of 0.02.
In the kBT/ε = 0.5–1 interval, the separation of neighboring temperatures was 0.05, and for
kBT/ε = 1–4, the separation interval was 0.2. We allowed for the RE swaps only between
neighboring temperatures. The exchange moves were attempted every 100 MC steps per
monomer. The length of the simulations was 109 MC steps per monomer and per replica.

For sampling chain configurations at infinite temperature, we have used the standard
Metropolis MC algorithm [67], in which all proposed updates of the chain configuration
that respect its self-avoidance are accepted. In both simulation protocols, standard local
moves, including crankshaft, reptation (or slithering-snake) moves, endpoint moves, and
the non-local pivot move [70], are employed with equal probabilities.

The n = 80 beads tangent sphere polymer exhibits two continuous (second order)
‘transitions’ (see inset of Figure 5b). At a temperature kBT/ε ~ 3 (ε denotes the energy
scale of attraction), there is a coil-to-globule transition (signaled by a kink in the specific
heat per bead CV/NkB). This is a finite-size counterpart of the θ-point for this system. At
low temperatures kBT/ε ~ 0.4, there is a second ‘transition’ into a compact globule phase,
signaled by the maxima of the specific heat per bead CV/NkB. The results we will present
for the tangent sphere model are at infinite temperature and kBT/ε = 0.3.

In the next section, we will present some definitions and general observations per-
taining to the local structure of a chain, especially in the continuum limit. We then go
on to the Results Section, (Section 4) which is divided into two parts. First, we depict
some similarities and some critical differences between the polymer model and protein
structures in terms of the power law behavior of certain geometrical measures of local
structure. In the second part, we will highlight some striking differences between the
geometries of the model polymer and protein native state structures. We then conclude
with a brief discussion.

3. General Considerations
Three-Body Interactions and the Self-Avoidance of a Continuum Tube

We will begin our analysis with some definitions and general observations. For fixed
bond length, a local chain conformation is specified by two angles, θ and µ. θ is a measure of
bond bending; a straight conformation has θ = π. The angle between successive binormals,
µ, is the second angular coordinate and is the dihedral or torsional angle [63].

The standard model of a linear chain in polymer science, represented by tethered
spheres, does not lend itself, in a natural manner, to housing helices, which are recurrent
motifs in biomolecules [71–74]. In contrast, a tube, such as a garden hose, which can be
thought of as a chain of discs, can be wound readily into a helix. The protein α-helix has a
geometry akin to that of a tube wound tightly into a space-filling helix [75].

Consider a collection of uniform, untethered hard spheres. The standard prescription
for ensuring that spheres do not overlap is to ensure that the distance between the centers
of every pair of spheres is no smaller than the sphere diameter. Pairwise interactions often
capture the essence of interacting systems. The simplest generalization to a chain topology
is tethered hard spheres (with the same self-avoidance constraint), which, as we have
noted, is the simplest conventional model of polymer physics. In contrast, the alternative
description of a chain as a tube leads to an unusual condition of self-avoidance.

It has been shown that the correct way to determine whether a tube in the continuum
limit is self-avoiding or not entails discarding pairwise interactions and invoking appropri-
ate many-body interactions [75,76]. This is illustrated by considering the self-avoidance of
a tube of non-zero thickness (see Figure 1). Knowledge of the distance between a pair of
points on the tube axis (say A and B or B and D) does not discriminate between the two
contexts of nearby points along the axis or in different parts along a chain. In the continuum
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limit, points A, B, and C, locally positioned along the axis, can become infinitesimally close
to each other. This cannot be the case, however, for non-local points, where self-avoidance is
a prime consideration, and one must ensure that the two points do not approach each other
too closely. Knowledge of the coordinates of a pair of points does not inform you about
the context that the two points are in—are they points locally along the axis (which can of
course be arbitrarily close to each other) or are they non-local points (that may have come
too close to each other possibly signaling an intersection)? This inability to discriminate
between local and non-local pairs of points is at the root of the problem.

Polymers 2024, 16, x FOR PEER REVIEW 4 of 18 
 

 

of every pair of spheres is no smaller than the sphere diameter. Pairwise interactions often 
capture the essence of interacting systems. The simplest generalization to a chain topology 
is tethered hard spheres (with the same self-avoidance constraint), which, as we have 
noted, is the simplest conventional model of polymer physics. In contrast, the alternative 
description of a chain as a tube leads to an unusual condition of self-avoidance.  

It has been shown that the correct way to determine whether a tube in the continuum 
limit is self-avoiding or not entails discarding pairwise interactions and invoking 
appropriate many-body interactions [75,76]. This is illustrated by considering the self-
avoidance of a tube of non-zero thickness (see Figure 1). Knowledge of the distance 
between a pair of points on the tube axis (say A and B or B and D) does not discriminate 
between the two contexts of nearby points along the axis or in different parts along a chain. 
In the continuum limit, points A, B, and C, locally positioned along the axis, can become 
infinitesimally close to each other. This cannot be the case, however, for non-local points, 
where self-avoidance is a prime consideration, and one must ensure that the two points 
do not approach each other too closely. Knowledge of the coordinates of a pair of points 
does not inform you about the context that the two points are in—are they points locally 
along the axis (which can of course be arbitrarily close to each other) or are they non-local 
points (that may have come too close to each other possibly signaling an intersection)? 
This inability to discriminate between local and non-local pairs of points is at the root of 
the problem. 

 
Figure 1. Sketch of the axis of a self-avoiding continuum tube (depicted in blue). The points A, B, 
and C lie alongside each other on the tube axis whereas point D is a nearby point from another part 
of the tube. The three-body prescription is to draw circles through all triplets of points on the tube 
axis and ensure that none of the radii is smaller than the tube radius. For a local triplet of points, 
one obtains the local radius of curvature whereas the non-local radius is a measure of the distance 
of closest approach of two parts of the tube. 

The standard method in polymer physics of ensuring self-avoidance in the 
continuum limit is to first make the tube infinitesimally thin (a natural limiting case for a 
continuum chain of tethered spheres) and then use a singular δ-function potential [77] 
interaction: there is no energy cost as long as two points on the axis do not overlap exactly 
but there is an infinite energy cost when there is in fact an overlap. There are at least three 
problems with this [78]. First, the δ-function potential is singular (unlike say a familiar 
Lennard-Jones potential) and one needs to use renormalization group theory to introduce 
an artificial cut-off length scale to carry out the calculations and then demonstrate that this 
length scale can safely approach zero and yet retain the validity of the results. Second, the 
δ-function pairwise potential does not preserve the topology of a closed string—the 
number of knots is not necessarily conserved. Finally, in standard polymer physics, there 

Figure 1. Sketch of the axis of a self-avoiding continuum tube (depicted in blue). The points A, B,
and C lie alongside each other on the tube axis whereas point D is a nearby point from another part
of the tube. The three-body prescription is to draw circles through all triplets of points on the tube
axis and ensure that none of the radii is smaller than the tube radius. For a local triplet of points,
one obtains the local radius of curvature whereas the non-local radius is a measure of the distance of
closest approach of two parts of the tube.

The standard method in polymer physics of ensuring self-avoidance in the continuum
limit is to first make the tube infinitesimally thin (a natural limiting case for a continuum
chain of tethered spheres) and then use a singular δ-function potential [77] interaction:
there is no energy cost as long as two points on the axis do not overlap exactly but there is
an infinite energy cost when there is in fact an overlap. There are at least three problems
with this [78]. First, the δ-function potential is singular (unlike say a familiar Lennard-Jones
potential) and one needs to use renormalization group theory to introduce an artificial
cut-off length scale to carry out the calculations and then demonstrate that this length scale
can safely approach zero and yet retain the validity of the results. Second, the δ-function
pairwise potential does not preserve the topology of a closed string—the number of knots
is not necessarily conserved. Finally, in standard polymer physics, there is no description
of the self-avoidance of a continuum self-avoiding tube (or surface) of non-zero thickness.

These problems are deftly averted by discarding pairwise interactions and working
with a suitable many-body potential. In the continuum limit, there is a simple geometrical
condition [75] to ascertain both whether a tube (and by extension a surface) is self-avoiding
non-locally and is not too tightly wound locally. One can draw a circle through any triplet
of points along the tube axis and measure the radius. The prescription for self-avoidance
of a continuum tube is to consider all possible triplets, local or otherwise, and ensure that
every one of the three body radii is greater than or equal to the tube radius. The radius
of the circle passing through the triplet of points (A,B,C) in Figure 1 is the local radius of
curvature as the points approach each other and results in a kink in the tube when the
radius of curvature becomes smaller than the tube radius. On the other hand, the radius of
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the circle drawn through (A,B,D) is a measure of the distance of approach of two parts of
the tube and must not be smaller than the tube thickness in order to respect self-avoidance.
Likewise, the self-avoidance of a surface or layer (or a sheet of paper) of non-zero thickness
necessarily entails discarding both pairwise and three-body interactions and working with
a suitable four-body potential. One considers all quartets of points on the symmetry plane
of a surface and draws spheres through each quartet. A surface is self-avoiding if the sphere
radius of each quartet (local or non-local) is larger than the thickness of the surface. We
note that this many-body prescription is strictly needed only in the continuum limit [76].

For a discrete chain, such as the ones we focus on in this paper, the pairwise distance
between a local pair of points is the bond length, and there is no singular behavior at the
local level because of a natural cut-off length scale. Also, a minimum threshold of the
non-local three-body radius can readily be measured by directly accessing the non-local
pairwise distance. We will make use of these simplifications for a discrete chain in our
analysis below. It is important to note that there are myriad local interactions, including
hydrogen bonds, as well as entropic effects that will play a key role in governing the local
behavior of a real chain. Despite the absence of an imperative need to invoke many-body
interactions for a discrete chain, the three-body and four-body radii do yield interesting
information. An infinitely large three-body radius signals co-linearity of the three points
(bond bending angle θ equal to 180◦; θ = 0◦ is excluded because of steric overlap), whereas
an infinite four-body radius is associated with planarity of the quartet of points (µ equal to
0◦, 180◦, or −180◦).

4. Results
4.1. Power Law Scaling

Power laws often signify scale invariance and are a signature of an absence of a char-
acteristic scale [79]. A liquid–vapor system at its critical point exhibits critical opalescence.
The system appears milky white because light of all wavelengths scatter from the droplets
and bubbles of liquid and vapor of all sizes thoroughly interspersed among each other.
Another example of a non-trivial power law is the fractal dimension of a self-avoiding walk
in three dimensions of around 5/3 [2]. Here, we discuss a somewhat trivial but surprising
realization of ‘universal’ power law behavior arising in the statistics of the local conforma-
tion of a discrete chain molecule. We alert the reader that, unlike in critical phenomena,
here, there is neither any many-body emergent behavior nor the need to invoke a system in
the thermodynamic limit.

The procedure that we follow is simple. For a set of three (four) points, one can readily
draw a circle (sphere) passing through them. The center of a circle (sphere) is the point
equally distant from all three (four) points and can be determined as a solution of a suitable
system of linear equations. In the case of three points, the solution is simple, and the radius
of the circle R is related to the area A of the triangle passing through the three points and its
sides a, b, and c: R = abc/4A. For four points, we merely solve the equations on a computer
to obtain the radius R of the sphere.

Our goal here is to measure the radii R associated with many realizations of these
points and obtain cumulative probability distribution functions of the inverse radius
X = 1/R. Figure 2 shows plots of the cumulative distribution function (CDF) of the inverse
radii (X = 1/R) (the probability P (1/r < 1/R) as a function of R that a given radius r is larger
than R). The circles (spheres) in question are drawn through three (four) points (chosen
consecutively along a chain and randomly in some instances) in three dimensions.

We have studied the following: (a) Consecutive triplets (quartets) of Cα atoms along
the backbones of globular proteins when the Ramachandran ω angles characterizing a
consecutive triplet have canonical values of |ω| ~ 180◦. Case (a) occurs in around 99.7%
of the cases in globular proteins yielding the trans isomeric conformation of a peptide
backbone, where the two neighboring Cα atoms are on opposite sides of the peptide bond,
with a bond length approximately equal to 3.81 Å [63]. (b) Consecutive triplets (quartets) of
Cα atoms in globular proteins in which at least one of the two Ramachandran ω angles has
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a rare non-canonical value of |ω|≈ 0◦ that occurs in ~0.3% of cases. This happens when
two neighboring Cα atoms are on the same side of the peptide bond, resulting in a shorter
bond length of around ~2.95 Å [63]. This corresponds to the so-called cis-conformation
of a protein backbone [80]. Cases (a) and (b) are combined for the quartets because they
show very similar behavior. (c) Three (four) points selected from a two-step (three-step)
self-avoiding random walk of a tangent sphere model (hard spheres of diameter 3.81 Å
and bond length 3.81 Å with no other interaction besides the non-overlapping of hard
spheres (polymer at infinite temperature). (d) Three (four) points selected from a two-step
(three-step) self-avoiding random walk of a tangent sphere model (spheres of diameter
3.81 Å and bond length 3.81 Å) subject to an attractive square-well interaction of range
Ratt = 1.6σ ≈ 6Å (polymer at low temperature). (e) Three (four) points chosen randomly
within a three-dimensional sphere of unit radius. (f) Three (four) points selected as points
on a two-step (three-step) random walk (no self-avoidance or steric constraints) in three
dimensions with a fixed bond length of 3.81 Å (corresponding to the distance between
consecutive Cα atoms in proteins [63]).

In the case of triplets (‘3-body’ case) shown in Figure 2a, we see that the last five
systems (cases b–f described in the previous paragraph) exhibit power law behavior with
approximately the same exponent of 2, but the canonical protein triplet does not (‘Proteins
|ω|~180◦’ class in Figure 2a).
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Figure 2. (a) Cumulative probability distributions of the inverse radii X = 1/R of circles drawn
through three consecutive points along different classes of chains: (blue) 965,122 triplets of the
backbones of globular proteins in our data set (defined by Cα atoms) when both the Ramachan-
dran ω angles characterizing a consecutive triplet have canonical values of |ω| ≈ 180◦; (red)
5774 consecutive triplets of Cα atoms in globular proteins in which at least one of the two Ra-
machandran ω angles is|ω| ≈ 0◦; (green) 16,391,622 triplets taken from ≈200,000 low temperature
(kBT/ε = 0.3) configurations, obtained using replica-exchange (RE) simulations, of a chain of 80 tan-
gent spheres of diameter σ with an attractive square well potential of range Ratt = 1.6σ≈ 6 Å; (orange)
25,598,976 triplets obtained from MC simulations at T = ∞; (purple) 143,557,206 triplets of points
chosen uniformly from within a unit sphere in three dimensions; and (black) 100,000,000 two-step
random walks in three dimensions with fixed bond length of 3.81 Å. The gray dashed line has a
slope of 2 and is a guide to the eye. (b) Cumulative probability distributions of the inverse radii
X = 1/R of spheres, whose surface passes through four consecutive points in different classes of chains:
(blue) 957,723 local quartets along the backbones of globular proteins (employing Cα atoms); (green)
16,181,473 local quartets selected from ≈200,000 chain configurations, obtained from RE simulations,
of a chain of 80 tangent spheres of diameter σ subject to an attractive square-well potential of range
Ratt = 1.6σ ≈ 6 Å in the low-temperature phase (kBT/ε = 0.3); (orange) 25,270,784 local quartets
obtained from MC simulations at T = ∞; (purple) 112,754,340 quartets of points chosen uniformly
within a unit sphere in three dimensions; and (black) 100,000,000 three-step random walks in three
dimensions with a fixed bond length of 3.81 Å. The gray dashed line is a guide to the eye and has a
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slope of 1. In all simulations, the bond lengths have been chosen to be 3.81 Å, equal to the mean
value of the distance between the two consecutive Cα atoms along the protein chain. The distinctive
behaviors of the purple curves (corresponding to the random points cases) occur because one
can obtain circles of arbitrarily small radii, a situation precluded in the other cases due to steric
considerations. The behaviors of the tangent polymer model at high and low temperatures are
essentially the same. The local behavior is governed by the same steric constraints in both cases, and
the CDF does not change. In contrast, for real polymers, recent experimental studies [81,82] have
shown the importance of mechanical properties in determining the local curvature in the context of
super-lubricity at the single-molecule level.

For a canonical protein backbone in its trans conformation, quantum chemistry does
not allow the bond bending angle θ to be greater than ≈150◦, thereby preventing too large
a value of R. In contrast, for a non-canonical protein backbone in its cis conformation [80],
two consecutive Cα atoms along the protein chain are much closer to one another, and the
backbone in many of these cases has PRO residues. This stiffens up the protein backbone
with respect to the canonical case, permitting large bond bending angles, θ, that can almost
reach ≈180◦.

The second panel in Figure 2, Figure 2b shows similar ‘universal’ power law behavior
for the CDF in the case of quartets (‘4-body’ case) of the inverse radius (X = 1/R) of a sphere
for various cases, detailed in the caption, this time with an exponent 1. We provide a simple
rationalization of these findings in the next section for a triplet of points.

4.2. Rationalization of the Power-Law Exponent

To illustrate the origin of the power law behavior, we present here a simple derivation
of the probability distribution P(X = 1/R) of the inverse radii of circles drawn through
three points of a two-step d-dimensional random walk with a fixed bond length b, which
provides a natural length scale. We do not present a similar derivation for the radius of
the sphere passing through four points because it is more complex and is best handled
numerically (which is what we have done). The quantity Xb is a dimensionless quantity,
which enters in the derivation below. The input is p(θ), the probability distribution of the
bond bending angle θ. For a d-dimensional random walk, the probability distribution p(θ)
scales as [83],

p(θ) ~ (sin(θ))d−2 (1)

R and θ are related by
R = b/(2 cos (θ/2)) (2)

or equivalently:
X = 1/R = (2 cos (θ/2))/b (3)

Noting that
(X)dX= p(θ)dθ (4)

one obtains
P(X) ~ (Xb)d−2 [1 − (Xb/2)2] (d−3)/2 (5)

One thus obtains asymptotically (when Xb << 1 or in the large radius R limit) a power
law behavior of the probability distribution P(1/R) with an exponent (d − 2) for d > 2
with a power law correction. This means that the cumulative probability distribution
P(1/r < 1/R), being an integral of the probability P(1/R), displays a power law behavior
with an exponent (d − 1) (=2 in three dimensions) with a power law correction. This
correction is relatively small when (Xb)2 is much smaller than 1 and yields good power
law behavior, as observed in Figures 2a and 3a. The pivotal quantity that determines the
asymptotic exponent is the behavior of p(θ) when θ approaches 180◦ and the three points
become co-linear. The difference in behavior in 2 and 3 dimensions is shown in Figure 3b.
The numerical simulations are in good accord with the prediction of Equation (1).
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Figure 3. (a) Cumulative probability distributions of the inverse radii X = 1/R of the circles drawn 
through three points of a two-step random walk with a fixed bond length of 3.81 Å, when the walk 
is performed in two dimensions (red) and in three dimensions (blue). (b) The distribution of the 
bond bending angle θ in the two-step random walk in two dimensions is uniform p(θ) = const. (red 
histogram), while, in three dimensions, p(θ) = sin θ (blue histogram and the green line). (c) 
Cumulative probability distributions of the inverse radii X = 1/R of the spheres drawn through four 
points of a three-step random walk with a fixed bond length of 3.81 Å, when the walk is performed 
in three dimensions (red) and for a constrained random walk. The constraint arises because the first 
three points (first two steps of the random walk) are sampled from a plane (sampling in two 
dimensions—after all, any three points do lie in a plane), while the final step (fourth point) is 
sampled in full three-dimensional space (blue). The constrained random walk corresponds to a 
fractal dimension 2 < d < 3 for the effective sampling of the variables controlling 1/R and reduces the 
steepness of the power law. 

The ‘4-body’ case works in a similar manner to the ‘3-body’ case, except that the 
radius now depends on two independent variables. An unexpected sensitivity of the 
power law exponent to the choice of the 4 points is demonstrated in Figure 3c. Quartets 
derived from a plain 3-step random walk in three dimensions (3D) exhibit power law 
behavior with an exponent of 1 (in accord with the results shown in Figure 2b). We have 
also considered a simple variant of the plain random walk that we call a constrained 
random walk. Here, we define the first two points to lie along the x-axis. We then place 
the third point randomly on a pre-determined x–y plane. Superficially, this may not seem 
to be an onerous constraint because any three points will necessarily lie in a plane. 
Nevertheless, a constrained random walk still shows power law behavior but with a 
distinct exponent, behaving as though it is in a fractal dimension regime. This is because 

Figure 3. (a) Cumulative probability distributions of the inverse radii X = 1/R of the circles drawn
through three points of a two-step random walk with a fixed bond length of 3.81 Å, when the walk
is performed in two dimensions (red) and in three dimensions (blue). (b) The distribution of the
bond bending angle θ in the two-step random walk in two dimensions is uniform p(θ) = const.
(red histogram), while, in three dimensions, p(θ) = sin θ (blue histogram and the green line).
(c) Cumulative probability distributions of the inverse radii X = 1/R of the spheres drawn through
four points of a three-step random walk with a fixed bond length of 3.81 Å, when the walk is per-
formed in three dimensions (red) and for a constrained random walk. The constraint arises because
the first three points (first two steps of the random walk) are sampled from a plane (sampling in
two dimensions—after all, any three points do lie in a plane), while the final step (fourth point)
is sampled in full three-dimensional space (blue). The constrained random walk corresponds to a
fractal dimension 2 < d < 3 for the effective sampling of the variables controlling 1/R and reduces the
steepness of the power law.

The ‘4-body’ case works in a similar manner to the ‘3-body’ case, except that the radius
now depends on two independent variables. An unexpected sensitivity of the power law
exponent to the choice of the 4 points is demonstrated in Figure 3c. Quartets derived from
a plain 3-step random walk in three dimensions (3D) exhibit power law behavior with an
exponent of 1 (in accord with the results shown in Figure 2b). We have also considered a
simple variant of the plain random walk that we call a constrained random walk. Here, we
define the first two points to lie along the x-axis. We then place the third point randomly on
a pre-determined x–y plane. Superficially, this may not seem to be an onerous constraint
because any three points will necessarily lie in a plane. Nevertheless, a constrained random
walk still shows power law behavior but with a distinct exponent, behaving as though it is
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in a fractal dimension regime. This is because the sampling of phase space is now altered
in a relevant manner. We note that this regime may occur when a polymer system happens
to be in the vicinity of a surface or a solid wall.

4.3. Chain Geometries

We begin with an analysis of distinct local chain geometries. We compare the behaviors
of the tangent sphere model at low and high temperatures, on one hand, and that of the
native states of globular proteins, on the other. The local structures of these cases are
shown in Figure 4 through their characteristic (θ,µ) plots [63]. These plots are drawn by
measuring local pairs of bond-bending and dihedral angles for nearly a million monomers
(for the polymer models) and residues (for protein native state structures). In contrast to
the plots of model polymers (Figure 4a,b), the (θ,µ) plot for globular protein native state
structures (Figure 4c) exhibits significant structure (distinct from the features present in the
low-temperature tangent sphere model) and signal the presence of the building blocks of
helices and sheets.
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The trends in Figure 4 are analyzed in Figure 5, which depicts a histogram of how far 
the nearest non-local monomer or residue is along the chain sequence. A non-local contact 
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two beads nearest to each other (i,j) satisfying |i-j| ≥ 3. For both helices and turns, there 
are sharp maxima of close-by neighbors at a sequence separation of 3. 

Figure 4. (θ,µ) cross plots of the bond bending angle θ versus dihedral angle µ for 966,505 randomly
chosen monomers belonging to two different polymer classes and for the same number of residues
in protein native state structures. (a) (light green) Polymer chain consisting of 80 tangent spheres of
diameter σ subject to an attractive square well potential of range Ratt = 1.6σ ≈ 6 Å at low temperature
(kBT/ε = 0.3) studied using RE simulations. (b) (orange) Polymer chain consisting of 80 tangent
spheres of diameter σ at infinite temperature accessed by means of MC simulations with the only
interaction being steric avoidance of all pairs of spheres. (c) (blue) For 966,505 residues of the
4391 globular proteins in our data set.

The trends in Figure 4 are analyzed in Figure 5, which depicts a histogram of how far
the nearest non-local monomer or residue is along the chain sequence. A non-local contact
is defined to be one that is separated by at least three positions along the chain with the
two beads nearest to each other (i, j) satisfying |i − j| ≥ 3. For both helices and turns, there
are sharp maxima of close-by neighbors at a sequence separation of 3.

There are at least two characteristic length scales associated with the conformation of
a chain. One is the local behavior as measured by the local radius of curvature of a triplet
of contiguous points. The second is the distance to the nearest non-local contact. For the
space-filling conformation of a continuum tube of non-zero thickness, these two length
scales become equal [75]. Figure 6 shows a histogram of the two scales, local and non-local,
for several situations. The local radius is R = b/(2cos(θ/2)), where θ is the bond bending
angle associated with a local triplet. Structures in the histogram of local radii denote a
preference for certain angles of θ. The α-residues exhibit a sharp peak corresponding to θα
≈ 92◦, the β-residues for θβ ≈ 120◦, and the loop-residues have a pronounced maximum
close to the helical value and a less prominent maximum around 111◦, see Figure 6a. These
peaks are also reflected in the high-density regions in the (θ,µ) cross plot of protein native
state structures, shown in Figure 4c. Figure 6b shows the histograms of the relevant non-
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local length scales for all five cases. All five curves exhibit a single peak denoting a relevant
non-local length scale. Table 1 is a compilation of these characteristic local and non-local
length scales.
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Figure 5. Frequency distribution of the sequence separation |i − j| along the chain of the nearest
non-local contact of bead i found at location j. In panel (a), the blue points indicate 313,574 α-residues
out of a total of 975,287 residues in our data set from 4391 globular proteins; the red points are
214,501 β-beads; and the purple points denote an analysis of 442,821 loop-residues. (b) the green and
yellow points show the distinct smooth behaviors of a tangent polymer model at low (kBT/ε = 0.3)
and infinite temperatures. The behavior is monotonic, with the closest non-local contacts always being
close along the sequence. The inset shows the specific heat per bead CV/NkB for an 80-bead long
tangent sphere polymer as a function of the reduced temperature kBT/ε. There are two continuous
(second order) ‘transitions’: at a high temperature ~3, there is a coil-to-globule transition and at ~0.4,
there is a transition into a compact globule.
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Figure 6. (a) Frequency distribution of the local radius of curvature R for five different classes of
consecutive triplets. We consider only pure protein triplets in which all three residues are in the same
structural class. There are 256,154 α triplets (blue) comprising ~26% of all 970,896 triplets. There are
134,643 β triplets (red) and 313,923 loop triplets (purple). There are 16,391,622 low-temperature poly-
mer triplets (green) and 25,270,784 infinite-temperature triplets (orange). (b) Frequency distributions
of the distances to the closest non-local contact, defined as |j − i| ≥ 3, of monomers belonging to
different classes with the same color code as in panel (a).
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Table 1. Characteristic local and non-local length scales for three residue types in proteins and for
monomers of a tangent polymer chain in the low and high-temperature phases.

Monomers Most Frequent Value of
Local Radius [Å]

Relevant Non-Local
Length Scale [Å]

α—residues in proteins 2.73 5.06
β—residues in proteins 3.6 4.67

loop—residues in proteins 2.75 5.26
Spheres in tangent polymers at low T 2.21 3.81
Spheres in tangent polymers at T = ∞ 2.47 7.72

Figure 7 shows five representative chain conformations (denoted A–E), each having
80 monomers. We will present the key characteristics of these conformations to highlight
similarities and especially the differences. Figure 7 also presents the contact maps for
each of these five conformations that show, for each monomer (labeled 1–80), its nearest
in distance monomer (separated by at least three positions along the chain). The points
in red indicate the contacts for which the pairwise distance is greater than 6 Å. Such
distant contacts are rare in the polymer models, unlike the three protein chains. There is
little structure in the globular polymer structure A. The infinite temperature polymer B is
characterized by the nearest contacts being nearby in sequence, as evidenced by the points
in its contact map being close to the diagonal.
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Figure 7. Representative conformations of chains of length 80: (A) a low-temperature globule and
(B) an infinite-temperature coil of a generic tangent polymer chain; (C) all-α protein [PDB code: 3bqp,
chain B]; (D) all-β protein [PDB code: 1bdo, chain A]; and (E) α/β protein [PDB code: 3l9, chain X].
The color coding of the conformation does not represent secondary motifs but rather depicts how far
a monomer is along the sequence. The chain beginning is depicted in red color that morphs towards
blue at the chain end. The contact maps shown in the other panels are those indicating the closest
non-local contact j of a given monomer. The black points indicate those that are found within 6 Å,
and the red points are those that are found further away than 6 Å of these configurations. The choice
of 6 Å is dictated by the fact that the radial distribution function of proteins exhibits a pronounced
minimum at this value [61].
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This feature of the locality of the closest contacts is also seen in protein α-helices C,
where coordinated closest contacts are of the (i, i + 3) type. Furthermore, a distinctive
pattern is seen for β sheets D, which display coordinated (i, j) contacts in which bead index
j ≥ i + 4 and takes on a coordinated pattern that is consistent with the situation of two
strands coming together and forming parallel β sheets (when points in the contact map
are parallel to the principal diagonal but shifted away from it) or anti-parallel β-sheets
(when points in the contact map are placed along the directions that are perpendicular
to the diagonal). The mixed α/β protein E has the features present in both α-helices and
two types of β-sheets (parallel and anti-parallel). The similarity of the α helix contact map
and that of the infinite temperature polymer is in accord with expectations that helices
are more prone to nucleate from the coil phase than β sheets because of the prevalence of
short-range contacts.

Figure 8 shows the relative importance of the local radius of curvature and the relevant
non-local distance in determining the nature of compact conformations in the five cases. In
all five panels, we have scaled the quantities with the appropriate characteristic length scale
defined in Table 1. Even though the scaling factors are clearly different, the behavior of the
polymer chain is superficially similar at high and low temperatures. The scaled value of
the closest non-local distance is substantially flat around a value of 1, with the fluctuations
being a bit larger at infinite temperatures. In contrast, the local radius exhibits bigger
swings in the low-temperature conformation compared to that at infinite temperature.
The α helix is special in that both the local and closest non-local scaled distances are
close to each other and to the value 1. In the continuum limit, this equality would result
in a space-filling helix [75]. The β regions and the loops do not exhibit this kind of
behavior, with the non-local scaled distance often being smaller than the scaled local radius
of curvature.
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Figure 8. Scaled values of the local radius and minimal non-local distance for the five conformations
shown in Figure 7. For each residue of the three proteins, depending on its type (‘α’, ‘β’, or ‘loop’),
these quantities are appropriately scaled with the value of the corresponding characteristic length
scale presented in Table 1. (a) All-α protein 80 residues long [PDB code: 3bqp, chain B]. (b) All-β
protein 80 residues long [PDB code: 1bdo, chain A]. (c) α/β protein 80 residues long [PDB code:
3l9, chain X]. In the top three panels, the blue ribbons indicate α-helical parts of the sequence, the
red ribbons indicate β-sheets, and the purple ribbons indicate loop regions. (d) A tangent polymer
conformation at kBT/ε = 0.3. (e) A tangent polymer conformation at T = ∞.

5. Discussion

Our principal focus in this paper was to study the similarities and differences between
chains viewed in two separate ways. The first, a baby model in polymer science, is a tangent
sphere model subject to a square-well attraction. We have carried out extensive simulations
of the model in the high- and low-temperature phases. We compare the behaviors with
those of experimentally determined (and presented in the Protein Data Bank) structures of
more than 4000 proteins. The relevant local behavior can be measured by determining the
radius of a sphere passing through a local triplet or the radius of a sphere whose surface
passes through a set of four consecutive monomers. Surprisingly, we found power law
behavior of the probability distribution functions of the radii (with the notable exception of
amino acid triplets in proteins). We presented a simple rationalization of this behavior.

We then went on to underscore the numerous distinctions between the model results
and protein data. Proteins are complex molecules which follow the rules of quantum
chemistry [45,46,84,85] and are influenced by the interactions with the surrounding solvent
molecules [86–98]. A protein is a distinct sequence of amino acids. Yet, proteins show
remarkable common characteristics. They generally fold reproducibly and rapidly into their
native state structures. These structures are directly implicated in protein function. The
native state conformations are modular and made up of building blocks, notably helices,
and sheets comprised of zig-zag strands. These common characteristics arise because
proteins share the same backbone despite having distinct sequences. An important open
challenge is the determination of the simplest chain model that would suitably describe the
striking features of the common backbones of protein native state structures.
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97. Dongmo Foumthuim, C.J.; Carrer, M.; Houvet, M.; Škrbić, T.; Graziano, G.; Giacometti, A. Can the roles of polar and non-polar
moieties be reversed in non-polar solvents? Phys. Chem. Chem. Phys. 2020, 22, 25848–25858. [CrossRef] [PubMed]
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