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Abstract. We consider the solution of a recurrent sub–problem within both constrained and un-
constrained Nonlinear Programming: namely the minimization of a quadratic function subject to
linear constraints. This problem appears in a number of LBM frameworks, and to some extent it
reveals a close analogy with the solution of trust–region sub–problems. In particular, we refer to
a structured quadratic problem where five linear inequality constraints are included. We show that
our proposal retains an appreciable versatility, despite its particular structure, so that a number of
different real instances may be reformulated following the pattern in our proposal. Moreover, we
detail how to compute an exact global solution of our quadratic sub–problem, exploiting first order
KKT conditions.
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1 Introduction

There is plenty of real problems where the minimization of a twice continuously differentiable
functional f : Rn→ R is sought, (possibly) subject to several linear/nonlinear constraints. Among
authoritative textbooks, where such problems are widely detailed, we can surely find [13, 3, 1]. Such
general problems typically require the solution of a sequence of simple sub–problems following the
next pattern

min
x

ϕk(x)

s.t. x ∈ Dk :
{

Akx+uk = 0
Bkx+ vk ≤ 0,

(1)

where Ak ∈ Rmk×n, Bk ∈ Rpk×n, uk ∈ Rmk , vk ∈ Rpk , mk, pk ≥ 1 and k ≥ 1. Furthermore, ϕk(x)
represents a model of the smooth function f (x) at the current point, and the feasible set Dk represents
a linearization of the nonlinear constraints.

As well known, affine and quadratic polynomials based on Taylor’s expansion are often adopted
to represent the models {ϕk(x)}, but valid alternatives include also least squares approximations,
Radial Basis Functions, metamodels based on Splines, B–Splines, Kriging, etc. We remark that the
advantage of solving the sequence of sub–problems (1) in place of the original nonlinear constrained
problem, within a suitable convergence framework, essentially relies on their simplicity.

In particular, in this paper our interest is for the sub–problem (1) where Dk includes only a
finite number of inequalities, and the function ϕk(x) is a quadratic functional, i.e. we focus on the
sub–problem

min
α,β

ϕ(x) =
1
2

xT Qx+bT x+ c

x = x̄+αd +βz
a1 ≤ α≤ b1
a2 ≤ β≤ b2
ε1α+ ε2β≤ ε3

(2)

where Q ∈ Rn×n, b, x̄ ∈ Rn, c ∈ R, d and z are given n–real search directions, and a1 ≤ b1, a2 ≤ b2.
Despite the apparent specific structure of (2), a number of real applications may benefice from its
solution, as partly described in Section 4. As an example of versatility for the structure of (2), we
will shortly consider how it may be possibly fruitfully embedded within the framework of Truncated
Newton’s methods (TNMs - see Table 1), where (see also [12], [11], [10], [2])

• d ∈Rn represents an approximate Newton–type direction, at the current feasible point x̄∈Rn;

• z ∈Rn represents a negative curvature direction for the nonlinear function f (x), at the current
feasible point x̄ ∈ Rn;

• Q ∈ Rn×n represents the exact/approximate Hessian matrix of f (x) at x̄;

• b ∈ Rn represents the exact/approximate Gradient vector of f (x) at x̄;

• α and β are steplengths along the directions d,z ∈ Rn (i.e., following the taxonomy of Table
1 we have α← ω1(α) and β← ω2(α)), with −∞≤ a1 ≤ b1 ≤+∞ and −∞≤ a2 ≤ b2 ≤+∞.
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Set x0 ∈ Rn

Set ηk ∈ [0,1) for any k, with {ηk}→ 0

OUTER ITERATIONS
for k = 0,1, . . .

Compute b≈ ∇ f (xk) and Q≈ ∇2 f (xk); if ‖b‖ is small then STOP

INNER ITERATIONS
- Compute dk which approximately solves Newton’s equation

Qd +b = 0, and satisfies the truncation rule ‖Qdk +b‖ ≤ ηk‖b‖
- Possibly compute a bounded negative curvature direction zk at xk

Use a criterion to either combine dk and zk, or select between dk and zk

If the directions dk and zk were combined set vk(α) = ω1(α)dk +ω2(α)zk, and
use a curvilinear linesearch procedure to select α← αk. Else set vk(α) = αd̄ with
d̄ ∈ {dk,zk}, and use an Armijo-type procedure to select α← αk

Update xk+1 = xk + vk
endfor

Table 1: A standard framework for linesearch based TNMs for large scale problems. The alternative
of possibly using negative curvature directions allows for convergence to stationary limit points
which fulfill second order necessary optimality conditions.

2
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The constraint ε1α+ ε2β ≤ ε3 potentially plays a multipurpose role, modeling for instance
the gradient–related property for the search direction αd +βz ∈ Rn at x̄, i.e.

(αd +βz)T
∇ f (x̄)≤−c̄‖∇ f (x̄)‖h, (3)

being 
ε1 = dT ∇ f (x̄),

ε2 = zT ∇ f (x̄),

ε3 =−c̄‖∇ f (x̄)‖h, c̄,h > 0.

The availability of an (exact) global solution for (2) may also suggest some alternatives to Ta-
ble 1, either selecting a TRM or a LBM framework, or combining the two approaches. In particular,
the scheme in Table 2 represents an immediate acceleration scheme for linesearch–based TNMs
with respect to Table 1, in case global convergence of {xk} to stationary limit points is simply
sought. Note that selecting negative values for a1,a2 and positive ones for b1,b2 allows to possibly:

• reverse the directions dk and zk

• use (2) in the light of simulating a dogleg–like procedure for TRMs, also in LBM nonconvex
frameworks.

In Table 2 the global convergence to stationary limit points is easily preserved, by using similar
results adopted for Table 1.

As a further alternative, with respect to Table 1 and Table 2, we have the scheme in Table 3,
where we suitably combine the strategies used in TRMs and LBMs to ensure global convergence1.
In particular, if the test Aredk/Predk > ρ is fulfilled, there is no need of performing a linesearch
procedure, since global convergence for {xk} is preserved by the trust–region framework. We also
remark that in Table 3 the computation of both ϕ(xk) and ϕ(xk + vk) is required, regardless of the
outcomes of the test Aredk/Predk 6> ρ, since in any case these last quantities must be computed.

Finally, there is possibly the chance to further exploit the scheme (2) in a TNM framework based
on linesearch procedure, in order to ensure global convergence properties for the sequence {xk} to
stationary limit points satisfying second order necessary optimality conditions (namely those sta-
tionary points where the Hessian matrix is positive semidefinite). The resulting scheme is proposed
in Table 4 and possibly does not require additional comments.

We remark that both in Section 3 and Section 6 the reader may find additional guidelines for
possible alternatives/extensions to the use of a global solutions of (2).

The structure of the present paper is the following. In Section 2 we describe conditions ensuring
the feasibility of our problem. In Section 3 we reveal the basic motivations for our analysis and out-
comes. Section 4 reports relevant remarks, highlighting how general can be our proposal. Section 5

1In particular, TRMs need the fulfillment of a sufficient reduction of the model in order to force a sufficient decrease
of the objective function, so that they do not need any linesearch procedure, possibly implying a reduced computational
burden with respect to LBMs. Conversely, LBMs easily compute an effective search direction but they need to perform a
linesearch procedure, because they do not include any (direct) function reduction mechanism based on the local quadratic
model.

3
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Set x0 ∈ Rn

Set ηk ∈ [0,1) for any k, with {ηk}→ 0

OUTER ITERATIONS
for k = 0,1, . . .

Compute b≈ ∇ f (xk) and Q≈ ∇2 f (xk); if ‖b‖ is small then STOP

INNER ITERATIONS
- Compute dk which approximately solves Newton’s equation

Qd +b = 0, and satisfies the truncation rule ‖Qdk +b‖ ≤ ηk‖b‖
- Set zk =−b

Compute α∗ and β∗ by solving (2), then update the trust region
parameters a1,a2,b1,b2

Set vk = α∗dk +β∗zk, and use an Armijo-type procedure to select the
steplength αk along the direction vk

Update xk+1 = xk +αkvk
endfor

Table 2: A standard framework for linesearch based TNMs for large scale problems which exploits
the sub–problem (2). In red color we highlight relevant differences with respect to Table 1.

4
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Set x0 ∈ Rn

Set ηk ∈ [0,1) for any k, with {ηk}→ 0. Set ρ > 0

OUTER ITERATIONS
for k = 0,1, . . .

Compute b≈ ∇ f (xk) and Q≈ ∇2 f (xk); if ‖b‖ is small then STOP

INNER ITERATIONS
- Compute dk which approximately solves Newton’s equation

Qd +b = 0, and satisfies the truncation rule ‖Qdk +b‖ ≤ ηk‖b‖
- Set zk =−b

Compute α∗ and β∗ by solving (2), then set vk = α∗dk +β∗zk,
Aredk = f (xk)− f (xk + vk), Predk = ϕ(xk)−ϕ(xk + vk)

If Aredk/Predk 6> ρ use an Armijo-type procedure to select the steplength
αk along vk, else skip the linesearch procedure

Update the trust region parameters a1,a2,b1,b2

Update xk+1 = xk +αkvk
endfor

Table 3: A framework for combining a trust–region and linesearch approaches within TNMs for
large scale problems, exploiting again the sub–problem (2).

5
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Set x0 ∈ Rn

Set ηk ∈ [0,1) for any k, with {ηk}→ 0

OUTER ITERATIONS
for k = 0,1, . . .

Compute b≈ ∇ f (xk) and Q≈ ∇2 f (xk); if ‖b‖ is small then STOP

INNER ITERATIONS
- Compute dk which approximately solves Newton’s equation

Qd +b = 0, and satisfies the truncation rule ‖Qdk +b‖ ≤ ηk‖b‖

Compute a suitable negative curvature direction zk for f (x) at xk

Compute α∗ and β∗ by solving (2), then set vk = α∗dk +β∗zk. Update the trust
region parameters a1,a2,b1,b2

Use an Armijo-type procedure to select the steplength αk along vk

Update xk+1 = xk +αkvk
endfor

Table 4: A framework of linesearch–based approaches within TNMs for large scale problems: solv-
ing the sub–problem (2) fruitfully allows convergence of the sequence {xk} to limit points satisfying
second order necessary optimality conditions.

6
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includes Karush–Kuhn–Tucker conditions for our problem (2), along with precise guidelines to find
a global minimum for it. Finally, Section 6 provides some conclusions and future work.

As regards the symbols adopted in the paper, we use Rp to represent the set of the real p-
vectors, while ‖x‖1 and ‖x‖∞ are respectively used to indicate the 1-norm and the ∞-norm of the
vector x ∈ Rn. Given the n-real vectors x and y, with xT y we indicate their standard inner product.
Given the matrix A ∈ Rm×n, then we indicate by A+ its Moore–Penrose pseudoinverse matrix, i.e.
the unique matrix such that AA+A = A, A+AA+ = A+, (AA+)T = AA+, (A+A)T = A+A. With A� 0
(A� 0) we indicate a positive semidefinite (positive definite) matrix A.

2 Feasibility issues for our quadratic problem

Here we consider some feasibility issues for the linear inequality constrained quadratic problem
(2). Clearly (2) just includes the two real unknowns α and β. Moreover, as regards the existence of
solutions for (2) we have the next result.

Lemma 2.1 (Feasibility) Let be given the problem (2) and assume that the real values a1,b1,a2,b2
are finite, with a1 ≤ b1 and a2 ≤ b2. Then, (2) admits solutions if and only if at least one of the
following conditions holds:

Cond. I: ε1 = ε2 = 0 and ε3 ≥ 0.

Cond. II: ε1 = 0 and ε2 6= 0; moreover

– if ε2 > 0 then a2 ≤ ε3/ε2

– if ε2 < 0 then b2 ≥ ε3/ε2.

Cond. III: ε1 6= 0 and ε2 = 0; moreover

– if ε1 > 0 then a1 ≤ ε3/ε1

– if ε1 < 0 then b1 ≥ ε3/ε1.

Cond. IV: ε1 6= 0, ε2 6= 0, −ε1/ε2 < 0, moreover

– if ε1 > 0 and ε2 > 0 then a2 ≤−(ε1/ε2)a1 +(ε3/ε2)

– if ε1 < 0 and ε2 < 0 then b2 ≥−(ε1/ε2)b1 +(ε3/ε2).

Cond. V: ε1 6= 0, ε2 6= 0, −ε1/ε2 > 0, moreover

– if ε1 < 0 and ε2 > 0 then a2 ≤−(ε1/ε2)b1 +(ε3/ε2)

– if ε1 > 0 and ε2 < 0 then b2 ≥−(ε1/ε2)a1 +(ε3/ε2).

Proof: For the sake of simplicity we make reference to Figure 1. The objective function in (2)
is continuous, so that the existence of solutions follows from the compactness and nonemptyness
of the feasible region. In this regard, the compactness is a consequence of assuming a1,b1,a2,b2
finite. Furthermore, it is not difficult to realize that the feasible set of (2) is nonempty as long as at

7
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least one among the five conditions Cond. I – Cond. V is fulfilled, where the dashed-dotted line in
Figure 1 represents the line associated with the last inequality constraint in (2). In particular, Cond.
IV refers to the corner points A and B of Figure 1, while Cond. V refers to the vertices C and D. 2

Figure 1: Graphical representation of the feasible set in (2). The dashed-dotted lines represent all
the extreme choices for the last inequality constraint in (2).

3 Motivations for our proposal: the gap between TRMs and LBMs in
large scale optimization

Here we give details about a possible motivation for our proposal, in order to bridge the gap between
two renowned classes of optimization methods, namely TRMs and LBMs. We are indeed persuaded
that such viewpoint may suggest a number of possible enhancements, to improve both the last
classes of methods.

In this regard, observe that a TRM for large scale problems is an iterative procedure that gener-
ates the sequence of n-real iterates {xk}, and seeks at any step k for the solution of the trust–region
sub–problem

min
s

qk(s) = f (xk)+∇ f (xk)
T s+

1
2

sT Qks

‖s‖2 ≤ ∆k,
(4)

where xk is the current iterate, Qk represents the exact/approximate Hessian matrix ∇2 f (xk) and
∆k > 0 represents the radius of the trust–region area, i.e. the compact subset where the model
qk(s) needs to be validated2. A number of possible variants of (4) can be introduced when n
is large, including iterative updating strategies for both Qk and ∆k, and a number of approxi-
mate/sophisticated/refined schemes for its solution are available in the literature.

2For an exhaustive description of TRMs for Nonlinear Programming, the reader can refer to [3].
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A distinguishing feature of TRMs, with respect to LBMs, is that at iteration k the methods
in the first class attempt to determine at once the stepsize αk and the search direction dk, so that
xk+1 = xk + sk ≡ xk +αkdk, where sk indeed approximately/exactly solves (4). Conversely, in LBMs
the computations of αk and dk are independent, as detailed later on in this paper. In particular, (see
also [13]) the effective computation of sk in TRMs properly attempts to comply with the following
issues:

• sk can be computed by either an exact (small and medium scale problems) or an approximate
(large scale problems) procedure;

• in order to prove the global convergence of the sequence {xk} to stationary limit points satis-
fying either first or second order necessary optimality conditions, sk is required to provide a
sufficient reduction of the quadratic model qk(s), i.e. the difference qk(0)−qk(sk) is asked to
satisfy a condition like (c > 0)

qk(0)−qk(sk)≥ c‖∇ f (xk)‖2 min
{

∆k,
‖∇ f (xk)‖2

1+‖Q‖2

}
;

• in case sk is computed by an approximate procedure, e.g. computing a Cauchy step (regardless
of Qk signature) or using the Steihaug (see [5]) conjugate gradient (when Qk is positive defi-
nite), then the approximate solution of (4) is merely sought on a linear manifold of dimension
one or at most two, rather than on the entire subset B≡ {s ∈ Rn : ‖s‖2 ≤ ∆k};

• depending on a number of additional assumptions, TRMs can prove to be globally convergent
to either a simple stationary limit point, or to a point which satisfies second order necessary
optimality conditions;

• the exact/accurate solution of the sub–problem (4) is in general a quite cumbersome task on
large scale problems, representing indeed a difficult goal that is often skipped if unnecessary.

On the other hand, to some extent LBMs represent the counterpart of TRMs. Indeed, to yield the
next iterate xk+1 = xk +αkdk they perform the computation of the steplength αk and the direction
dk as separate tasks. Furthermore, unlike for TRMs, the novel iterate xk+1 in LBMs can be also
obtained adopting the more general update

xk+1 = xk +αkdk +βkzk, (5)

being now dk and zk two search directions summarizing a different information on the function f (x),
and αk, βk stepsizes. In particular:

• when zk ≡ 0 then dk represents a Newton-type direction, being typically computed by ap-
proximately solving Newton’s equation ∇2 f (xk)d =−∇ f (xk) at the current iterate xk. Then,
an Armijo–type linesearch procedure is applied along dk to compute αk, provided that dk is
gradient–related at xk;

• when zk 6= 0 then again dk represents a Newton-type direction, while typically zk is a negative
curvature direction for f (x) at xk which approximates an eigenvector associated with the least

9
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negative eigenvalue of ∇2 f (xk). The vector zk plays an essential role, when for LBMs con-
vergence to stationary points satisfying second order necessary optimality conditions needs
to be proved. In the last case the computation of the steplengths αk and βk is often carried on
at once (as in curvilinear linesearch procedures - see [9]), or these steplengths computation
is carried on pursuing independent tasks (see e.g. [6]). We highlight that in (5), when both
dk 6= 0 and zk 6= 0, we may experience difficulties related to properly scaling the two search
directions.

As a general class of efficient algorithms, within LBMs for large scale problems, we find Trun-
cated Newton methods (TNMs) coupled with a linesearch procedure (see Table 1). Similarly to
general TRMs, they are evidently based on possibly computing dk and zk after exploiting the second
order Taylor’s expansion of f (x) at xk. However, a couple of quite disappointing issues arise when
applying linesearch based TNMs, namely:

• Unlike trust–region based TNMs, at iterate xk the search of a stationary point for a quadratic
polynomial model of f (x) (i.e. Newton’s equation) is performed on Rn, so that the quadratic
expansion is not trusted on a more reliable compact subset (trust–region) of Rn. Thus, the
search direction dk might show poor performance when the iterates in the sequence {xk} are
far from a stationary limit point x∗. More specifically, note that in case ∇2 f (xk) � 0 then
solving Newton’s equation and the trust–region sub–problem

min
d

qk(d) = f (xk)+∇ f (xk)
T d +

1
2

dT
∇

2 f (xk)d

‖d‖2 ≤ γk,

for any γk ≥ ‖[∇2 f (xk)]
+∇ f (xk)‖2 yield the same solutions. Conversely, when ∇2 f (xk) is

indefinite, then Newton’s equation provides a saddle point for qk(d), that might be hardly
interpreted as a solution of a trust–region sub–problem (the interested reader may consider the
paper [4] for some extensions). Furthermore, from this perspective we remark that in LBMs,
solving (2) where dk =−∇ f (xk), zk ≡ 0 and ε1 = ε2 = ε3 = 0, to large extent is equivalent to
compute the Cauchy step when solving (4). Indeed, in the last case the trust–region constraint
in (4) in principle can be equivalently replaced by the compact feasible set (box constraints)
in (2), after setting ε1 = ε2 = ε3 = 0. On the other hand, in case ∇2 f (xk)� 0 and we set in (2)
dk =−∇ f (xk) and zk =−[∇2 f (xk)]

+∇ f (xk), along with ε1 = ε2 = ε3 = 0, then with a similar
reasoning the solution of (2) closely resembles the application of the dogleg method when
solving (4). Finally, since the coefficients a1,a2 in (2) may have negative values, we may
potentially reverse the directions dk and zk when solving (2). Thus, following the idea behind
(3), the scheme (2) suggests that also in case ∇2 f (xk) is indefinite, (2) easily generalizes the
proposals in [7]. In fact, following (3) we are able to exactly compute a global minimum
(α∗,β∗) for (2), regardless of the signature of Q, so that the resulting direction α∗dk +β∗zk is
gradient–related at xk.

• As by (5), the search directions dk and zk might be suitably combined in a curvilinear frame-
work (see e.g. [9]). However, to our knowledge the selection of αk and βk in the literature
is never performed with a joint procedure to separately assess αk and βk, i.e. αk and βk are
never chosen as independent parameters. Hence, in the literature of linesearch based TNMs,

10

Electronic copy available at: https://ssrn.com/abstract=4154641



the linesearch procedure that starts from xk and yields xk+1 explores a one–dimensional man-
ifold (regular curve), rather than considering xk +αdk +βzk as a two–dimensional manifold
with independent real coefficients α and β.

In this regard, using (2) within LBMs tends to partially compensate the drawbacks in the last
two items, in the light of the great success that TRMs have gained in the last decade. In particular,
using (2) within linesearch based TNMs, our aim is that of developing a simple tool which possibly:

1. combines at iterate xk two independently computed vectors, namely dk,zk ∈ Rn, by exactly
computing a global minimum3 for the two–dimensional constrained problem (2), being x̄←
xk, d← dk, z← zk;

2. adaptively updates the parameters a1, a2, b1, b2 in (2), when the iterate xk changes, following
the rationale behind the update of ∆k in (4), and retaining the strong convergence properties
of TRMs. This fact is of remarkable interest, since in (2) the information associated with
the search directions dk and zk is suitably trusted in a compact subset of Rn (namely the box
constraints a1 ≤ α≤ b1, a2 ≤ β≤ b2);

3. exactly computes a cheap global minimum (α∗,β∗) for (2), so that the vector α∗dk +β∗sk is
then provided to a standard linesearch procedure as the Armijo–rule, to ensure that the global
convergence of the sequence {xk} to stationary (limit) points is preserved;

4. allows convergence of subsequences of the iterates {xk} to stationary limit points, where
either first or second order necessary optimality conditions are fulfilled;

5. preserves generality within a wide range of optimization frameworks, as reported in the next
Section 4;

6. combines the effects of dk and zk skipping all the drawbacks related to a possible different
scaling between these directions. We recall indeed that since dk and zk are generated through
the application of different methods, then the comparison of their performances may be biased
by the latter generating methods.

The TNMs sketched in Tables 2-4 are only examples of proposals in the light of the last comments.

4 Is (2) a general model within Nonlinear Programming ?

This section is devoted to report a number of real constrained optimization schemes from Nonlinear
Programming, whose formulation is encompassed in (2). We can see that for some of the next
schemes, possibly more than one reformulation can be considered in the framework (2).

3We recall that conversely a global solution of the trust–region sub–problem (4) is much often only approximately
computed.
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Figure 2: Examples where the structure of the feasible set in (2) is helpful.

4.1 Minimization over a bounded simplex

We consider the problem of minimizing a quadratic functional over a simplex S⊂ Rn, i.e.

min
x

1
2

xT Qx+bT x+ c

x ∈ S,
(6)

where S = {x∈Rn : x=∑
3
i=1 λixi, ∑

3
i=1 λi = 1, λi≥ 0, i= 1,2,3}. Figure 2–(a) reports an example

of a simplex. In this regard, by simply setting in (2)

• d = x2− x1, z = x3− x1,

• x̄ = x1,

• a1 = 0, b1 = 1, a2 = 0, b2 = 1,

• ε1 = ε2 = ε3 = 1,

the problem (6) is a special case of the problem (2).

12
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4.2 Minimization over a bounded polygon

We consider the problem of minimizing a quadratic functional over a polygon P⊂Rn, described by
a finite number m of vertices4, i.e.

min
x

1
2

xT Qx+bT x+ c

x ∈ P,
(7)

where P = {x ∈ Rn : x = ∑
m
i=1 λixi, ∑

m
i=1 λi = 1, λi ≥ 0, i = 1, . . . ,m}. Figure 2–(b) reports an

example of a polygon with m = 5. In this regard the problem (7) can be split into to solution of the
(m−2) sub–problems

min
x

1
2

xT Qx+bT x+ c

x ∈ Si, i = 1, . . . ,m−2,
(8)

where

Si =

{
x ∈ π⊂ Rn : x = ∑

j∈{1,i+1,i+2}
λ jx j, ∑

j∈{1,i+1,i+2}
λ j = 1, λ j ≥ 0, j ∈ {1, i+1, i+2}

}
,

which are of the form (6). Thus, solving the problem (7) corresponds to solve a sequence of (m−2)
instances of the problem (2).

4.3 Minimization over a bounded segment

We consider the problem of minimizing a quadratic functional over a segment L⊂ Rn, i.e.

min
x

1
2

xT Qx+bT x+ c

x ∈ L,
(9)

where L = {x∈Rn : x = λx1+(1−λ)x2, λ∈ [0,1]}. Figure 2–(c) reports an example of a segment.
In this regard, by simply setting in (2)

• d = x2− x1, z≡ 0,

• x̄ = x1,

• a1 = 0, b1 = 1, a2 = 0, b2 = 0,

• ε1 = ε2 = ε3 = 0,

the problem (9) is a special case of the problem (2).

4Observe that the points in the polygon P must belong to a hyperplane π ⊂ Rn, with π : ωT x + ω0 = 0, ω =
(ω1, . . . ,ωn)

T ∈ Rn, ω0 ∈ R, so that ωT x̄+ω0 = 0 for any x̄ ∈ P.
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4.4 Minimization over a bounded box in R2

We consider the problem of minimizing a quadratic functional over a box domain D⊂ R2, i.e.

min
x

1
2

xT Qx+bT x+ c

x ∈ D,
(10)

where D = {x ∈ R2 : ci ≤ xi ≤ ei, i = 1,2}. Figure 2–(d) reports an example of a box domain. In
this regard, by simply setting in (2)

• d =

(
e1− c1

0

)
, z =

(
0

e2− c2

)

• x̄ =
(

c1
c2

)
• a1 = 0, b1 = 1, a2 = 0, b2 = 1,

• ε1 = ε2 = ε3 = 0,

the problem (10) is a special case of the problem (2). As an alternative to the previous setting, we
might also consider to treat this case with a setting in (2) given by

• d =

( e1−c1
2
0

)
, z =

(
0

e2−c2
2

)

• x̄ =
( e1+c1

2
e2+c2

2

)
• a1 =−1, b1 = 1, a2 =−1, b2 = 1,

• ε1 = ε2 = ε3 = 0.

4.5 Minimization including a 1-norm inequality constraint in R2

We consider the problem of minimizing a quadratic functional subject to a 1–norm inequality con-
straint x ∈ N, with N ⊂ R2, i.e.

min
x

1
2

xT Qx+bT x+ c

x ∈ N,
(11)

being N = {x∈R2 : ‖x‖1 ≤ a}. Figure 2–(e) reports an example of such a constraint. In this regard
it suffices to recast (11) as in (8), where

• m = 6

• x̄ = x1 = 0

• x2 =

(
0
1

)
, x3 =

(
1
0

)
, x4 =

(
0
−1

)
, x5 =

(
−1
0

)
, x6 = x2,

so that four instances of the problem (2) need to be solved.
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4.6 Minimization including an ∞-norm inequality constraint in R2

We consider the problem of minimizing a quadratic functional subject to an ∞–norm inequality
constraint x ∈ E, with E ⊂ R2, i.e.

min
x

1
2

xT Qx+bT x+ c

x ∈ E,
(12)

being E = {x ∈R2 : ‖x‖∞ ≤ a}. In this regard we obtain similar results with respect to Section 4.5.
Indeed, by simply setting in (2)

• d =

(
a
0

)
, z =

(
0
a

)
• x̄ = 0

• a1 =−1, b1 = 1, a2 =−1, b2 = 1,

• ε1 = ε2 = ε3 = 0,

the problem (12) is a special case of the problem (2).

4.7 Minimization including a 2-norm inequality constraint in R2

We consider the problem of minimizing a quadratic functional in R2 subject to a 2–norm inequality
constraint ‖x‖2 ≤ γ, with γ≥ 0, i.e.

min
x

1
2

xT Qx+bT x+ c

‖x‖2 ≤ γ, x ∈ R2.
(13)

In this regard it suffices to observe that the solution of (2) provides both a

• LOWER bound: to the solution of (13), as long as we set (following Section 4.6)

– d =

(
γ

0

)
, z =

(
0
γ

)
– x̄ = 0
– a1 =−1, b1 = 1, a2 =−1, b2 = 1,
– ε1 = ε2 = ε3 = 0,

• UPPER bound: to the solution of (13), as long as we follow the indications in Section 4.5, i.e.
we recast and solve (11) as in (8), where

– m = 6
– x̄ = x1 = 0

– x2 =

(
0
γ

)
, x3 =

(
γ

0

)
, x4 =

(
0
−γ

)
, x5 =

(
−γ

0

)
, x6 = x2,

so that four instances of the problem (2) need to be solved.

Note that the dogleg–like methods for the approximate solution of the trust–region problem (4), in
the convex case, equivalently solves the sub–problem (13) with just a couple of unknowns.
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5 KKT conditions and the fast solution of problem (2)

Replacing the expression of the vector x in (2) within the objective function, we easily obtain the
equivalent problem

min
α,β

ϕ(α,β)

P :


a1 ≤ α≤ b1
a2 ≤ β≤ b2
ε1α+ ε2β≤ ε3,

(14)

where 

ϕ(α,β) = 1
2

(
α

β

)T ( t u
u w

)(
α

β

)
+

(
y
h

)T (
α

β

)
+q

t = dT Qd
u = dT Qz = zT Qd
w = zT Qz
y = (Qx̄+b)T d
h = (Qx̄+b)T z
q =

(1
2 Qx̄+b

)T
x̄+ c.

Observe that transforming (2) into (14) only requires the computation of two additional matrix–
vector products (i.e. Qd and Qz), along with six inner products. The problem (14) is a constrained
quadratic problem, such that first order Fritz-John optimality conditions do not require additional
constraint qualifications (since all the constraints are linear). Thus, after considering its Lagrangian
function

L(α,β,µ1,µ2,µ3,µ4,µ5) =

ϕ(α,β)−µ1(α−a1)+µ2(α−b1)−µ3(β−a2)+µ4(β−b2)+µ5(ε1α+ ε2β− ε3)

we have the next set of equalities/inequalities representing the associated KKT conditions:

(
t u
u w

)(
α∗

β∗

)
+

(
y
h

)
+

(
−µ∗1 +µ∗2 + ε1µ∗5
−µ∗3 +µ∗4 + ε2µ∗5

)
=

(
0
0

)
(

α∗

β∗

)
∈ P

µ∗1[α
∗−a1] = 0

µ∗2[α
∗−b1] = 0

µ∗3[β
∗−a2] = 0

µ∗4[β
∗−b2] = 0

µ∗5[ε1α∗+ ε2β∗− ε3] = 0
µ∗i ≥ 0, i = 1, . . . ,5.

(15)

The remaining part of the present section will be devoted to analyze all the possible solutions of
(15), with the aim of possibly computing a global minimum for (2). In this regard, exploiting the
solutions of (15) evidently reduces to analyze the cases (I)− (XII) in Figure 3.

Observing that in (15) the multipliers µ∗i , i = 1, . . . ,5, must fulfill nonnegativity conditions, it is
not difficult to realize that computing all the KKT points satisfying (15) can turn to be a burdensome
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Figure 3: Overview of possible solutions (I)–(XII) for KKT conditions in (15).

task, including a number of sub–cases depending on the possible combinations of signs for the
parameters a1, b1, a2, b2, ε1, ε2 and ε3. Conversely, a global minimizer for (2) can be equivalently
exploited by analyzing all the possible solutions of (15) uniquely in terms of α∗ and β∗, without
requiring the computation of the multipliers, too. Hence, we limit our analysis to consider the
computation of α∗ and β∗ in the cases (I)− (XII) of Figure 3, where

• cases (I), (II), (III), (IV) are associated to possible solutions in the vertices of the box con-
straints;

• cases (V), (VI), (VII), (VIII) are associated to possible solutions on the edges of the box
constraints;

• case (IX) represents a possible feasible unconstrained minimizer for the objective function in
(2);

• cases (X), (XI), (XII) are associated to possible solutions making the last inequality constraint
in (14) active.

Then, in Lemma 5.1 we will provide a simple theoretical result which justifies our simplification,
with respect to computing all the KKT points. In this regard, we preliminarily set i = 1 and consider
the next cases from Figure 3, being {yi} the sequence of tentative solution points of (14):
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• Case (I): we set ᾱ = b1, β̄ = b2. If ε1ᾱ+ ε2β̄≤ ε3 then set

P1 =

(
b1
b2

)
, ϕi = ϕ(b1,b2), yi = P1, i = i+1; (16)

• Case (II): we set ᾱ = a1, β̄ = b2. If ε1ᾱ+ ε2β̄≤ ε3 then set

P2 =

(
a1
b2

)
, ϕi = ϕ(a1,b2), yi = P2, i = i+1; (17)

• Case (III): we set ᾱ = b1, β̄ = a2. If ε1ᾱ+ ε2β̄≤ ε3 then set

P3 =

(
b1
a2

)
, ϕi = ϕ(b1,a2), yi = P3, i = i+1; (18)

• Case (IV): we set ᾱ = a1, β̄ = a2. If ε1ᾱ+ ε2β̄≤ ε3 then set

P4 =

(
a1
a2

)
, ϕi = ϕ(a1,a2), yi = P4, i = i+1; (19)

• Case (V): we set ᾱ = b1 and possibly compute the solution β̄ =−(ub1+h)/w of the equation

dϕ(b1,β)

dβ
= wβ+ub1 +h = 0,

so that:

– if w 6= 0 .AND. ε1ᾱ+ ε2β̄≤ ε3 then set

P5 =

(
ᾱ

β̄

)
, ϕi = ϕ

(
ᾱ, β̄
)
, yi = P5, i = i+1; (20)

– if w = 0 .AND. ub1 +h 6= 0 then there is NO SOLUTION for the Case (V);

– if w = 0 .AND. ub1 +h = 0 then set β̄∈ [a2,b2] as any value satisfying ε1ᾱ+ε2β̄≤ ε3,
and compute P5 as in (20);

• Case (VI): we set β̄ = a2 and possibly compute the solution ᾱ =−(ua2+y)/t of the equation

dϕ(α,a2)

dα
= tα+ua2 + y = 0,

so that:
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– if t 6= 0 .AND. ε1ᾱ+ ε2β̄≤ ε3 then set

P6 =

(
ᾱ

β̄

)
, ϕi = ϕ(ᾱ, β̄), yi = P6, i = i+1; (21)

– if t = 0 .AND. ua2 + y 6= 0 then there is NO SOLUTION for the Case (VI);

– if t = 0 .AND. ua2 + y = 0 then set ᾱ ∈ [a1,b1] as any value satisfying ε1ᾱ+ε2β̄≤ ε3,
and compute P6 as in (21);

• Case (VII): we set ᾱ= a1 and possibly compute the solution β̄=−(ua1+z)/w of the equation

dϕ(a1,β)

dβ
= wβ+ua1 +h = 0,

so that:

– if w 6= 0 .AND. ε1ᾱ+ ε2β̄≤ ε3 then set

P7 =

(
ᾱ

β̄

)
, ϕi = ϕ(ᾱ, β̄), yi = P7, i = i+1; (22)

– if w = 0 .AND. ua1 +h 6= 0 then there is NO SOLUTION for the Case (VII);

– if w = 0 .AND. ua1 +h = 0 then set β̄∈ [a2,b2] as any value satisfying ε1ᾱ+ε2β̄≤ ε3,
and compute P7 as in (22);

• Case (VIII): we set β̄= b2 and possibly compute the solution ᾱ=−(ub2+y)/t of the equation

dϕ(α,b2)

dα
= tα+ub2 + y = 0,

so that:

– if t 6= 0 .AND. ε1ᾱ+ ε2β̄≤ ε3 then set

P8 =

(
ᾱ

β̄

)
, ϕi = ϕ(ᾱ, β̄), yi = P8, i = i+1; (23)

– if t = 0 .AND. ub2 + y 6= 0 then there is NO SOLUTION for the Case (VIII);

– if t = 0 .AND. ub2 + y = 0 then set ᾱ ∈ [a1,b1] as any value satisfying ε1ᾱ+ε2β̄≤ ε3,
and compute P8 as in (23);

• Case (IX): if tw−u2 6= 0 we compute the solution(
ᾱ

β̄

)
=−

(
t u
u w

)−1( y
h

)
19
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of the linear system 
ϕα(α,β) = tα+uβ+ y = 0

ϕβ(α,β) = uα+wβ+h = 0;

else in case tw−u2 = 0 .AND. ((th−uy 6= 0) .OR. (uh−wy 6= 0)) then there is NO SO-
LUTION for the Case (IX);

else in case tw−u2 = 0 .AND. (th−uy = 0) .AND. (uh−wy = 0) then we have three sub–
cases:

1. t > 0 : then recalling that we are in the sub–case where equations ϕα(α,β) = 0 and
ϕβ(α,β) = 0 yield the same information, we exploit equation ϕα(α,β) = 0 and we set
α =−(uβ+ y)/t. Thus, from the bounds and the last inequality in (14) we obtain

a2 ≤ β≤ b2

(ε2t− ε1u)β≤ ε3t + ε1y

a1t + y≤−uβ≤ b1t + y

which yield the next three cases:

– ε2t− ε1u > 0 : admitting other three cases, namely

* u > 0 so that we set

β1 = max
{

a2,−
b1t + y

u

}
≤ β≤min

{
b2,

ε3t + ε1y
ε2t− ε1u

,−a1t + y
u

}
= β2

* u = 0 so that we set

β1 = a2 ≤ β≤min
{

b2,
ε3t + ε1y

ε2t

}
= β2

* u < 0 so that we set

β1 = max
{

a2,−
a1t + y

u

}
≤ β≤min

{
b2,

ε3t + ε1y
ε2t− ε1u

,−b1t + y
u

}
= β2

– ε2t− ε1u = 0 : admitting NO SOLUTION for the Case (IX) as long as the con-

dition ε3t + ε1y < 0 holds. Conversely, in case ε3t + ε1y≥ 0 we have the three
cases:

* u > 0 so that we set

β1 = max
{

a2,−
b1t + y

u

}
≤ β≤min

{
b2,−

a1t + y
u

}
= β2
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* u = 0 so that we set
β1 = a2 ≤ β≤ b2 = β2

* u < 0 so that we set

β1 = max
{

a2,−
a1t + y

u

}
≤ β≤min

{
b2,−

b1t + y
u

}
= β2

– ε2t− ε1u < 0 : corresponding to the three cases:

* u > 0 so that we set

β1 = max
{

a2,−
b1t + y

u
,

ε3t + ε1y
ε2t− ε1u

}
≤ β≤min

{
b2,−

a1t + y
u

}
= β2

* u = 0 so that we set

β1 = max
{

a2,
ε3t + ε1y
ε2t− ε1u

}
≤ β≤ b2 = β2

* u < 0 so that we set

β1 = max
{

a2,−
a1t + y

u
,

ε3t + ε1y
ε2t− ε1u

}
≤ β≤min

{
b2,−

b1t + y
u

}
= β2

2. t = 0 : then recalling that we are in the sub–case where equations ϕα(α,β) = 0 and
ϕβ(α,β)= 0 yield the same information, with tw−u2 = 0, we exploit equation ϕα(α,β)=
0 with t = u = 0. Therefore, we have

a2 ≤ β≤ b2

y = 0

a1 ≤ α≤ b1

which yield the next two cases:
– y = 0 this case implies that the objective function is constant (i.e. ϕ(α,β) = q), so

that we set
β1 = a2 ≤ β≤ b2 = β2

– y 6= 0 admitting NO SOLUTION for the Case (IX)

3. t < 0 : then recalling that we are again in the sub–case where equations ϕα(α,β) = 0
and ϕβ(α,β) = 0 yield the same information, we exploit equation ϕα(α,β) = 0 and we
set α =−(uβ+ y)/t. Thus, from the bounds and the last inequality in (14) we obtain

a2 ≤ β≤ b2

(ε2t− ε1u)β≥ ε3t + ε1y

b1t + y≤−uβ≤ a1t + y

which yield the next three cases:
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– ε2t− ε1u > 0 : admitting other three cases, namely

* u > 0 so that we set

β1 = max
{

a2,−
a1t + y

u
,

ε3t + ε1y
ε2t− ε1u

}
≤ β≤min

{
b2,−

b1t + y
u

}
= β2

* u = 0 so that b1t + y≤−uβ≤ a1t + y is always fulfilled and we set

β1 = max
{

a2,
ε3t + ε1y

ε2t

}
≤ β≤ b2 = β2

* u < 0 so that we set

β1 = max
{

a2,−
b1t + y

u
,

ε3t + ε1y
ε2t− ε1u

}
≤ β≤min

{
b2,−

a1t + y
u

}
= β2

– ε2t− ε1u = 0 : admitting NO SOLUTION for the Case (IX) as long as the con-

dition ε3t + ε1y > 0 holds. Conversely, in case ε3t + ε1y≤ 0 we have the three
cases:

* u > 0 so that we set

β1 = max
{

a2,−
a1t + y

u

}
≤ β≤min

{
b2,−

b1t + y
u

}
= β2

* u = 0 so that we set
β1 = a2 ≤ β≤ b2 = β2

* u < 0 so that we set

β1 = max
{

a2,−
b1t + y

u

}
≤ β≤min

{
b2,−

a1t + y
u

}
= β2

– ε2t + ε1u < 0 : corresponding to the three cases

* u > 0 so that we set

β1 = max
{

a2,−
a1t + y

u

}
≤ β≤min

{
b2,

ε3t + ε1y
ε2t− ε1u

,−b1t + y
u

}
= β2

* u = 0 so that we set

β1 = a2 ≤ β≤min
{

b2,
ε3t + ε1y
ε2t− ε1u

}
= β2

* u < 0 so that we set

β1 = max
{

a2,−
b1t + y

u

}
≤ β≤min

{
b2,

ε3t + ε1y
ε2t− ε1u

,−a1t + y
u

}
= β2.

22

Electronic copy available at: https://ssrn.com/abstract=4154641



Thus, on the overall for the Case (IX), if β1 ≤ β2 we set

β̄ = (β1 +β2)/2, ᾱ =

{
−(uβ̄+ y)/t t 6= 0
(a1 +b1)/2 t = 0,

along with

P9 =

(
ᾱ

β̄

)
, ϕi = ϕ(ᾱ, β̄), yi = P9, i = i+1, (24)

else if β1 > β2 there is NO SOLUTION for the Case (IX);

• Case (X): we set ᾱ = a1 with ε1a1 + ε2β = ε3, and we distinguish among three cases:

– if ε2 = 0 .AND. ε3 = ε1a1 then set β1 = a2 ≤ β≤ b2 = β2;

– if ε2 = 0 .AND. ε3 6= ε1a1 then there is NO SOLUTION for the Case (X);

– if ε2 6= 0 then set

β1 = max
{

a2,
ε3− ε1a1

ε2

}
≤ β≤min

{
b2,

ε3− ε1a1

ε2

}
= β2.

Set β̄ = (β1 +β2)/2 with

P10 =

(
a1

β̄

)
, ϕi = ϕ(a1, β̄), yi = P10, i = i+1; (25)

• Case (XI): we distinguish among the next four cases:

– if ε1 = ε2 = 0 .AND. ε3 ≥ 0 then set ᾱ = (a1 + b1)/2, β1 = a2 ≤ β ≤ β2 = b2, else
there is NO SOLUTION for the Case (XI);

– if ε1 > 0 then α = (−ε2β+ ε3)/ε1 and we analyze three sub–cases:

1. if ε2 > 0 then set

β1 = max
{

a2,
ε1b1− ε3

−ε2

}
≤ β≤min

{
b2,

ε1a1− ε3

−ε2

}
= β2;

2. if ε2 = 0 then set β1 = a2 ≤ β≤ b2 = β2;

3. if ε2 < 0 then set

β1 = max
{

a2,
ε1a1− ε3

−ε2

}
≤ β≤min

{
b2,

ε1b1− ε3

−ε2

}
= β2;

– if ε1 = 0 .AND. ε2 6= 0 then set β̄ = ε3/ε2, ᾱ = (a1 + b1)/2; if (β̄ < a2 .OR. β̄ > b2)
then there is NO SOLUTION for the Case (XI);
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– if ε1 < 0 then α = (−ε2β+ ε3)/ε1 and we analyze three sub–cases:

1. if ε2 > 0 then set

β1 = max
{

a2,
ε1a1− ε3

−ε2

}
≤ β≤min

{
b2,

ε1b1− ε3

−ε2

}
= β2;

2. if ε2 = 0 then set β1 = a2 ≤ β≤ b2 = β2;

3. if ε2 < 0 then set

β1 = max
{

a2,
ε1b1− ε3

−ε2

}
≤ β≤min

{
b2,

ε1a1− ε3

−ε2

}
= β2.

Set β̄ = (β1 +β2)/2 and ᾱ = (−ε2β̄+ ε3)/ε1; if a1 ≤ ᾱ≤ b1 then set

P11 =

(
ᾱ

β̄

)
, ϕi = ϕ(ᾱ, β̄), yi = P11, i = i+1, (26)

else there is NO SOLUTION for the Case (XI);

• Case (XII): we set β̄ = a2 with ε1α+ ε2a2 = ε3, and we distinguish among three cases:

– if ε1 = 0 .AND. ε3 = ε2a2 then set ᾱ = (a1 +b1)/2;

– if ε1 = 0 .AND. ε3 6= ε2a2 then there is NO SOLUTION for the Case (XII);

– if ε1 6= 0 then set

α1 = max
{

a1,
ε3− ε2a2

ε1

}
≤ α≤min

{
b1,

ε3− ε2a2

ε1

}
= α2.

Set ᾱ = (α1 +α2)/2 with

P12 =

(
ᾱ

a2

)
, ϕi = ϕ(ᾱ,a2), yi = P12, i = i+1. (27)

The next lemma justifies the role of the last analysis for the computation of possible solutions
of (14).

Lemma 5.1 Let be given the problem (14) and let the assumptions of Lemma 2.1 hold. Consider
the sequences of m entries {yi} and {ϕi} from (16)–(27), which are relabelled so that for any index
i≥ 2 we have

ϕi−1 ≤ ϕi ≤ ϕi+1.

Then, if
ı̂ ∈ arg min

1≤i≤m
{ϕi}

then the point yı̂ is a global minimum for (14).
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Proof:
The existence of a global minimum y∗ and the corresponding value ϕ(y∗) for (14) is ensured by
Lemma 2.1. Moreover, each global minimum of (14) of course fulfills KKT conditions, so that each
global minimum must belong to the sequence {yi}.
Now assume by contradiction that there exists a point yt ∈ {yi}, with yt ∈ argmin1≤i≤m{ϕi} but yt

is not a global minimum. This yields the contradictory fact that y∗ > ϕ(y∗). 2

6 Conclusions and future work

We have considered a very relevant issue within Nonlinear Programming, namely the solution of a
specific constrained quadratic problem, whose exact global solution can be easily computed after
analyzing the first order KKT conditions associated with it. We also highlighted that our proposal
may to large extent suggest guidelines of research for novel LBMs, by drawing inspiration from
TRMs. This last observation represents a promising tool, in order to provide algorithms which
guarantee global convergence to stationary limit points, satisfying either first or second order nec-
essary optimality conditions. In particular, we can summarize the next promising lines of research,
for large scale problems which iteratively generate the sequences of points{

xk+1 = xk +αkdk
xk+1 = xk +αkdk +βkzk

←− for LBMs

xk+1 = xk +dk ←− for TRMs

being dk, zk and sk search directions at the current iterate xk:

• developing novel iterative LBMs (e.g. linesearch based TNMs), where the search direction
dk (e.g. a Newton-type direction) is possibly combined with another direction zk (e.g. the
steepest descent at xk, a negative curvature direction at xk, etc.) through the use of (14).
Then, comparing the efficiency of the novel methods with more standard linesearch based
approaches from the literature could give indications on the reliability of the ideas in this
paper;

• developing novel hybrid methods where the rationale behind alternating trust–region or line-
search based techniques is exploited. In particular, the iterative scheme xk+1 = xk +αkdk +
βkzk (respectively xk+1 = xk +αkdk) might be considered, where the search directions dk and
zk, along with the steplengths αk and βk (respectively dk and αk) are alternatively computed
by solving

1. a trust–region sub–problem like (4), so that a sufficient reduction of the quadratic model
is ensured,

2. a sub–problem like (14), so that the solution α∗dk +β∗zk is a promising gradient–related
direction to be used within a linesearch procedure,

in order to preserve the global convergence to stationary points satisfying either first or second
order necessary optimality conditions;
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• specifically comparing the use of dogleg methods (within TRMs) vs. the application of (14)
coupled with a linesearch technique. This issue is tricky, since dogleg methods are applied
to trust–region sub–problems like (4), including a general quadratic constraint (i.e. the trust–
region constraint), while in (14) all the constraints are linear, so that its exact global solution is
easily computed. Moreover, the last issue might shed light also on the opportunity (possibly)
of privileging an efficient linesearch procedure applied to a (coarsely computed) gradient–
related search direction, in place of a precise computation of the search direction in LBMs,
using an inexpensive linesearch procedure. In other words, it is at present questionable if
coupling a coarse computation of the vectors dk and zk with an accurate linesearch procedure
would be preferable than coupling accurately computed vectors dk and zk with a cheaper
linesearch procedure;

• introducing nonmonotone stabilization techniques (see e.g. [8]) combining nonmonotonicity
with any of the above ideas, for both TRMs and LBMs.
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