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Abstract
For years, Value-at-Risk and Expected Shortfall have been well established measures of
market risk and the Basel Committee on Banking Supervision recommends their use when
controlling risk. But their computations might be intractable if we do not rely on simplifying
assumptions, in particular on distributions of returns. One of the difficulties is linked to the
need for Integral Constrained Optimizations. In this article, two new stochastic optimization-
based Simulated Annealing algorithms are proposed for addressing problems associated
with the use of statistical methods that rely on extremizing a non-necessarily differentiable
criterion function, therefore facing the problem of the computation of a non-analytically
reducible integral constraint. We first provide an illustrative example when maximizing an
integral constrained likelihood for the stress-strength reliability that confirms the effectiveness
of the algorithms. Our results indicate no clear difference in convergence, but we favor the
use of the problem approximation strategy styled algorithm as it is less expensive in terms of
computing time. Second, we run a classical financial problem such as portfolio optimization,
showing the potential of our proposed methods in financial applications.
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1 Introduction

Risk management and asset allocation are the bulk of portfolio management, and are of
great interest for investors, risk managers and regulators. In most related cases, however,
no closed-form solutions are available for many risk and asset allocation problems, unless
we make further stringent hypotheses. More generally, several statistical problems, such as
inferential statistics (Isaacson and Madsen (1976), Dong and Wets (2000), Shapiro et al.
(2014)), statistical process control (Feng et al. (2018), Glizer and Turetsky (2019)), and
estimation of density function (Cramer (1989)) among others, rely indeed on constrained
optimizations. In such cases, classicalmethods for solving constrained optimization problems
often employ the Lagrangian method, which requires the selection of the Lagrange multiplier
so that the constraint is satisfied (e.g., Bertsekas (2014) for an illustration).

However, on the one hand, it is reported in the literature that standard optimizationmethods
often break down in many situations: when problems involve non-differentiable functions,
large and multi-modal search spaces, non-convex or non-linear programs, multiple objec-
tives, high-dimensional problems, or integral constraints. Charalambous (1978), for example,
identifies a number of situations where classical numerical optimization techniques fail and
where standard methods produce undesirable results.

On the other hand, Simulated Annealing (SA) algorithms are classically used to solve
optimization problems. From a strictly practical point of view, the phenomenon of cooling
applied to metals to obtain an optimal temperature share similarities with many financial
application optimization problems when solved using SA, as shown by, e.g., Cramer (1989),
Woodside-Oriakhi et al. (2011) and Castellano et al. (2021). As stated by Robert and Casella
(2013), it appears that the SA algorithm borrowed its name frommetallurgy and fromphysics.
Especially in computational physics, the relationship with portfolio optimization is clearer,
since the problem solved by SA is an optimization problem, where the function to be min-
imized is called “energy” and the variance factor which controls the convergence is called
“temperature”. In more technical terms, the underlying problems are basically the same, and
SA algorithms are classically used to solve optimization problems in different areas of oper-
ation research such as, for instance: commodity queuing inventories (Shajin et al. (2021)),
planning and release (Etgar et al. (1997), Etgar et al. (2017)), payment scheduling (He et
al. (2009)), graph partitioning (D’Amico et al. (2002)), energy district design (Bergey et al.
(2003)), political district design (Ricca and Simeone (2008)), and more recently for fore-
casting the relationship between oil and gas (Ftiti et al. (2020)). An area where SA reveals
itself to be particularly useful is also risk management, with applications in many fields, e.g.,
tunnel construction (Ryu et al. (2015)), disaster risk management (Edrisi et al. (2020)) and
facility layouts with uncertainty (Tayal and Singh (2018)). In our context of financial appli-
cations, it happens that a large number of optimization problems in finance can be solved by
applying optimization heuristics, such as SA or Genetic Algorithms (GA), as for instance
in Gilli and Schumann (2012). These methods can handle non-convex optimization prob-
lems overcoming many difficulties such as multiple local optima and discontinuities in the
objective function. For example, Cramer (1989) applies SA to Markowitz (1952) portfolio
selection problems with realistic constraints, whilst Woodside-Oriakhi et al. (2011) use SA
for imposing a cardinality constraint onto the classical portfolio optimization program. Bick
et al. (2013) also employ SA for solving constrained consumption-investment optimization
problems, whilst Porth et al. (2016) propose to improve risk diversification combining port-
folios of crop insurance policies and an SA approach to find the optimal allocation. More
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recently, Castellano et al. (2021) provide an approach to systemic risk minimization based
on SA.

In this article, attention will be devoted to optimization problems for which: 1) the tar-
get function is not necessarily differentiable and 2) the constraints are characterized by
non-analytically reducible integrals. It happens that analytical intractability of the integral
constraint is a major cause of limits in the application of classical optimization techniques.
We address this issue by exploring two alternative numerical optimization strategies. A
first strategy consists of solving an auxiliary (approximated) problem, while the other
entails the construction of an approximation algorithm. This model approximation approach
decomposes further into two single sequential strategies, depending on the type of integral
approximation technique employed, i.e. either simulation-based or deterministic-rule. In the
latter case, the deterministic approximation approach generally involves the replacement of
the non-analytically reducible integral with a numerical quadrature (see Shapiro et al. (2014)
and Smith et al. (2015)). In the case of the simulation-based approach, the integral constraint
is reformulated as a stochastic constraint and then a Monte Carlo simulation combined with
another technique, such as the Sample Average Approximation (SAA), is implemented to
approximate the problem. On the basis of these auxiliary problems, simulation-based opti-
mization procedures can then be applied. However, the need to concurrently draw samples
from both the decision and auxiliary variable spaces can make the algorithms computation-
ally expensive. To alleviate this problem, methods such as the Group IndependentMetropolis
Hastings (GIMH) of Beaumont (2003) and the InhomogeneousMarkov Chain (IMC) simula-
tion of deMello andBayraksan (2014)may bemobilized. As for the approximation algorithm
approach, these entail, however, the replacement of the intractable target function by a (con-
sistent or unbiased) estimator within the Markov Chain Monte Carlo (MCMC) algorithm.
This procedure is referred to as the Monte Carlo Within Metropolis (MCWM) - Cf. Andrieu
and Roberts (2009).

Before presenting our empirical results obtained in some settings of classical financial
applications, the primary goal of this article is to design efficient and reliable simulation-
based algorithms for solving integral constrained optimization problems by finding Extended
Saddle Points (ESP) of a relevant penalty function reformulation of the integral constrained
problem. Two SA algorithms are proposed, both relying on importance sampling strategies.
Given a penalty function reformulation of the integral constrained problem, the first algo-
rithm, called theGroup IndependenceMetropolisHastings SimulatedAnnealing (GIMHSA),
requires the construction of an auxiliary problem upon which the GIMH method is imple-
mented. The second method denominated as the Monte Carlo Within Metropolis Simulated
Annealing (MCWMSA), differently, focuses on an approximation of the target (penalty)
function used for the MCMC updating step of the MCWM method. We compare standard
SA combined with quadrature and the two new algorithms first on a low dimension opti-
mization problem given by the maximization of an integral constrained likelihood for a
stress-strength reliability problem. Our empirical trials confirm the effectiveness of the two
new algorithms and convergence properties similar to the standard SA. Nevertheless, in a
higher dimension, standard SA becomes less effective while our proposed algorithm does not
suffer from convergence issues. Our results indicate no clear differences in the convergence
of the GIMHSA and MCWMSA (see Fig. 1) but we favor the use of the MCWMSA, since
the coding difficulty is lower and it is rather quite less expensive in terms of computing time
when the optimization problems are complex.

The SA algorithm we propose extends the Constrained SA (CSA) strategy based on the
Extended Saddle Point (ESP) theory developed by Smith and Wong (2017) to an integral
constrained setup. In contrast with the exogenously given penalty factor in the SA strategy
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proposed by Wah et al. (2006) and adopted in Smith et al. (2015), we endogenously obtain
the penalty factors by augmenting the decision variables. More precisely, we optimize the
penalty function by undertaking a minimization exercize over the decision variable space and
maximization over the penalty factor space. This procedure therefore provides, in addition to
the probabilistic descents in the problem-decision variable space as in conventional SA (as in
Juditsky and Nemirovski (2020)), a probabilistic accent in the penalty factor subspace using
a unified method based on a piecewise version of the Metropolis acceptance probability
to control descents and ascents; this technique offers the benefit of reducing the risk for
the chain to produce poor results. Embedded within the proposed SA-type algorithm is the
simultaneous evaluation of the integral in the constraint which is done using a Monte Carlo
integration procedure. The effectiveness of the algorithms is first assessed herein by applying
them to an inferential problemon reliability in stress-strengthwith independent exponentiated
exponential distributions. Our results in the simulation study here show that our algorithms
are robust procedures for solving integral constrained statistical optimization problems.

The article is organized as follows. Section 2 introduces the integral constrained opti-
mization problem and discusses the adopted method of the penalty function. In Sect. 3 we
describe the constrained simulated annealing and discuss its implementation. Section 4 is
dedicated to the empirical studies of the proposed algorithms, providing 3 applications using
6 sets of datasets used in previous publications. Section 5 concludes, whilst proofs and some
robustness tests are left in the Appendix.

2 On integral constrained optimizations

Let X = {x : x ∈ R
n} be the solution space (i.e. the set of all feasible solutions) where x

are bounded continuous variables. Let f : X → R be a lower bounded objective function
defined on the solution space, X . Furthermore, let g(x) = (g1(x), . . . , gI (x))T represent a
vector of I equality constraint functions. Functions f (·) and g(·) are general functions that
can be discontinuous and not in closed-form. In our case, one of the equality constraints, say
g1, is assumed to be characterized by an integral function whose solution is not available in
closed-form. The goal is to find a global minimum, x∗, subject to the equality constraints1

g(x) = 0 (i.e., x∗ ∈ X such that f (x) ≥ f (x∗), g(x) = 0 for all x ∈ X ). We have the
following mathematical representation of the problem:

min
x∈X f (x)

subject to gi (x) = 0, ∀ i = 1, . . . , I ,
(1)

where g1(x) =
∫
Y
h(x, y)dy − ψ0 with ψ0 a real constant, Y ⊂ R

m and h : X × Y → R a

real-valued measurable function.
Several constraint handling methods have been developed in the literature for dealing with
constrained optimization problems (Zhang et al. (2015)). In this article, we adopt the penalty
function method because of its relative ease of use and amenability to complex optimization
problems. More precisely, we reformulated the integral constrained optimization problem in
Eq. 1 into an unconstrained one using the non-differentiable penalty described in Charalam-

1 Without loss of generality, we only consider a minimization problem with equality constraints, since a
maximization problem can be transformed into a minimization problem by negating the objective function
while inequality constraints, say, gi (x) ≤ 0 can likewise be transformed into an equivalent equality constraint
of the form (gi (x))

+ = max{0, gi (x)} = 0.
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bous (1978). Furthermore, by relying on Extended Saddle Points (ESP) theory (Wah et al.
(2006)), the ESP solution of the following minmax problem:

min
x∈X max

λ∈Rr+
L(x, λ) = f (x) +

(
r∑

i=1

(λi |gi (x)|)p
)1/p

, (2)

corresponds to a solution of the problem in Eq. 1, where p ≥ 1, and λi > 0, i =
1, 2, . . . , I , are penalty factors. Accordingly, stochastic optimization algorithms, such as
the CSA proposed by Wah et al. (2006) may be applied. Unfortunately, the penalty function,
L(x, λ), in Eq. 2 cannot be evaluated analytically due to the integral constraint. In practice,
researchers approximate the constraint, g1(x) by a numerical approximant, gM1 (x), so that
gM1 (x)−→g1(x) ∀x as M goes to infinity. We propose here to apply the Monte Carlo method
for numerical integration with a focus on importance sampling. Following this argument, the
integral can be written in the form:

g1(x) =
∫
Y
h(x, y)dy − ψ0 =

∫
Y

h(x, y)

q(y; x)q(y; x)dy − ψ0 = Eq

[
h(x, Y )

q(Y ; x)
]

− ψ0, (3)

where q(y; x) is a probability density function on Y , Y∼q(·; x) and Eq [·] denotes the expec-
tation with respect to the importance density q . The expectation can be approximated by the
importance sampling estimator which reads:

gM1 (x) = 1

M

M∑
i=1

h(x, Yi )

q(Yi ; x) , (4)

where Yi
iid∼ q, i = 1, . . . , M , is a set of auxiliary variables. Since gM1 (x) converges to g1(x)

almost surely uniformly in x provided that the EqM [|gM1 (x)|] < ∞ (see Homem-de-Mello
(2008), Feng et al. (2018) and Shapiro et al. (2014)), the approximation can always be made
more precise by increasing M .
In light of the above, two alternative implementations of the importance sampling estimator
(4) are explored in the construction of stochastic algorithms for estimating the ESP value and
solution of the minmax problem in Eq. 2. The first consists of approximating the analytically
intractable penalty function required for the computation of the acceptance probability of a
simulated annealing type algorithm update, while the second entails optimizing an approxi-
mation of the analytically intractable penalty function in minmax problems of Eq. 2.

3 Simulated annealing for integral constrained optimization

In this section, we propose two SA type algorithms, based on the CSA developed by Wah et
al. (2006), for solving the integral constrained problem in Eq. 1 by finding an ESP solution
to the minmax problem in Eq. 2. We proceed with the construction of these algorithms in the
following section.

3.1 Two simulated annealing type algorithms

Let us present the first algorithm proposal, i.e. the MCWMSA.

123



Annals of Operations Research

3.1.1 Monte carlo within metropolis simulated annealing (MCWMSA)

TheMCWMSAalgorithm is based on the combination of theMonte CarloWithinMetropolis
(MCWM) of Andrieu and Roberts (2009) and the CSA of Wah et al. (2006). The MCWM
is an iterative sampling algorithm where the MCMC uses an approximation of the target
function in its execution. The MCWMSA consists of replacing the analytically intractable
penalty function, L(x, λ), required for the computation of the acceptance probability in the
CSA by LM (x, λ) such that:

LM (x, λ) = f (x) +
(

(λ1|gM1 (x)|)p +
r∑

i=2

(λi |gi (x)|)p
)1/p

. (5)

In the next few lines, we shall present the details of the first Algorithm.

Algorithm 1

Let (x, λ) be a point in the X × R
r+ space and let G(x, λ; x ′, λ′) be an arbitrary proposal

transition function satisfying the conditionG(x, λ; x ′, λ′) > 0 if and only ifG(x ′, λ′; x, λ) >

0. Denote the target function corresponding to the minmax problem 2 by:

π(x, λ) ∝ exp (−L(x, λ)/Tk), (6)

where Tk = T0ak (as in Wah et al. (2006)) is the temperature at the k-th iterate of the
algorithm, T0 the initial temperature, and a ∈ (0, 1) the cooling rate. After setting the length
of the Markov Chain N and the initial state (x, λ) with λ = 0, at the kth iteration the
MCWMSA consists of the following steps:

1. Let (xk,0, λk,0) be the current state and Tk the current temperature, then use the MCWM
algorithm to update the Markov Chain (xk,�, λk,�), � = 1, . . . , N , as follows:

1.a Draw uk,� ∼ Ber(q) where Ber(·) denotes a Bernoulli distribution with q the prob-
ability to make a proposal in the solution space and 1 − q the probability to make a
proposal in the penalty space.

1.b Draw a trial solution (x∗
k,�, λ

∗
k,�) from the proposal distribution G(xk,�−1, λk,�−1; ·,

·) given by:

G(xk,�−1, λk,�−1; x∗
k,�, λ

∗
k,�) =

{
H(xk,�−1, x∗

k,�)δ(λk,�−1 − λ∗
k,�) if uk,� = 1

H̃(λk,�−1, λ
∗
k,�)δ(xk,�−1 − x∗

k,�) if uk,� = 0,
(7)

where δ(x − y) denotes a Dirac function which takes the value 1 if x = y and 0
otherwise. H(x, ·) and H̃(λ, ·) are, respectively, the proposal distributions for gener-
ating samples for the decision variables and penalty variables. A detailed description
of the proposal distributions H(·, ·) and H̃(·, ·) is presented in the next Subsection
3.1.3.

1.c Draw importance samples yk,�,1, . . . , yk,�,M from q(· ; xk,�−1) and y∗
k,�,1, . . . , y

∗
k,�,M

from q(· ; x∗
k,�).

Then compute:

wM (x∗
k,�, λ

∗
k,�; xk,�−1, λk,�−1) =

{
πM (x∗

k,�, λ
∗
k,�)Gl,l−1 if uk,� = 1

πM (x∗
k,�, λ

∗
k,�)

−1Gl,l−1 if uk,� = 0,
(8)
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where: Gl,l−1 = G(x∗
k,�, λ

∗
k,�; xk,�−1, λk,�−1), and:

wM (xk,�−1, λk,�−1; x∗
k,�, λ

∗
k,�) =

{
πM (xk,�−1, λk,�−1)Gl−1,l if uk,� = 1

πM (xk,�−1, λk,�−1)
−1Gl−1,l if uk,� = 0,

(9)
where: Gl−1,l = G(xk,�−1, λk,�−1; , x∗

k,�, λ
∗
k,�).

Then compute:

πM (xk,�−1, λk,�−1) = exp(−LM (xk,�−1, λk,�−1)/Tk),

and:

πM (x∗
k,�, λ

∗
k,�) = exp(−LM (x∗

k,�, λ
∗
k,�)/Tk),

where:

gM1 (x) = 1

M

M∑
i=1

h(xk,�−1, yk,�,i )

q(yk,�,i ; xk,�−1)
and gM1 (x∗

k,�) = 1

M

M∑
i=1

h(x∗
k,�, y

∗
k,�,i )

q(y∗
k,�,i ; x∗

k,�)
.

Accept the trial solution (x∗
k,�, λ

∗
k,�) with probability:

AM
Tk (xk,�−1, λk,�−1; x∗

k,�, λ
∗
k,�) = min

{
wM (x∗

k,�, λ
∗
k,�; xk,�−1, λk,�−1)

wM (xk,�−1, λk,�−1; x∗
k,�, λ

∗
k,�)

, 1

}
, (10)

or reject it with probability (1 − AM
Tk

(xk,�−1, λk,�−1; x∗
k,�, λ

∗
k,�)).

2. Stop the MCWMSA and keep both the last solution (xk,N , λk,N ) and the correspond-
ing estimated value of the minmax problem in Eq. 2 if the current temperature Tk is
below a threshold value T ∗; otherwise, update k to k + 1, and proceed to step (1) with
(xk+1,0, λk+1,0) = (xk,N , λk,N ).

Algorithm#1 in Appendix C provides a pseudo-code for the MCWMSA.

3.1.2 Group independence metropolis hastings simulated annealing (GIMHSA)

Let us now turn to the presentation of the second proposed algorithm, i.e. the GIMHSA.
TheGIMHSA is similar in spirit to theMCWMSAbut differs in that the algorithmoperates

directly on an approximation of the minmax problem in Eq. 2 given by the following:

min
x∈X max

λ∈Rr+
LM (x, λ) = f (x) +

(
(λ1|gM1 (x)|)p +

r∑
i=2

(λi |gi (x)|)p
)1/p

. (11)

Since the minmax problem in Eq. 11 depends on the set of random vectors Y1:M =
{Y1, . . . , YM }, its ESP value, L∗M , is an estimator of the ESP value, L∗, of the problem
in Eq. 2, and an ESP solution pair (x∗M , λ∗M ) from the set of ESP solutions to problem 11
is an estimator of a ESP solution pair, (x∗, λ∗), of the problem 2.

In the next few lines, we now present in details the second algorithm proposal.
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Algorithm 2

Let (x, λ) be a point in the X × R
r+ space and let y1:M = {y1, . . . , yM } be a random sample

of size M with yi ∈ Y and Yi ∼ qx , ∀i . Also, let G(x, λ; x ′, λ′) be an arbitrary proposal
transition function satisfying the conditionG(x, λ; x ′, λ′) > 0 if and only ifG(x ′, λ′; x, λ) >

0. Denote the target function corresponding to the minmax problem 11 by:

πM (x, λ) ∝ exp (−LM (x, λ)/Tk), (12)

where Tk = T0ak is the temperature at the k-th iteration of the algorithm, T0 the initial
temperature, and a ∈ (0, 1) the cooling rate. After setting the length of the Markov Chain N
and the initial state (x, λ) with λ = 0, the GIMHSA iterates the following steps:

1. Let (x, λ) be the current state, y1:M = {y1, . . . .yM } the current collection of importance
samples drawn independently from qx , and Tk the current temperature. Compute:

πM (x, λ) ∝ exp(−LM (x, λ)/Tk), with gM1 (x) = 1

M

M∑
i=1

h(x, yi )

qx (yi )
,

then use the Metropolis Hastings algorithm to update the Markov Chain N times as
follows:

1.a Draw u ∼ Ber(q)where q is the probability to make a proposal in the solution space
and 1 − q the probability to make a proposal in the penalty space.

1.b Draw a trial solution (x∗, λ∗) from the proposal distribution G(x, λ; ·, ·) given by:

G(x, λ, x∗, λ∗) =
{
H(x, x∗)δλ(λ

∗) if u = 1

H̃(λ, λ∗)δx (x∗) if u = 0,
(13)

where H(x, ·) and H̃(λ, ·) are respectively the proposal distributions for generating
samples for the decision variables and penalty variables. A detailed description of
the proposal distributions H(·, ·) and H̃(·, ·) is presented in Sect. 3.1.3.

1.c Draw importance samples y∗
1 , . . . , y

∗
M from qx∗ . Then compute:

wM (x∗, λ∗; x, λ) =
{

πM (x∗, λ∗)G(x∗, λ∗; x, λ) if u = 1

πM (x∗, λ∗)−1G(x∗, λ∗; x, λ) if u = 0,
(14)

where:

πM (x∗, λ∗) ∝ exp(−LM (x∗, λ∗)/Tk), with gM1 (x∗) = 1

M

M∑
i=1

h(x, y∗
i )

qx∗(y∗
i )

.

Accept the trial solution (x∗, λ∗) and y∗
1:M with probability:

AM
Tk (x, λ; x∗, λ∗) = min

{
wM (x∗, λ∗; x, λ)

wM (x, λ; x∗, λ∗)
, 1

}
, (15)

or reject it with probability (1 − AM
Tk

(x, λ; x∗, λ∗)).

2. Stop the GIMHSA and keep both the last solution (x, λ), y1:M and the corresponding
estimated value of the minmax problem in Eq. 11 if the current temperature Tk is less
than 10−6; otherwise, update k to k + 1, and proceed to step (1).
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It is worth noting that the GIMHSA procedure may also be viewed as an approximation of
a Metropolis Hastings algorithm with target density π(x, λ), making it a special case of the
MCWMSA algorithm. This dual interpretation of the GIMHSA presents an opportunity for
designing algorithms that inherit the potential efficiency of a Markov Chain with a one-step
transition kernel (denoted later on PGIMHSA, see sub-Section 3.2 below) while still being
able to produce samples from the target function, and not an approximation. A pseudo-code
for the GIMHSA is provided in Algorithm#1 in Appendix C.

3.1.3 Proposal distributions H(x, x ′) and H̃(�, �′)

In generating random points, (x ′, λ′), from the neighbourhood,N (x, λ), of the current point
(x, λ) using the proposal distributions G(x, λ; x ′, λ′), we start off, at each iteration step, by
making a decision either to update the decision variables, x , while the penalty factors are kept
fixed or as an alternative to update the penalty factor, λ, maintaining the decision variables
constant. In our Metropolis Hastings SA version, decision variables, x , need to be updated
more frequently than the penalty factors, λ, to enforce the convergence of the algorithm.
Thus, we choose large values of the generation ratio, q , for example q = 20n/(20n+r)with
n and r being, respectively, the number of decision variables and the number of constraints.
Upon doing this, we then draw trial solutions for the decision variables from H(x, ·) and the
penalty factors from H̃(λ, ·). Each of these proposal distributions are described below.
As regards to the proposal distribution H(x, ·) for the decisionvariables, given the challenging
task of finding one good proposal distribution in n dimensions for generating x ′ from the
neighbourhood of x , we propose n good proposal distributions for updating each component
of x . However, to improve the efficiency of the algorithm, we only make x ′ to differ from
x in the j-th component at each iteration step. Let j be a uniform number in {1, 2, . . . , n}
and {σ j : 1 ≤ j ≤ n}, a set of parameters where σ j represents the scale parameter for
the proposal distribution of the j-th decision variable. We generate a trial solution for the
decision variables as follows:

x ′ = x + (θ1e
(1)
j,1, θ2e

(1)
j,2, . . . , θne

(1)
j,n)

T , (16)

where e(1)
j = (e(1)

j,1, . . . , e
(1)
j,n) is the j-th column of an n×n identity matrix and θ j is Cauchy

distributed as such:

fθ (θ j ) = 1

π

σ j

σ 2
j + θ2j

.

In addition,we dynamically update the scale parameter of theCauchy proposal corresponding
to the j−th component of the decision variable, σ j according to the following rule (see
Andrieu and Thoms (2008)):

log (σ
(k+1)
j ) = log (σ

(k)
j ) + 1

(k + 1)
(A j,Tk − A),

where A j,Tk denotes the simple average of the acceptance probabilities associated with the
j−th decision variable at the k-th temperature step, and A is the target acceptance rate set to
0.44 as in Andrieu and Thoms (2008).

In generating the trial point λ′ from H̃(λ, ·), we follow a similar strategy to that of the
decision variables. More precisely, we generate λ′ so that it differs from λ only in the j-th
component where j is a uniform random number on the set {1, 2, . . . , I }. A trial point for
λ′
j is drawn from a uniform distribution over the interval (a(λ)

j , b(λ)
j ) with a(λ)

j = max{λ j −
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w
(λ)
j h j (z), 0}, b(λ)

j = min{λ j + w
(λ)
j h j (z), 10, 000} and w

(λ)
j represent a scale parameter

that controls the width of the search space. Note that the neighbourhood of λ j from which
λ′
j is generated is adjusted according to the degree of constraint violation. Thus, whenever

g j (x) = 0 is satisfied, λ j does not need to be updated. Furthermore, we adjust the scale

parameter, w(λ)
j , according to the following rule:

w
(λ)
j =

⎧⎪⎨
⎪⎩

η0w
(λ)
j if g j (x) > τ0T

η1w
(λ)
j if g j (x) < τ1T

unchanged otherwise,

(17)

where we set, experimentally, η0 = 1.25, η1 = 0.95, τ0 = 1.0 and τ1 = 0.01 so that the
MH chain is not moving too fast in the penalty subspace. That is, when g j (x) is reduced too
quickly (i.e. g j (x) < τ1T is satisfied), g j (x) is over-weighted, leading to a possibly poor
objective value or to some difficulties in satisfying other under-weighted constraints. Hence,
we reduce λ j ’s neighborhood. In contrast, if g j (x) is reduced too slowly (i.e. g j (x) > τ0T
is satisfied), we enlarge λ j ’s neighborhood in order to improve its chance of satisfaction.
Note that wλ

j is adjusted using T as a reference because constraint violations are expected to
decrease when T decreases.

3.2 Asymptotic convergence of MCWMSA and GIMSA

In this section, we show the asymptotic convergence of both the MCWMSA and GIMSA to
a constrained global minimum in a discrete constrained optimization problem.

3.2.1 Asymptotic convergence of MCWMSA

The MCWMSA algorithm (Algorithm 1) describes a Markov Chain (xi , λi ), i = 1, 2, . . ., in
the state vector (x, λ) since the auxiliary variables y are drawn independently at each itera-
tion. Modeling this chain as an Inhomogeneous Markov Chain that consists of a sequence of
Homogeneous Markov Chains of a finite length, each at a specific temperature in a cooling
schedule. The one-step transition kernel, PMCWMSA(x, λ; x ′, λ′), of the MCWMSA algo-
rithm from (x, λ) to (x ′, λ′) is:

PMCWMSA(x, λ; x ′, λ′) =
∫
YM×YM

G(x, λ; x ′, λ′)A(x, λ, y; x ′, λ′, y′)dydy′

+δ(x ′,λ′)(x, λ)

(
1 −
∫
N (x,λ)

∫
YM×YM

A(x, λ, y; x ′, λ′, y′)dydy′G(x, λ; dx ′, dλ′)
)

,

(18)

where:

A(x, λ, y; x ′, λ′, y′) = AM
T (x, λ, y; x ′, λ′, y′)qM

x (y)qM
x ′ (y′),

and N (x, λ) denotes the neighborhood of (x, λ), qM
x the joint probability distribution of

the importance densities and G(x, λ; x ′, λ′), the proposal distribution of (x ′, λ′) ∈ N (x, λ)

conditional on (x, λ) which satisfies:

G(x, λ; x ′, λ′) = G(x ′, λ′; x, λ) and 0 ≤ G(x, λ; x ′, λ′) ≤ 1, (19)
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with: ∫
N (x,λ)

G(x, λ; dx ′, dλ′) = 1. (20)

Since the acceptance probability in theMCWMSAdepends upon an approximation of the tar-
get function, the invariant distribution of PMCWMSA is not π(x, λ) and therefore MCWMSA
will not produce samples from π(x, λ) even in a steady state. However, by relying on the
ergodicity of a one-step transition kernel, PMCWM , of an MCWM sampling procedure,
Andrieu and Roberts (2009) show that these samples are distributed asymptotically accord-
ing to an approximation of π(x, λ), which should be all more precise, as the sample size
grows large. In view of this, it suffices to show that the Markov Chain is ergodic.

Theorem 1 Let (x, λ) denote the state of the inhomogeneous Algorithm 1. The couple (x, λ)

is strongly ergodic if the annealing schedule {Tk : k = 0, 1, . . . } satisfies:
Tk ≥ NΔLM

log (k + 1)
, (21)

where: ⎧⎨
⎩
Tk > Tk+1 and lim

k→∞ Tk = 0

ΔLM = 2 max
(x ′,λ′)∈N (x,λ)

{|LM (x ′, λ′) − LM (x, λ)|}.

Proof See Appendix A. 
�

3.2.2 Asymptotic convergence of GIMHSA

In this case, the sequence (xi , λi ), i = 1, 2, . . ., is no longer a Markov Chain, but rather the
triplet (xi , λi , yi ), i = 1, 2, . . ., is. The GIMHSA defines a Markov Chain with a one-step
transition kernel, PGIMHSA(x, λ, y; x ′, λ′, y′), given by:

PGIMHSA(x, λ, y; x ′, λ′, y′) = G(x, λ; x ′, λ′)AM
T (x, λ; x ′, λ′)qM

x ′ (y′)

+δ(x ′,λ′,y′)(x, λ, y)

(
1 −
∫
N (x,λ)

∫
YM

A(x, λ, y; x ′, λ′, y′)dy′G(x, λ; dx ′, dλ′)
)

,

(22)

where:

A(x, λ, y; x ′, λ′, y′) = AM
T (x, λ; x ′, λ′)qM

x ′ (y′).

Since there exists an integer M so that PM
GIMHSA(x, λ, y; x ′,λ′, y′) > 0, for all

(x, λ, y), (x ′, λ′, y′) the chain is irreducible. The chain is also aperiodic, thus the samples
(xi , λi ) produced are distributed in the limit as i → ∞ according to the target function
πM (x, λ). The GIMH can be viewed as a special case of the MCWM sampling strategy,
thus the irreducible and aperiodic property of the GIMHSA sampling scheme can easily be
deduced from the weak ergodicity property of the MCWMSA algorithm.

4 Numerical illustrations

In this section, we illustrate the efficiency of our algorithms by first conducting an inferential
exercize on reliability in stress-strength problems and, second, optimization exercizes for
financial portfolio allocation problems.
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To begin with, we make explicit all the necessary parameters required in the successful
implementation of the SA algorithms. These include the parameters constituting the cooling
schedule, i.e. the initial temperature (T0), the cooling function, the Metropolis loop length
(NT ), and the stopping condition. The logarithmic cooling schedule is a well known schedule
that guarantees convergence. Nonetheless, this requires infinitely slow cooling. In lieu, most
users prefer the geometric cooling proposed by Kirkpatrick et al. (1983), as such:

Tk = aTk−1, k = 1, 2, . . . , M,

where T0 and a, respectively, denote the initial temperature and the cooling rate. Consistent
with the literature, the cooling rate, 0.8 < a < 0.99, which has been shown to be quite
effective across many applications (e.g., Stander and Silverman (1994), Wah et al. (2006))
is set to 0.95 in this article. Results of robustness checks are made available in Appendix
B. The closer the value of the cooling factor a is to 1, the slower the rate of decay. As
for the initial temperature, T0, we choose a value to ensure that around 60% of initial uphill
moves are accepted (as in Rayward-Smith et al. (1996)), or similarly to achieve an acceptance
probability of about 0.90 irregardless of the value of the cost function (e.g., Rutenbar (1989),
Bohachevsky et al. (1986)). To ensure that the simulated annealing spends sufficient time
to thoroughly explore local optimal at each temperature, we fixed a priori the number of
iterations, NT , to 1, 000 (as in Fisk et al. (2022)). The process is terminated at a temperature,
T ∗, low enough that useful improvements can be expected anymore. Arguably, higher values
of T ∗ would downgrade the precision of the output; on the contrary, smaller values would
increase the accuracy of the numerical solution, but at the cost of a larger computing time.
On this basis, we fixed the terminating temperature to 10−6 (see van Laarhoven et al. (1992)
and Fisk et al. (2022)).

4.1 First application: reproduction of inference and reliability in a stress-strength
problem

For the sake of a better demonstration of the two new algorithms,we first employ a lowdimen-
sion optimization problem given by the maximization of an integral constrained likelihood
for a stress-strength reliability problem. We consider the inferential exercize on reliability in
stress-strength problems with independent Exponentiated Exponential (EE) distributions (as
in Gupta and Kundu (2001)) studied by Smith et al. (2015). This problem fits the form of Eq.
1 and reads:

max
φ∈X l(φ; x, y)

subject to R − ψ0 = 0,
(23)

where l(·) is the Log-likelihood, φ the parameter vector, x and y are, respectively, outcomes
of random variables X and Y , and ψ0 the target reliability value.
Given two random samples x = {x1, . . . , xn} and y = {y1, . . . , ym} drawn, respectively,
from two independent EE distributions2, FX (·) and FY (·), l(φ; x, y) in Eq. 23 is given by:

2 Wedenote theEEdistributionwith EE(α, β)whereα andβ are, respectively, the shape and scale parameters.
The respective distribution function, FX (·), may bewritten following the definition byGupta andKundu (2001)
as:

FX (x; α, β) = (1 − exp(−βx))α , α > 0, β > 0, x > 0.
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l(φ; x, y) = l (α1, β1, α2, β2; x, y)

= n logα1 + n logβ1 + (α1 − 1)
n∑

i=1

log
(
1 − e−β1xi

)− β1

n∑
i=1

xi

+ m logα2 + m logβ2 + (α2 − 1)
m∑
j=1

log
(
1 − e−β2 y j

)− β2

m∑
j=1

y j ,

(24)

and is the Log-likelihood function of the parameter vector (decision variables) φ =
(α1, β1, α2, β2) of two independent exponentiated exponential (EE) distributions.
It is important to note that even though this problem is only four-dimensional, it is still a chal-
lenging problem. The Log-likelihood, l(·), fails a number of commonly assumed properties
of Log-likelihood functions which provide support and guarantee the parameter estimation
results obtained when classical optimization techniques are applied. For instance, the Log-
likelihood of the exponentiated exponential distribution is neither a concave, nor even a
quasi- or pseudo-concave function; there exists a small region where the gradient of l(·)
vanishes with a negative definite Hessian matrix; elsewhere, a frequent change in the sign
of the determinant of the Hessian matrix is observed (see Smith et al. (2015) for a detailed
discussion). These observations therefore suggest that extreme care has to be taken should a
derivative-based technique be opted for.
In problem 23, R denotes the reliability between two EE distributions. Within the relia-
bility framework, the stress-strength model describes the life of a component which has a
random strength X that is subjected to a random stress Y . The component is adjudged to
fail immediately the stress surpasses the strength, otherwise the component is considered
to function properly (i.e. X > Y ). Therefore, R = Pr(Y < X) is a suitable measure for
quantifying reliability. Applications of this concept can be found in many areas, especially
in engineering concepts such as structures, deterioration of rocket motors, static fatigue of
ceramic components, fatigue failure of aircraft structures, and the aging of concrete pressure
vessels. In our case, given that both stress, Y , and strength, X , are described by independent
EE distributions, then the reliabilityR of the random variables can be written as (see Kundu
and Gupta (2005)):

R = β1α1

∫ ∞

0
exp(−β1x) (1 − exp (−β1x))

α1−1 (1 − exp (−β2x))
α2 dx . (25)

Except in a few exceptional cases, the integral in Eq. 25 is known not to be analytically
reducible (see Nadarajah (2011)). In addition, R has been shown to be homogeneous of
degree 0 in (β1, β2), upon the introduction of a change of variable.3 This observation suggests
that the contours ofR are constant along the line in the parameter space satisfying β2 = cβ1,
with c being a real constant.

3 Smith et al. (2015) consider the change of variable z = β1x to obtain:

R = α1

∫ ∞
0

exp(−β1z) (1 − exp (−β1z))
α1−1 (1 − exp (−(β2/β1)z))

α2 dz,

while Nadarajah (2011) poses the transformation z = exp(−β1x) and obtains:

R = α1

∫ 1

0
(1 − z)α1−1

(
1 − zβ2/β1

)α2
dz.
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Table 1 Dataset#1: Two Simulated Datasets of Size 10, each Drawn from Two Exponentiated Exponential
(EE) Distributions with ψ0 = 0.1, such as EE(2, 3) and EE(5, 1.6015)

Variables Observations Sample Sizes

X 0.4977 0.0781 0.3827 0.2694 0.4125 10

0.6414 0.2669 0.1978 0.1968 0.2397

Y 1.7057 1.0191 0.5899 0.9031 0.9207 10

1.9481 2.1290 0.8109 1.6463 1.9842

∗Source: Table 1, page 4,045, in Smith et al. (2015)

While noting that the probability density function, fX (·), of the EE distribution, EE(α1, β1),
can be expressed as:

fX (x) = β1α1 exp(−β1x) (1 − exp (−β1x))
α1−1 , α1 > 0, β1 > 0, x > 0, (26)

then the integral in Eq. 25, R, can be written as:

R = E
[
(1 − e−β2X )α2

]
.

We sample directly from the distribution:

qφ(v) = αβ1 exp(−β1v) (1 − exp (−β1v))α1−1 ,

with samples (M = 10, 000 in Eq. 4) drawn by using:

V = − 1

β1
log
(
1 − F1/α1

)
, F ∼ U (0, 1),

during the execution of our algorithms.
Smith and Wong (2017) present the difficulties (i.e. numerical accuracy issues, poor per-

formances when the value of ψ0 is close to the boundary) involved in using the Lagrange
multiplier approach to solve the integral constrained problem 1. They also describe an appli-
cation of simulated algorithms to integral constrained problems. Ours defer from theirs in
a number of ways. First, while Smith and Wong (2017) optimized sequentially the penalty
function, by gradually increasing the penalty value until convergence is reached, the decision
variables as well as the penalty values are simultaneously optimized within our Monte Carlo
styled strategy.Our strategywhen compared to the sequential optimization procedure adopted
by Smith andWong (2017), has the potential of considerably reducing the computational time
required for the optimization exercize. Second, the Smith andWong (2017) approach is based
on optimizing an approximation of the penalty function while we offer two ways of solving
the problem, i.e. either by an approximated problem or by an approximation algorithm. We
shall see in the following, that even with a small sample, our simulated annealing algorithms
perform efficiently and effectively in estimating the parameters of the integral constrained
likelihood problem.

Finally, we illustrate the application of our algorithms by using the simulated data gener-
ated in Smith et al. (2015) reported in Table 1 below.
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Fig. 1 A Trajectory of the Constrained Log-likelihood Functions obtained from the use of MCWMSA (left
figure) and GIMHSA (right figure) Algorithms for solving the Integral Constrained Problem

Table 2 Parameter Estimates for Dataset#1, comparing CSA of Smith et al. (2015), MCWMSA and GIMHSA
Algorithms when solving the Integral Constrained Log-likelihood in Eq. 23 using Dataset#1 as reported in
Table 1, with a = 0.95, N = 1, 000, T0 = 10 and T ∗ = 10−6

α1 β1 α2 β2 R Log-lik.

CSAa 3.6028 5.2707 3.2018 1.5700 0.0989 −5.1659

MCWMSA Mean 3.4424 5.1485 3.3894 1.6276 0.1000 −5.1984

Std. 0.3204 0.3604 0.3737 0.1036 0.0001 0.0286

GIMHSA Mean 3.4308 5.0533 3.6478 1.6691 0.1000 −5.2567

Std. 0.5324 0.6417 0.8315 0.1713 0.0002 0.0648

a Source: The second line in this table comes from Table 2 third line (“Constrained Penalty”), page 4,045 in
Smith et al. (2015). Computations by the authors

The data is generated by drawing random samples of size 10 each from the two EE
distributions, EE(2, 3) and EE(5, 1.6015), with ψ0 = 0.1 as the corresponding value on
reliability4, R.
Given the above set-up, we executed our stochastic optimization algorithms 10 times each on
a penalty function representation of the integral constrained problem 23. Figure 1 displays
the convergence towards the optimal Log-likelihood obtained by Smith et al. (2015) of a
run, each, of our two algorithms. From this figure there seems to be no difference in the rate
of convergence of the algorithms. In contrast with the GIMHSA algorithm, the MCWMSA
algorithm requires more time in its execution largely because of the need to compute the
penalty function twice at each iteration step (see Eq. 5). In Table 2, we report the parameter
estimates obtained by Smith et al. (2015) alongside the statistical results (i.e. mean and
standard deviation) obtained from 10 independent runs of our algorithms.

The results in Table 2 indicate that on average the GIMHSA algorithm outperforms other
methods as it is the algorithm with the lowest constraint violation (i.e. R − 0.1) estimate.5

4 All results are obtained usingMatLab (version R2019a) on a laptopwith a Intel(R) Core(TM) i7-5500UCPU
@ 2.40GHz and 8GB RAM. The codes used in this article are available upon request from the corresponding
author.
5 In our robustness checks we vary the value of main parameters of the algorithms, namely: a, N and T ∗,
obtaining similar results in terms of efficiency and computational time (Cf. Appendix B).
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Table 3 Reported Characteristics of theMethods in terms of Performances of the Algorithms on the Dataset#1
of Smith et al. (2015)

Methods: Elapsed time Number of Number of Coding
(Application#1, Dataset#1) (sec.) iterations variables complexity

MCWMSA 1,373.30 203,000 15 9,732

GIMHSA 988.82 203,000 14 9,581

Source: Dataset#1 in Tables 1 and 2 of Smith et al. (2015). The algorithm complexity is approached here by the
number of variables per iteration i.e. ((1+η)(n+ I )+m+3) for GIMHSA and ((1+η)(n+ I )+2m+3) for
both the MCWMSA and GIMHSA (Number of variables) and the number of characters in the codes (Coding
complexity)

4.2 Second application: portfolio optimizations in a simple gaussian world

As a second illustration, we implement our algorithms to a set of portfolio optimization
problems with positivity constraint on the weights, namely the Markowitz (1952) mean-
variance portfolio optimization with positive constraint on the weights.

The Markowitz mean-variance problem with short-selling constraints is taken up in the
section to demonstrate the effectiveness of our algorithms.Using this problemas abenchmark,
we are able to assess the quality of the solutions of our algorithms, since an optimal portfolio to
the Markowitz mean-variance problem can easily be obtained using, for example, Quadratic
Programming (QP).

Suppose we have N assets to choose from, let WT = (w1, . . . , wN ) be the trans-
posed vector of weights with wi ∈ R being the weight of the i-th asset in the portfolio
XT = (x1, . . . , xN ). Also, let rT = (r1, . . . , rN ) be a transposed real random vector with
ri , i = 1, . . . , N , the return on asset i . Furthermore, we define r by the following affine
transformation:

r = Σ1/2ε + μ, (27)

where Σ ∈ RN×N is a non-singular, positive definite matrix (called precision matrix), μ ∈
RN a real vector and ε a real randomvector. Following these assumptions, the randomvariable
R ∈ R representing the return on the whole portfolio can be expressed as:

R = WT r, (28)

with the corresponding expected value (E[R]) and variance (var(R)) given as:

E[R] = WT (μ + Σ1/2E[ε])
= WT

(
μ + Σ1/2

∫
ε f (ε)dε

)
,

(29)

and:
var(R) = WT (Σ1/2)T var(ε)Σ1/2W

= WT (Σ1/2)T
(∫

εεT f (ε)dε − E[ε](E[ε])T
)

Σ1/2W,
(30)

where f (·) denotes the probability density function of ε. Under certain distributional assump-
tions on ε, solutions to the integrals in Eq. (29) and (30) can be obtained in closed-forms.

Subject to the above assumptions and given a desired level of expected portfolio returns,
Rexp , the Makowitz mean-variance portfolio selection problem can be summarized as fol-

123



Annals of Operations Research

lows:
min

W∈RN
WT var [r]W

subject to

⎧⎪⎨
⎪⎩
WT E[r] = Rexp∑N

i=1 wi = 1

wi ≥ 0, i = 1, . . . , N ,

(31)

where WT = (w1, . . . , wN ).
Given the multivariate normal assumption on ε in the simple Gaussian world of this first

application, we numerically evaluate the portfolio expected return and variance following
a Monte Carlo procedure. Let εi , i = 1, 2, . . . , M be a sample of size M drawn from the
multivariate normal distribution, f (·), then the integrals in the definition of portfolio expected
returns and variance in Eqs. (29) and (30) are evaluated using the empirical counterparts as
follows:

∫
ε f (ε)dε = E[ε] �

1

M

M∑
i=1

εi ,

and:
∫

εεT f (ε)dε = E[εεT ] �
1

M

M∑
i=1

εiε
T
i .

The consistency of the Monte Carlo approximation, for M −→ ∞, is guaranteed by the
strong law of large numbers (see Robert and Casella (2013), Sect. 3.3, for further details).

We explore some of the properties of the portfolio optimization problem and propose
a slight variation of the sampling procedure described in Section 3.1.3 by limiting our
algorithms to the consideration of solutions that strictly satisfy the return and the budget
constraints. More precisely, we follow the proposal by Crama and Schyns (2003) who state
that in problem 31 given a portfolioW, the neighborhood of the currentW contains all solu-
tions W∗ with the following property: there exist three assets, labeled i1, i2 and i3, without
loss of generality6, so that:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w∗
i1

= wi1 − S,

w∗
i2

= wi2 + Sα,

w∗
i3

= wi3 + S(1 − α),

w∗
i = wi , ∀ i ∈ {1, . . . , N } − {i1, i2, i3},

(32)

where S is a Cauchy distributed random variable and α a tuning parameter set equal to:

α = ri1 − ri3
ri2 − ri3

,

where ri1 , ri2 and ri3 corresponds to the returns on the three randomly selected assets whose
weights are to be modified.

Furthermore, in the presence of a minimum (wi ) and a maximum (wi ) restriction on the
proportion of total investment that can be held in asset i (i = 1, 2, . . . , N ), then a feasible
interval of variation for S to ensure that a move from the current solution W to W ∗ satisfies
the floor and ceiling restrictions can be constructed. Suppose the three assets (say, i1, i2 and

6 We thank the first referee for noticing that the choice of the randomly chosen assets has no importance (since
it can be generalized for all triplets of assets, and, more generally, to all sets of assets).
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Table 4 Reported Characteristics of the Methods in terms of Differences in Volatility (by Level of Expected
Return) versus the QP and Main Reported Performance of the Algorithms for Three Arbitrary Levels of
Expected Returns (for each considered market)

Methods: Obj. Function Elapsed time Number of Number of Coding
(Volatility) (sec.) iterations variables complexity

Panel A: US Stock Market (Application#2, Dataset#2)

Quadratic Prog. 14% 0.03 29 384

MCWMSA 14% 62.95 254,500 94 14,364

GIMHSA 14% 62.95 254,500 94 14,364

Panel B: French Stock Market (Application#2, Dataset#3)

Quadratic Prog. 17% 0.05 39 384

MCWMSA 17% 58.98 203,000 124 14,364

GIMHSA 17% 58.98 203,000 124 14,364

Panel C: Chinese Stock Market (Application#2, Dataset#4 )

Quadratic Prog. 17% 1.65 40 384

MCWMSA 17% 69.71 203,000 127 14,364

GIMHSA 17% 69.71 203,000 127 14,364

Source. Daily Returns on US, Chinese and French Stock Markets (see Costola et al. (2022)). Are reported
here the Markowitz Mean-variance Efficient frontiers differences in terms of Expected Returns obtained using
Monte CarloWithinMetropolis Simulated Algorithm (MCWMSA), and Group Independent Metropolis Hast-
ings Simulated Annealing (GIMHSA), versus the benchmark method namely the Quadratic programming
(Quadratic Prog.). Elapsed time column represents the total time to reach such a result. The algorithm com-
plexity is approached here by the number of variables per iteration i.e. ((1+η)(n+ I )+m + 3) for GIMHSA
and ((1+ η)(n + I ) + 2m + 3) for both the MCWMSA and GIMHSA (Number of variables) and the number
of characters in the codes (Coding complexity)

i3) to be modified for a move from W to W ∗ are known, then we arrive at the following
interval of variation for S:

⎧⎪⎨
⎪⎩

wi1 − wi1 < S < wi1 − wi1

wi2 − wi2 < Sα < wi2 − wi2

wi3 − wi3 < S(1 − α) < wi3 − wi3 ,

(33)

by combining the ceiling and floor restrictions with Eq. (32).
To empirically assess our algorithms on the mean-variance optimization problem, we

next consider three databases (US, Chinese, and French stock markets) covering different
economic sectors and used in Costola et al. (2022). The daily prices on US, French, and
Chinese Stock Markets covers, respectively, the period 19/3/2008 to 31/12/2019, 6/4/2006
to 4/10/2019 and 18/8/2008 to 31/12/2019. Our algorithm finds the exact optimal risk for all
values of the targeted expected returns. The algorithm requires between 58 and 70 seconds
per portfolio of between 29 and 40 securities within a standard setting (see Table 4). The
efficient frontier for these instances are plotted in Fig. (2).

The steps for generating the efficient frontiers in Fig. 2 are brieflypresented inAlgorithm#1
in Appendix C, following Calvo et al. (2012).

The solutions obtained with the two algorithms are very close to the ones resulting from
QP for the three stock markets considered, as simple eyeball analyses of Figs. 2 and 3 reveal.
The difference in the optimal portfolio variance obtained with QP and SA for a given targeted
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Fig. 2 Efficient Frontiers in the
US, Chinese and French Equity
Markets. Note. Are plotted here
the Markowitz Mean-variance
Efficient frontiers obtained using:
Quadratic programming
(Quadratic Prog.), Monte Carlo
Within Metropolis Simulated
Algorithm (MCWMSA), and
Group Independent Metropolis
Hastings Simulated Annealing
(GIMHSA). See Table 4 for the
performances of the various
algorithms with some precise
examples
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Fig. 3 Differences in Volatilities
between GIMHSA/MCWMSA
and Quadratic Programming for
Each Level of Return and
Different Markets
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expected return is of the order of 10−4 (see Fig. 3), which is negligible for the applications
of SA to asset allocation problem.

4.3 Third application: mean-expected shortfall problems in a non-gaussian world

As a third illustration, we implement our algorithms in the case of the Mean-Expected Short-
fall problem (as in Casarin and Billio (2007)), when the data are Non-Gaussian and the
constraint a true integral, for which few approaches have been developed in the literature
to the best of our knowledge. As previously, the return vector rT = (r1, . . . , rN ) with ri ,
i = 1, . . . , N , being the return on asset i , is defined by the affine transformation in Eq. 27
and the corresponding portfolio return, R ∈ R, is given in Eq. 28.

Considering the Expected Shortfall of the portfolio, ESα(R), as the measure of risk,
the goal is to maximize the E[R] subject to ESα(R) among several other constraints. This
problem fits the form of Eq. 1, so that, for α ∈ [0, 1]:

max
W∈RN

WT E[r]

subject to

⎧⎪⎨
⎪⎩
ESα(R) ≤ R∑N

i=1 wi = 1

wi ≥ 0,∀i = 1, . . . , N ,

(34)

where:

ESα(R) = 1

α

∫ α

0
VaRu(R)du,

and R a return threshold, and with:

VaRu(R) = min{x ∈ R : Pr(x + R < 0) ≤ u}
= min{x ∈ R : Pr(−R > x) ≤ u}
= min{x ∈ R : Pr(L ≤ x) ≥ 1 − u}
= F−1

L (1 − u),

where FL(x) = Pr(L ≤ x).
Except for some ad hoc densities, the exact formula for the ES is not available, which

often renders the portfolio selection problem a challenging exercize to undertake.
In our case, suppose the vector of returns on the assets satisfies the affine transformation

defined by Eq. 27, then the Expected Shortfall on the portfolio return leads to:

ESα(R) = −WTμ + 1

α

∫ α

0
F−1

−WT Σ1/2ε
(1 − u)du.

For illustrative purposes, we now assume that the vector of asset returns is characterized by
a class ofMultivariate Skew Student-t distributions which accounts for fat tails and skewness,
in the more realistic Non-Gaussian world of this second application. More precisely, we
assume that the random vector εT = (ε1, . . . , εN ) in Eq. 27 follows a Multivariate Skew
Student-t distribution, SkTN (ε; 0, IN , ν, γ ) with ν = {ν1, . . . , νN } the vector of degrees of
freedom and γ = {γ1, . . . , γN } the vector of parameters that control the skewness of the
distribution. The components εi of ε, i = 1, 2. . . . , N , are independent and Skew Student-t
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distributed with density:

g(εi ; νi , γi ) = 2

γi + 1/γi

[
hνi

(
εi

γi

)
I[0,+∞)(εi ) + hνi (uiγi ) I(−∞,0](εi )

]
, (35)

and:

hνi (x) = Γ ((νi + 1)/2)

Γ (νi/2)
√

(πνi )

(
1 + x2

νi

)−(νi+1)/2

I(−∞,∞)(x) with νi > 2, (36)

the density of a univariate Symmetric Student-t distribution. The mean and variance of εi are
respectively given as follows:

E[εi ] = γ 2
i − 1

γi

Γ ((νi − 1)/2)

Γ (νi/2)

(νi
π

)1/2
, (37)

and:

V (εi ) = γ 4
i − γ 2

i + 1

γ 2
i

(
νi

νi − 2
− νi

π

(
Γ ((νi − 1)/2)

Γ (νi/2)

)2)
+ νi

π

(
Γ ((νi − 1)/2)

Γ (νi/2)

)2
.

(38)
Subject to the above assumptions, it can easily be shown that r follows aMultivariate Skew

Student-t distribution, SkTN (r;μ,Σ, ν, γ ), with a Variance-CoVariance of returns matrix
given by:

V (r) = Σ1/2V (ε)Σ1/2 = Σ1/2Ξ(ν, γ )Σ1/2, (39)

where Ξ(ν, γ ) is a diagonal matrix parametrized in ν and γ , with elements ξi = V (εi ) on
the main diagonal.

To simulate asset returns from a Skew Student-t distribution with ν degrees of freedom
and skewness γ , we use the following stochastic representation. Let Z have a Bernoulli
distribution with parameter 1/(ν2 + 1) and X a Student-t distribution with ν degrees of
freedom, then we have:

Y = Z |X |γ − (1 − Z)|X | 1
γ

. (40)

To facilitate the implementation of our optimization strategy, we embed the following
Monte Carlo evaluation of ES within our optimization scheme as briefly presented here
below.

1. Draw εTj = (ε j1, ε j2, . . . , ε j N ) ∼ SkTN (ε j ; 0, IN , ν, γ ), for j = 1, . . . , M .

2. Compute −WTΣ1/2ε j for j = 1, 2, . . . , M .
3. Denote L j = −WTΣ1/2ε j . If we order the sample (L1, . . . , LM ) so that L1,M ≥

L2,M ≥ · · · ≥ LM,M and:

P(L ≤ x) =
∫

I{L≤x} fL(l)dl = E[I{L≤x}]

�
1

M

M∑
j=1

I{L j≤x},

that is:

P̂(L ≤ x) = 1

M

M∑
i=1

I{Li,M≤x}.
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Table 5 Data Characteristics of
Dataset#5 and Application#3
(Long-term Mean-Expected
Shortfall Optimizations)

Asset Classes Return Std.. Correlation Matrix

Cash Stocks Bonds

Cash 6.8% 2.3% 1 0.01 0.18

Stocks 17.0% 14.7% 1 0.73

Bonds 12.3% 10.5% 1

Pa Source: Casarin and Billio (2007)

4. Evaluate:

ESα(R) = −WTμ + 1

α

∫ α

0

M−1∑
i=1

(
Li,M I

( i−1
M , i

M ](u) + LM,M I
( M−1

M ,1](u)
)
du

= −WTμ + 1

Mα

⎛
⎝�Mα�∑

i=1

Li,M + (Mα − �Mα�) L�Mα�+1,M

⎞
⎠ , (41)

where �x� and I(a,b) denote the greatest integer function and the indicator function on
the interval (a, b), respectively.

As a first step in solving the portfolio optimization in Eq. 34,we consider a revised problem
by exploring the convexity property of Expected Shortfall, i.e.:

ESα(R) ≤
∑
i

wi E Sα(ri ),

and solve the following problem:

max
W∈RN

WT E[r]

subject to

⎧⎪⎨
⎪⎩

∑
i wi E Sα(ri ) ≤ R∑N
i=1 wi = 1

wi ≥ 0,∀i = 1, . . . , N .

(42)

A pseudo-code for the Expected Shortfall efficient frontiers in Fig. 4 is given in Algo-
rithm#1 in Appendix C.

In-view of the above set-up we next illustrate further the effectiveness of our SA type
algorithms in two settings. The first exercize studies the effect of heavy tails and skewness of
the asset distribution on the ES efficient frontier within a strategic allocation problem. The
second one shows the effect of model specification errors on the ES efficient frontier.

The first exercize considers a strategic asset allocation problem similar to the one in
Casarin and Billio (2007). Strategic allocation decisions refer to long-term investments and
usually involve a small number of assets, often represented as the benchmark of different asset
classes. Long-term investors can mitigate the adverse effect arising from their exposure to
the increasing volatility of the financial markets by imposing a constraint on their portfolio’s
downside risk.

Table 5 presents the characteristics of the three asset classes used in Casarin and Billio
(2007). Figure 4 displays the Mean-Expected Shortfall Efficient frontiers under different
parameter settings of the Skew Student-t distribution.

The mean and scale parameters are the same across frontiers while the skewness and
kurtosis vary across the frontiers. Our numerical results show that, for a given expected
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Fig. 4 Mean-Expected Shortfall Efficient Frontiers according to various Distributional Assumptions for the
Returns for Dataset#5 and Application#3

Table 6 Data Characteristics of Dataset#6 andApplication#3 (Long-termMean-Expected Shortfall Optimiza-
tion)

Asset Classes Mean Returns Std. Correlation Matrix

Cash Stocks Bonds

Cash −0.66% 0.89% 1 0.02 −0.02

Stocks 4.23% 16.85% 1 0.01

Bonds 1.11% 4.47% 1

a Source: see Boucher et al. (2013)

return level, the portfolio risk of normally distributed asset returns is lower than those of
heavy-tailed asset returns (see Symmetric Normal and Symmetric Student-t frontiers in Fig.
4). For both normal and heavy tail distributions, the presence of (left) asymmetry in the
distribution implies a larger risk when compared to the case of symmetric distribution (see
Skew Normal and Skew Student-t frontiers in Fig. 4).

In the second exercize dedicated to Mean-Expected Shortfall optimization, we consider
the asset classes used in the long-term global asset allocation with model risk studied in
Boucher et al. (2013). The asset classes are represented by cash, stock and bond markets.7

The main characteristics in terms of means and variance-covariances are presented in Table
6.

We first assume the investor is using a non-correctly specified model (a Normal distribu-
tion) for the returns, plugged into the ES optimization problem. Then, we evaluate the actual
(realized) expected return and risk using the best flexible model (that is a Skew Student-t dis-

7 We follow Boucher et al. (2013) to build up our database: the “Equity” asset class is represented by a
composite index of 95% of the MSCI Europe and 5% of the MSCIWorld; the “Bonds” asset class comes from
the x-trackers II iBoxx Sovereigns Eurozone AAA UCITS 1C index (denoted as XBAT index); the “Money
Market” is represented by the Euro Overnight Index Average (EONIA).
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Fig. 5 Mean-Expected Shortfall Efficient Frontiers according to various Estimation Error Assumptions for the
Returns for Dataset#6 and Application#3. Note. Are plotted here three Mean-ES efficient frontiers. The two
first ones are obtained by using the incorrect return distribution (Symmetric Normal mean and ES in dashed
black: “Sym. Normal Biased Efficient Frontier”), and the correctly estimated distribution (Skew Student-t
mean and ES in dotted-dashed blue: “Skew Student-t Unbiased Efficient Frontier”). The third one is obtained
using the optimal weights corresponding to the incorrect allocations (Symmetric Normal) all together with the
mean and ES under the Skew Student-t assumption (solid red line: “Skew Student-t Biased Efficient Frontier”),
where degrees of freedom and skewness parameters are estimated on the data

tribution) fitted on the real market data on the entire sample. A pseudo-code for the Expected
Shortfall efficient frontiers with estimation errors (Fig. 5) is provided in Algorithm#1 in
Appendix C.

Finally, we compare the two ex post biased frontiers with the optimal one obtained from
the problem 42 with the best flexible model. In Fig. 5, the Expected Return and ES in the
Normal case differ from the Skew Student-t since the Normal distribution assumption for
the entire sample period is too restrictive and suffers from an estimation bias. As expected
the Symmetric Normal frontier is above the two Skew Student-t frontiers (because of the
better fitting of asymmetry and tails provided by the Skew Student-t). We shall also note
that asymmetry and tail estimates are crucial for a correct evaluation of the frontier since the
differences of the two Skew Student-t frontiers are small, while the differences between the
Symmetric Normal and the Skew Student-t ones are large.

In this case (Dataset#6 and Application#3), as in all our previous exercizes (Dataset#1-#5
and Application#1-#3), the proposed MCWSA and GIMHSA algorithms reach convergence
and are able to efficiently provide optimal solutions within a reasonable and realistic com-
putational time for a practitioner.

5 Conclusion

The problem of designing efficient algorithms for optimizing a non-differentiable function
subject to an integral constraint whose solution is not available in a closed-form is an impor-
tant one, in particular inOperational Research andmore specifically in Finance. In this article,
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we propose two new stochastic optimization algorithms referred to as Monte Carlo within
Metropolis Simulated Annealing (MCWMSA) and Group Independent Metropolis Hastings
Simulated Annealing (GIMHSA), which both rely on the use of importance sampling. The
latter employed Monte Carlo simulations in approximating the analytically intractable inte-
gral constrained problem, before using a Simulated Annealing-type algorithm, while the
former used the Monte Carlo strategy in constructing an approximate algorithm. We were
first able to prove some convergence properties of the two algorithms. We show that the
sequence of samples generated by MCWMSA and GIMHSA is an ergodic Markov Chain
process and the limiting distribution is the true target function.

We study first the performance of our algorithms by applying them to the problem of max-
imizing the integral constrained likelihood for the stress-strength reliability with independent
exponentiated exponential distributions, as discussed in Smith et al. (2015). Our results con-
firm the effectiveness of our algorithms in solving the integral constrained problem. It also
happens that GIMHSA gives the best results in the sense that it produces the lowest constraint
violations.

As a complement, we secondly provide examples of potential uses in finance. A first
simple benchmark show that they provide accurate approximations of the true solutions in
the case of the classical portfolio optimization problem of Markowitz (1952), in which the
constrained integral simply concerns the constrained expected return.We further confirm this
basic result by numerically solving the positively constrained Expected Return / Expected
Shortfall strategic asset allocation problems (as in Casarin and Billio (2007)). In the this case,
efficient results are obtained. We also complement this later result using the dataset used in
Boucher et al. (2013) for the sake of robustness and show the impact of some potential
estimation errors on the estimated frontiers. Our results finally show that the two proposed
algorithms quickly converge to practical optimal solutions, within a decent and operational
computational time for risk and asset managers.

We can imagine several extensions of this work. On the algorithmic added-value of the
article, we may think about parallel GIMSA with and without interactions. Also, application
of the proposed algorithms to mixed-integer programming problems, such as the portfo-
lio selection problem with or without a cardinality constraint (see Woodside-Oriakhi et al.
(2011)) will be consider in further studies.

Regarding financial applications, competing with existing numerical approximations for
VaR and ES when Cumulative Density Function analytical expressions are unknown, will be
a decent challenge (see, for instance, Azzalini and Valle (1996) Skew Normal distribution).
To complement this, the recently proposed joint approach for estimating VaR and ES (see
Wang et al. (2018); Meng and Taylor (2020)) might be a target of interest for testing further
our proposed improved approaches. Finally, tackling the full constrained problem of portfolio
optimization in a dynamic setting would be beneficial for investors (see Costola et al. (2022)).
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Appendix A proof to theorem 1: ergodicity of MCWMSA

The proof for Theorem 1 follows standard arguments for the convergence of Inhomogeneous
Markov Chains (e.g., Isaacson and Madsen (1976) and Seneta (1981) for related results).
More precisely, we first form a lower bound on the probability of reaching any solution from
any local minimum, and then show that this bound does not approach zero too quickly. Let
G be the generation probability that satisfies 19.

a. Let:

ΔG = min
(x ′,λ′)∈N (x,λ),

x,λ∈S
G(x, λ; x ′, λ′)

and:

ΔLM = 2 max
(x ′,λ′)∈N (x,λ),

(x ′λ′)∈S,y,y′∈YM

{|LM (x ′, λ′) − LM (x, λ)|},

be, respectively, the value of the smallest one-step solution generation probabilities and
the size of the largest potential jump in the value of the auxiliary penalty function between
any pair of trial solutions.S = X×R

r+ denotes the search spacewhileN (x, λ) represents
the neighborhood of (x, λ). If (x, λ) �= (x ′, λ′), then for all (x, λ) ∈ S and (x ′, λ′) ∈
N (x, λ), we have:

PMCWMSA(x, λ; x ′, λ′) =
∫
YM

∫
YM

G(x, λ; x ′, λ′)AM
Tk (x, λ; x ′, λ′)qM

x (y)qM
x ′ (y′)dydy′

= G(x, λ; x ′, λ′)
∫
YM

∫
YM

AM
Tk (x, λ; x ′, λ′)qM

x (y)qM
x ′ (y′)dydy′

=
⎧⎨
⎩
G(x, λ; x ′, λ′)

∫
YM

∫
YM min

{
exp
(
− (LM (x ′,λ′)−LM (x,λ))

T

)
, 1
}
qM
x (y)qM

x ′ (y′)dydy′, if u = 1

G(x, λ; x ′, λ′)
∫
YM

∫
YM min

{
exp
(
− (LM (x,λ)−LM (x ′,λ′))

T

)
, 1
}
qM
x (y)qM

x ′ (y′)dydy′, if u = 0

≥ G(x, λ; x ′, λ′) exp
(

−ΔLM

Tk

)∫
YM

∫
YM

qM
x (y)qM

x ′ (y′)dydy′

≥ ΔG exp

(
−ΔLM

Tk

)
.

(A.1)
b. For any λ, let:

ΔM
min = min

(x ′,λ′)∈N (x,λ),

AM
Tk

<1,y,y′∈YM

(
LM (x ′, λ′) − LM (x, λ)

)
≥ 0,

be the size of the smallest positive jump in the value of the objective function between
any solution pair.
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If (x ′, λ′) = (x, λ), we have:

PMCWMSA(x, λ; x ′, λ′)

= 1 −
∫
N (x,λ)

∫
YM

∫
YM

AM
Tk (x, λ; x ′, λ′)qM

x (y)qM
x ′ (y′)dydy′G(x, λ; dx ′, dλ′)

=
∫
N (x,λ),AM

Tk
<1

∫
YM

∫
YM

(
1 − AM

Tk (x, λ; x ′, λ′)
)
qM
x (y)qM

x ′ (y′)dydy′G(x, λ; dx ′, dλ′)

≥
∫
N (x,λ),AM

Tk
<1

∫
YM

∫
YM

ΔG(1 − exp(−ΔM
min/Tk))q

M
x (y)qM

x ′ (y′)dydy′dx ′dλ′. (A.2)

Since, Tk is a decreasing sequence, it is always possible to find a k0 > 0 so that for all
k ≥ k0, (1 − exp(−ΔM

min/Tk)) ≥ exp(−ΔLM /Tk).
Thus:

PMCWMSA(x, λ; x, λ) ≥ exp(−ΔLM /Tk).

c. Based on the result obtained above, for all (x, λ), (x ′, λ′) ∈ S and k ≥ k0, the N -
step transition probability from (x, λ) = (x0, λ0) to (x ′, λ′) = (xN , λN ) satisfies the
following:

PN
MCWMSA(x, λ; x ′, λ′) =

N−1∏
i=0

PMCWMSA(xi , λi ; xi+1, λi+1) ≥ (ΔG exp(−ΔLM /Tk)
)N

.

Let τ1 (P) denote the coefficient of ergodicity for the transition probability matrix P ,
defined by:

τ1

(
PN
MCWMSA

)
= 1 − min

(x,λ),(x ′,λ′)∈S
∑

(x ′′,λ′′)∈S
d(x, λ, x ′, λ′, x ′′, λ′′)

whered(x, λ, x ′, λ′, x ′′, λ′′)=min
{
PN
MCWMSA(x, λ; x ′′, λ′′), PN

MCWMSA(x ′, λ′; x ′′, λ′′)
}

An Inhomogeneous Markov Chain is weakly ergodic if and only if there is a strictly
increasing sequence of positive numbers so that:∑

k=0

(
1 − τ1(P

N
MCWMSA)

)
= ∞, (A.3)

using the bound on PN
MCWMSA(x, λ; x ′, λ′), we find that:

1 − τ1(P
N
MCWMSA) = min

(x,λ),(x ′,λ′)∈S
∑

(x ′′,λ′′)∈S
d(x, λ, x ′, λ′, x ′′, λ′′)

≥ min
(x,λ),(x ′,λ′)∈S

min
(x ′′,λ′′)∈S

{
PN
MCWMSA(x, λ; x ′′, λ′′), PN

MCWMSA(x ′, λ′; x ′′, λ′′)
}

≥ (ΔG exp(−ΔLM /Tk)
)N = ΔN

G exp(−NΔLM /Tk). (A.4)

Substituting Tk ≥ NΔLM

log (k + 1)
, k ≥ 0 in Eq. A.3 gives:

∑
k=0

(
1 − τ1(P

N
MCWMSA)

)
≥
∑
k=k0

ΔN
G exp(−NΔLM /Tk)

≥ ΔN
G

∑
k=k0

1

k + 1
= ∞.

(A.5)

This implies that the Markov Chain, (x, λ, x ′, λ′), is weakly ergodic.
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d. Furthermore, since the acceptance probability function AM
TK

is an exponential rational
function in 1/Tk and belongs to the closed class of asymptotically monotone functions
(Anily and Federgruen (1987), Proposition 1) then the sequence of (xn, λn) converges in
distribution (Anily and Federgruen (1987), Corollary 1). This implies that the Markov
Chain is strongly ergodic. 
�

Appendix B robustness checks

This section provides the robustness checks of the results in Tables 2 and 3 with respect the
main parameters of the algorithms, namely a, N and T ∗ (boldface values), showing similar
results in terms of efficiency, computational time and GIMHSA dominance.

Table 7 Parameter Estimates for Dataset#1, comparing CSA of Smith et al. (2015), MCWMSA and GIMHSA
Algorithms when solving the Integral Constrained Log-likelihood in Eq. 23 using Dataset#1 as reported in
Table 1, with a = 0.80, N = 250, T0 = 10 and T ∗ = 10−6

α1 β1 α2 β2 R Log-lik.

SA Constrained with penaltya 3.6028 5.2707 3.2018 1.5700 0.0989 −5.1659

MCWMSA Mean 3.5234 5.0515 4.1315 1.7729 0.0999 −5.4657

Std. 0.9969 1.0508 1.6336 0.3428 0.0005 0.3189

GIMHSA Mean 3.3610 4.7619 4.3054 1.6386 0.0997 −6.6136

Std. 1.6862 1.8144 2.3100 0.4620 0.0004 2.7570

a Source: The second line in this table comes from Table 2 third line (“Constrained Penalty”), page 4,045 in
Smith et al. (2015). Computations by the authors

Table 8 Reported Characteristics of theMethods in terms of Performances of the Algorithms on the Dataset#1
of Smith et al. (2015) with a = 0.80, N = 250, T0 = 10 and T ∗ = 10−6

Methods: Elapsed time Number of Number of Coding
(Application#1, Dataset#1) (sec.) iterations variables complexity

MCWMSA 53.6175 18,500 2 256

GIMHSA 40.1336 18,500 2 256

Source: Dataset#1 in Tables 1 and 2 of Smith et al. (2015). The coding complexity is approached her by the
number of characters of the programs leading to final results

Table 9 Parameter Estimates for Dataset#1, comparing CSA of Smith et al. (2015), MCWMSA and GIMHSA
Algorithms when solving the Integral Constrained Log-likelihood in Eq. 23 using Dataset#1 as reported in
Table 1, with a = 0.95, N = 250, T0 = 10 and T ∗ = 10−4

α1 β1 α2 β2 R Log-lik.

CSA with penaltya 3.6028 5.2707 3.2018 1.5700 0.0989 −5.1659

MCWMSA Mean 3.5015 5.0927 3.7010 1.7165 0.1000 −5.2647

Std. 0.5040 0.5041 0.6256 0.1594 0.0001 0.0964

GIMHSA Mean 3.7916 5.3802 3.6220 1.6974 0.1000 −5.3448

Std. 0.5905 0.8248 0.8069 0.2008 0.0002 0.1212

a Source: The second line in this table comes from Table 2 third line (“Constrained Penalty”), page 4,045 in
Smith et al. (2015). Computations by the authors
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Table 10 ReportedCharacteristics of theMethods in terms of Performances of theAlgorithms on theDataset#1
of Smith et al. (2015) with a = 0.95, N = 500, T0 = 10 and T ∗ = 10−4

Methods: Elapsed time Number of Number of Coding
(Application# 1, Dataset#1# 1) (sec.) iterations variables complexity

MCWMSA 229.1966 113,000 2 256

GIMHSA 169.4235 113,000 2 256

Source: Dataset#1 in Tables 1 and 2 of Smith et al. (2015). The coding complexity is approached here by the
number of characters of the programs leading to final results

Table 11 Parameter Estimates forDataset#1, comparingCSAof Smith et al. (2015),MCWMSAandGIMHSA
Algorithms when solving the Integral Constrained Log-likelihood in Eq. 23 using Dataset#1 as reported in
Table 1, with a = 0.95, N = 250, T0 = 10 and T ∗ = 10−4

α1 β1 α2 β2 R Log-lik.

CSA with penaltya 3.6028 5.2707 3.2018 1.5700 0.0989 −5.1659

MCWMSA Mean 3.6726 5.5130 3.4265 1.5122 0.1000 −7.1298

Std. 0.7621 1.1537 1.7526 0.6076 0.0004 5.2893

GIMHSA Mean 3.4124 5.1838 3.8654 1.5924 0.1001 −6.1172

Std. 1.0364 1.4316 1.8698 0.5675 0.0003 1.9353

a Source: The second line in this table comes from Table 2 third line (“Constrained Penalty”), page 4,045 in
Smith et al. (2015). Computations by the authors

Table 12 ReportedCharacteristics of theMethods in terms of Performances of theAlgorithms on theDataset#1
of Smith et al. (2015) for a = 0.95, N = 250, T0 = 10 and T ∗ = 10−4

Methods: Elapsed time Number of Number of Coding
(Application#1, Dataset#1) (sec.) iterations variables complexity

MCWMSA 92.3520 56,500 2 256

GIMHSA 67.9437 56,500 2 256

sparaSource: Dataset#1 in Table 1 and of Smith et al. (2015). The coding complexity is approached here by
the number of characters of the programs leading to final results
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Appendix C Pseudo-codes
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