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Cokriging is the common method of spatial interpolation (best linear unbiased prediction) in multivariate geo-
statistics. While best linear prediction has been well understood in univariate spatial statistics, the literature for
the multivariate case has been elusive so far. The new challenges provided by modern spatial datasets, being typ-
ically multivariate, call for a deeper study of cokriging. In particular, we deal with the problem of misspecified
cokriging prediction within the framework of fixed domain asymptotics. Specifically, we provide conditions for
equivalence of measures associated with multivariate Gaussian random fields, with index set in a compact set of a
d-dimensional Euclidean space. Such conditions have been elusive for over about 50 years of spatial statistics.

We then focus on the multivariate Matérn and Generalized Wendland classes of matrix valued covariance
functions, that have been very popular for having parameters that are crucial to spatial interpolation, and that
control the mean square differentiability of the associated Gaussian process. We provide sufficient conditions,
for equivalence of Gaussian measures, relying on the covariance parameters of these two classes. This enables to
identify the parameters that are crucial to asymptotically equivalent interpolation in multivariate geostatistics. Our
findings are then illustrated through simulation studies.

Keywords: Cokriging; equivalence of Gaussian measures; fixed domain asymptotics; functional analysis;
Generalized Wendland; Matérn; spectral analysis

1. Introduction

1.1. Context

Our paper deals with equivalence of Gaussian measures and asymptotically equivalent cokriging pre-
diction in multivariate geostatistics. We consider a multivariate (p-variate) stationary Gaussian field
Z = {Z(s) = (Z1(s), . . . ,Zp(s))�, s ∈ D}, where D is a fixed bounded subset of Rd with non-empty inte-
rior. Throughout, the integers d and p are fixed. The assumption of Gaussianity implies that modeling,
inference and prediction depend exclusively on the mean of Z , which is constant and assumed to be
zero, and on the multivariate covariance function, being a p× p matrix function R = [Ri j]pi, j=1, defined

in Rd , such that

Ri j (h) = Cov(Zi(t),Z j (s)), h = t − s,
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for t,s ∈ D and i, j = 1, . . . ,p. Throughout, the diagonal elements Rii are called marginal covariances,
whereas the off-diagonal members Ri j are called cross-covariances. The mapping R must be positive
definite, which means that

n∑
�=1

n∑
k=1

a�� R(s� − sk)ak ≥ 0, (1)

for all positive integers n, {s1, . . . ,sn} ⊂ D and {a1, . . . , an} ⊂ Rp .
Spatial prediction in multivariate geostatistics is known as cokriging, which is the analogue of best

linear unbiased prediction in classical regression. Cokriging is based on the conditional expectation
of a component of Z at a target point s0 ∈ D, given observed values of all its components at given
observation locations {s1, . . . ,sn} ⊂ D. We put emphasis on the following problems: How important is
the multivariate covariance function? Which covariance parameters are important?

We provide answers to these two questions and, in doing so, we obtain general sufficient conditions
for equivalence of multivariate Gaussian measures, that are of independent interest. Notice that Zhang
and Cai (2015) have previously also addressed these two questions and provided partial answers only.

1.2. Literature review

Multivariate covariance functions

Multivariate covariance functions in d-dimensional Euclidean spaces have become ubiquitous and we
refer the reader to Genton and Kleiber (2015) for a detailed account. Recently, there has been some
work on multivariate covariance functions on non planar surfaces, and the reader is referred to Alegría
and Porcu (2017), Alegría et al. (2019), Porcu, Bevilacqua and Genton (2016) and Bevilacqua et al.
(2019).

As for constructive methods to provide new models, the linear model of coregionalization
(Wackernagel, 2003) is based on representing any component of the multivariate field Z as a lin-
ear combination of latent, uncorrelated fields. Such a technique has been constructively criticized by
Gneiting, Kleiber and Schlather (2010) and Daley, Porcu and Bevilacqua (2015) as the smoothness
of any component of the multivariate field amounts to that of the roughest underlying univariate pro-
cess. Moreover, the number of parameters can quickly become massive as the number of components
increases. Scale mixture techniques as in Porcu and Zastavnyi (2011), as well as latent dimension ap-
proaches (Apanasovich and Genton, 2010, Porcu, Gregori and Mateu, 2006, Porcu and Zastavnyi, 2011)
have been largely used to propose new multivariate models. Bevilacqua, Hering and Porcu (2015)
call the following construction principle multivariate parametric adaptation: let {R(·;λ) : [0,∞) →
R, λ ∈ Rk } be a parametric family of continuous functions, such that R(|| · ||;λ) is a correlation func-
tion in Rd (R(0;λ) = 1), indexed by a parameter vector λ = (λ1, . . . ,λk )�. Call λi j = (λi j ,1, . . . ,λi j ,k)�,
i, j = 1, . . . ,p a collection of parameter vectors in Rk . Then, define R : [0,∞)→ Rp×p through

R(x) =
[
Ri j(x)

] p
i, j=1 , x ∈ [0,∞),

with elements Ri j defined as

Ri j(x) = σiiσj j ρi jR(x;λi j ), x ∈ [0,∞), (2)

where σ2
ii is the variance of the ith component of the multivariate random field and where ρii = 1 and

ρi j , i � j, is the colocated correlation coefficient. Thus, the problem is finding the restriction on the
parameters λi j such that R(|| · ||) is positive definite as in (1).



2520 F. Bachoc et al.

A crucial benefit of this strategy, by comparison with the linear model of coregionalization, is a
clear physical interpretation of the parameters (Bevilacqua, Hering and Porcu, 2015, Vallejos, Osorio
and Bevilacqua, 2020). For example, for a bivariate random field (p = 2), the colocated correlation
parameter, ρ12, expresses the marginal correlation between the components, since R12(0) = R21(0) =
ρ12 if σ2

11 = σ
2
22 = 1. In Euclidean spaces this strategy has been adopted by Apanasovich, Genton and

Sun (2012), Gneiting, Kleiber and Schlather (2010) and by Daley, Porcu and Bevilacqua (2015).

Misspecified kriging predictions under infill asymptotics

The study of asymptotic properties of (co)kriging predictors is complicated by the fact that more than
one asymptotic framework can be considered when observing a single realization from a (multivariate)
Gaussian field. Under infill asymptotics (also called fixed domain asymptotics), the typical assumption
is that the sampling domain is bounded and that the sampling set becomes increasingly dense. Under
increasing domain asymptotics, the sampling domain increases with the number of observed data, and
the distance between any two observation locations is bounded away from zero (Bachoc, 2014, Mardia
and Marshall, 1984).

The focus of this paper is on infill asymptotics. In this case, in the univariate case, a key concept is
the equivalence of Gaussian measures (Ibragimov and Rozanov, 1978, Skorohod and Jadrenko, 1973).
Furthermore, a long-standing object of attention is asymptotically optimal prediction when using a
misspecified covariance function (the predictor is then called pseudo BLUP by Michael Stein Stein,
1999a). In the univariate case, Michael Stein has shown that, when the Gaussian measures obtained
from the true and misspecified covariance function are equivalent, then the predictions under the mis-
specified covariance function are asymptotically efficient, and mean square errors are asymptotically
equivalent to their targets (Stein, 1988, 1990, 1993, 1999b, 2004).

When working with specific covariance models, it is thus crucial to know which conditions on the
parameters imply the equivalence of Gaussian measures. Specific results have been provided for the
Matérn (Zhang, 2004) and Generalized Wendland (Bevilacqua et al., 2019) classes of covariance func-
tions, associated with scalar valued random fields. These results themselves follow from earlier works
on general conditions for equivalence of univariate Gaussian measures, in particular based on spectral
densities (Skorohod and Jadrenko, 1973). Nevertheless, multivariate extensions of these various results
are lacking. They are provided in the present paper.

1.3. Outline

The new challenges provided by modern spatial datasets, being typically multivariate, call for a deeper
study of cokriging than is provided by the current literature discussed above. This is the object of this
paper, where we deal with the problem of misspecified cokriging prediction within the framework of
infill asymptotics. We provide general sufficient conditions for equivalence of Gaussian measures in the
multivariate case, complementing contributions that are limited, since the early 70ies, to scalar valued
random fields, as discussed above.

We then focus on the multivariate Matérn and Generalized Wendland classes of matrix valued co-
variance functions, that have been very popular in spatial statistics for having parameters that are crucial
to spatial interpolation, and that control the mean square differentiability of the associated Gaussian
process. We show parametric conditions ensuring these matrix valued covariance models to be com-
patible, that is, to yield equivalent Gaussian measures. Hence, we provide sufficient conditions for
asymptotic equivalence of misspecified cokriging predictions. We confirm and illustrate this asymp-
totic equivalence numerically.
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The outline of the paper is the following: Section 2 contains the necessary mathematical and proba-
bilistic background. Section 3 contains general results about compatible matrix valued covariance func-
tions. Section 4 relates on the compatibility between the Matérn and Generalized Wendland parametric
classes of multivariate covariance functions. Section 5 inspects the problem of cokriging predictions
through these models. Our findings are then illustrated through a simulation study in Section 6. Sec-
tion 7 provides the proofs for Section 3. The remaining proofs are given in the supplementary material
Bachoc et al. (2021).

2. Background and notation

2.1. Multivariate covariance functions and function spaces

Let d,p be positive integers. Let R : Rd → Rp×p be positive definite. We let the elements Ri j of R be
continuous in Rd . The matrix spectral density of R is the p × p matrix function F = [Fi j ]pi, j=1 defined
by

Ri j (h) =
∫
Rd

Fi j (λ)eıh�λdλ,

for h ∈ Rd and i, j = 1, . . . ,p. Here ı is the complex number satisfying ı2 = −1. Note that a sufficient
condition for F to be well defined is that R has elements Ri j that are pointwise absolutely integrable in
R
d , and that the same holds for the Fourier transforms of these elements.
For a = 0,1, we consider a stationary matrix covariance function R(a) = [R(a)

i j ]p
i, j=1 on Rd . We as-

sume that, for a = 0,1 and i, j = 1, . . . ,p, the function R(a)
i j

is summable on Rd and that R(a) has matrix

spectral density F(a) = [F(a)
i j ]p

i, j=1.

We further assume that for a = 0,1 and j = 1, . . . ,p, F(a)
j j is real-valued, strictly positive on Rd and

summable on Rd . We remark that for a = 0,1 and i, j = 1, . . . ,p, i � j, F(a)
i j is complex-valued and we

also assume that |F(a)
i j

| is summable on Rd , with |z | the modulus of z ∈ C. Cramér’s theorem shows

that, for any λ ∈ Rd and a = 0,1, the matrix F(a)(λ) is Hermitian with non-negative eigenvalues.
For a p × p Hermitian matrix M, we let λ1(M) ≤ · · · ≤ λp(M) be its p eigenvalues. If M is non-

negative definite, we let M1/2 be its unique Hermitian non-negative definite square root. For a square
complex matrix N, we let ||N|| be its largest singular value. For a complex column vector v, we let v̄ be
composed of the conjugates of v and ||v ||2 = v̄�v. For two p × p Hermitian matrices M and N we write
M ≥ N when for all v ∈ Cp , v̄�Mv ≥ v̄�Nv. We let e1, . . . ,eq be the q basis column vectors of Rq for
q ∈ N.

For a summable function f : Rd → R, we let the Fourier transform F ( f ) of f be defined by, for
λ ∈ Rd ,

F ( f )(λ) = 1
(2π)d

∫
Rd

f (t)e−ıλ�tdt.

For a bounded subset S of Rd with non-empty interior, we let WS be the set of functions from Rd to
C
p of the form ( f1, . . . , fp)�, where for i = 1, . . . ,p, fi = F (gi) for a function gi in L2(Rd) that is zero

outside of S. As observed in Skorohod and Jadrenko (1973), a function ( f1, . . . , fp)� in WS satisfies∫
Rd

(| f1(λ)|2 + · · ·+ | fp(λ)|2)dλ <∞. Consider a matrix function λ 	→ F(λ) with λ ∈ Rd and with F(λ)
a p × p Hermitian strictly positive definite matrix and assume that ||F || and λp(F)/λ1(F) are bounded
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on Rd . Then we define WS(F) as the closure of WS in the metric

|| f ||2WS (F) =

∫
Rd

f̄ (λ)�F(λ) f (λ)dλ.

We remark that WS(F) is a (complex) separable Hilbert space, with inner-product given by

( f 1, f 2)WS (F) =

∫
Rd

f̄ 1(λ)�F(λ) f 2(λ)dλ.

Indeed, for f = ( f1, . . . , fp)� ∈WS(F), for i = 1, . . . ,p, fi is included in the space of square integrable
functions w.r.t. the measure ||F(λ)||dλ which is separable and complete.

For S ⊂ Rd , we let L2,p
S

be the Hilbert space of the vectors of functions of the form ( f1, . . . , fp)�,
with fi : S → C square summable for i = 1, . . . ,p, endowed with the inner product

(( f1, . . . , fp)�,(g1, . . . ,gp)�))L2,p
S

=

∫
S

f̄1(t)g1(t)dt + · · · +
∫
S

f̄p(t)gp(t)dt.

2.2. The univariate Matérn and Generalized Wendland covariance functions

We start by describing the two univariate classes of covariance functions that will be used throughout
as building blocks for matrix valued covariance functions.

1. The Matérn function (Stein, 1999a) is defined as:

Mν,α(r) =
21−ν

Γ(ν)

( r
α

) ν
Kν

( r
α

)
, r ≥ 0, (3)

where r = ||h ||, h ∈ Rd . The Matérn covariance function is positive definite in Rd for all positive α
and for any value of d. Here, Kν is a modified Bessel function of the second kind of order ν. The
parameter ν > 0 characterizes the differentiability at the origin and, as a consequence, the differentia-
bility of the associated sample paths. In particular for a positive integer k, the sample paths are k times
differentiable, in any direction, if and only if ν > k. When ν = 1/2 +m and m is a nonnegative integer,
the Matérn function simplifies to the product of a negative exponential with a polynomial of degree
m, and for ν tending to infinity, a rescaled version of the Matérn converges to a squared exponential
model being infinitely differentiable at the origin. Thus, the Matérn function allows for a continuous
parameterization of its associated Gaussian field in terms of smoothness.

2. The Generalized Wendland function (Gneiting, 2002b, Zastavnyı̆, 2006) is defined, for κ, β > 0, as

Wμ,κ,β(r) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

B(2κ, μ+ 1)

∫ 1

r/β
u(u2 − (r/β)2)κ−1(1 − u)μ du, 0 ≤ r/β < 1,

0, r/β ≥ 1,
(4)

with B denoting the beta function, and where r = ||h||, h ∈ Rd . The function Wμ,κ,β(r) is positive
definite in Rd if and only if

μ ≥ (d + 1)/2 + κ. (5)
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Note that Wμ,0,β is not defined because κ must be strictly positive. In this special case we consider
the Askey function (Askey, 1973)

Aμ,β(r) :=

{
(1 − r/β)μ , 0 ≤ r/β < 1,
0, r/β ≥ 1.

Arguments in Golubov (1981) show that Aμ,β is positive definite if and only if μ ≥ (d + 1)/2 and we
define Wμ,0,β :=Aμ,β .

Closed form solution of the integral in (4) can be obtained when κ = k, a positive integer. In this
case, Wμ,k ,β(r) =Aμ+k ,β(r)Pk (r), with Pk a polynomial of order k. These functions, termed (original)
Wendland functions, were originally proposed by Wendland (1995).

Other closed form solutions of integral (4) can be obtained when κ = k + 1/2, using some results in
Schaback (2011). Such solutions are called missing Wendland functions.

As noted by Gneiting (2002a), Generalized Wendland and Matérn functions exhibit the same behav-
ior at the origin, with the smoothness parameters of the two covariance models related by the equation
ν = κ + 1/2.

Here, for a positive integer k, the sample paths of a Gaussian field with Generalized Wendland
function are k times differentiable, in any direction, if and only if κ > k − 1/2.

2.3. Multivariate Matérn and Generalized Wendland models

We now consider the multivariate parametric adaptation, illustrated through Equation (2), as a con-
struction principle for multivariate covariance functions.

We follow Gneiting, Kleiber and Schlather (2010) and Daley, Porcu and Bevilacqua (2015) to couple
construction (2) with, respectively, the Matérn model (3) and the Generalized Wendland model (4), to
obtain:

1. The Multivariate Matérn model, denoted MMθ , and defined as

MMθ(r) =
[
ρi jσiiσj jMν,αi j (r)

] p
i, j=1 , ρii = 1, ρi j = ρji, αi j = αji, i, j = 1, . . . ,p, (6)

where θ = ([σii]i=1,...,p,[ρi j ]i, j=1,...,p,i< j, ν,[αi j ]i, j=1,...,p,i≤ j);
2. The Multivariate Generalized Wendland model, denoted MWλ , and defined as

MWλ(r) =
[
ρi jσiiσj jWμ,κ,βi j (r)

] p
i, j=1 , ρii = 1, ρi j = ρji, βi j = βji, i, j = 1, . . . ,p, (7)

where λ = ([σii]i=1,...,p,[ρi j ]i, j=1,...,p,i< j, μ, κ,[βi j ]i, j=1,...,p,i≤ j).
Note that, in principle, the smoothness parameters ν and κ for both models can change through the

components. Nevertheless, in this paper we assume common smoothness parameters.
Henceforth, for the multivariate Matérn, we assume the following condition on the parameter θ:

inf
z≥0

λ1
���
[
ρi jσiiσj j

Γ(ν + d/2)
πd/2Γ(ν)

αd
ij (1 + z)2ν+d

(1 + α2
i j z

2)ν+d/2

] p
i, j=1

��� > 0. (8)

The condition (8) is interpreted as follows (see the supplementary material Bachoc et al., 2021 for
more details). The matrix spectral density of the Matérn model is real-valued and its diagonal elements
are of order (1 + ||λ ||)−2ν−d for large frequency λ ∈ Rd . After normalization by (1 + ||λ ||)2ν+d yielding
lower and upper bounded diagonal elements, we ask the resulting symmetric matrix to have its smallest
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eigenvalue bounded from below by zero. This enables the satisfaction of Condition 1 in Section 3
below. This requirement is only slightly more than asking for the matrix spectral density to be positive
definite, which is necessary. Hence, the condition (8) is arguably mild.

Similarly, for the multivariate Generalized Wendland model we assume that

inf
z≥0

λ1

( [
ρi jσiiσj j β

d
ij (1 + z)d+1+2κ

1F2

(
ζ ; ζ +

μ

2
, ζ +

μ

2
+

1
2

;−
(zβi j )2

4

) ] p
i, j=1

)
> 0, (9)

where ζ = (d + 1)/2 + κ and

1F2(a; b,c; z) =
∞∑
k=0

(a)k zk

(b)k(c)k k!
, z ∈ R, (10)

is a special case of the generalized hypergeometric functions qFp (Abramowitz and Stegun, 1966), with
(q)k = Γ(q + k)/Γ(q) for k ∈ N ∪ {0}, being the Pochhammer symbol. The discussion of the condition
(9) is similar to that of the condition (8).

Remark 1. In the bivariate case, the condition (8) is equivalent to

ρ2
12 <

α4ν
12

α2ν
11 α

2ν
22

inf
z≥0

(α−2
12 + z2)2ν+d

(α−2
11 + z2)ν+d/2(α−2

22 + z2)ν+d/2
(11)

and the condition (9) is equivalent to

ρ2
12 <

βd11β
d
22

β2d
12

inf
z≥0

1F2

(
ζ ; ζ + μ

2 , ζ +
μ
2 +

1
2 ;−(zβ11)2

4

)
1F2

(
ζ ; ζ + μ

2 , ζ +
μ
2 +

1
2 ;−(zβ22)2

4

)
(

1F2

(
ζ ; ζ + μ

2 , ζ +
μ
2 +

1
2 ;−(zβ12)2

4

) ) 2 . (12)

These two latter conditions are obtained by writing that the determinants of the (normalized) 2 × 2
matrix spectral densities of the Matérn and Generalized Wendland models are bounded from below by
0. The proof of the two equivalences is given in the supplementary material Bachoc et al. (2021). The
condition (11), with “≤” instead of “<”, is necessary and sufficient for the bivariate Matérn model to
be valid (to indeed be positive definite), see Gneiting, Kleiber and Schlather (2010, Theorem 3).

2.4. Equivalence of Gaussian measures and cokriging

Equivalence and orthogonality of probability measures are useful tools when assessing the asymptotic
properties of both prediction and estimation for Gaussian fields. We denote with P(a), a = 0,1, two
probability measures defined on the same measurable space {Ω,F }. The measures P(0) and P(1) are
called equivalent (denoted P(0) ≡ P(1)) if, for any A ∈ F , P(1)(A) = 1 implies P(0)(A) = 1 and vice
versa. On the other hand, P(0) and P(1) are orthogonal if there exists an event A such that P(1)(A) = 1
but P(0)(A) = 0. For a p-variate Gaussian random field Z : Ω × D → Rp , to define previous concepts,
we restrict the event A to the σ-algebra generated by Z and we emphasize this restriction by saying
that the two measures are equivalent on the paths of Z . It is well known that two Gaussian measures
(that is two measures on Ω such that Z is Gaussian) are either equivalent or orthogonal on the paths of
Z (Ibragimov and Rozanov, 1978).
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Since a Gaussian measure is completely characterized by the mean function and matrix covariance
function, we write P(R) for a Gaussian measure on (Ω,F ) such that Z has zero mean and matrix
covariance function R. We also write P(R(0)) ≡ P(R(1)) on the paths of Z , if two Gaussian measures
with mean zero and the matrix covariance functions R(0) and R(1) are equivalent on the paths of Z .

For the remainder of the paper, we call R(0) and R(1) compatible when P(R(0)) ≡ P(R(1)) on the
paths of Z .

A direct implication of the celebrated result by Blackwell and Dubins (1962) is that, if two ma-
trix valued covariance functions are compatible, then the two cokriging predictors are asymptotically
equivalent (under fixed domain asymptotics).

3. General results

Let us consider two matrix covariance functions R(0) and R(1) with associated matrix spectral densities
F(0) and F(1) and let P(R(0)) and P(R(1)) be the associated Gaussian measures. The next condition is
our general technical requirement on R(0) and R(1). As shown in the supplementary material Bachoc
et al. (2021), this condition holds for the Matérn and Generalized Wendland matrix covariance func-
tions.

Condition 1. There exist two constants 0 < c1 < c2 < ∞ and a function γ : Rd → R such that
(γ, . . . ,γ)� is in W[−b,b]d for some fixed 0 < b <∞ and, for all λ ∈ Rd ,

c1γ
2(λ)Ip ≤ F(0)(λ) ≤ c2γ

2(λ)Ip,

c1γ
2(λ)Ip ≤ F(1)(λ) ≤ c2γ

2(λ)Ip .

Condition 1 can be interpreted as follows. First, for the two matrix covariance functions, the (uni-
variate) spectral densities of the p components of the p-variate Gaussian field have the same asymptotic
behavior (given by the function γ2) as ||λ || →∞. Second, again for the two matrix covariance functions,
the matrix spectral density is asymptotically well-conditioned as ||λ || →∞.

We now provide a fundamental result for this paper. It relates about a sufficient condition for the
compatibility of R(0) and R(1). It is an extension of Theorem 1 in Skorohod and Jadrenko (1973) from
the univariate to the multivariate case.

Theorem 1. Assume that Condition 1 holds, and that there exists a matrix-valued function B on (Rd)2,
such that for λ,μ ∈ Rd , B(λ,μ) = [b(λ,μ)i j]pi, j=1 is a p × p complex matrix. Let B(λ,μ) = B̄(μ,λ)� for

all λ,μ ∈ Rd . Assume also that for i, j = 1, . . . ,p, we have∫
Rd

∫
Rd

|bi j(λ,μ)|2 ||F(0)(λ)|| ||F(0)(μ)||dλdμ < +∞. (13)

Assume then that we have, for t,s ∈ D and h = t − s,

R(1)(h) − R(0)(h) =
∫
Rd

∫
Rd

e−ıλ�t+ıμ�sF(0)(λ)B(λ,μ)F(0)(μ)dλdμ. (14)

Then, P(R(0)) ≡ P(R(1)) on the paths of Z .
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Notice that the function in the integral (14) is summable because of Cauchy–Schwarz inequality in
concert with (13) and Condition 1.

We now provide a second fundamental result for this paper. The proof of Theorem 2 relies on The-
orem 1. Theorem 2 is particularly well applicable to specific models of covariance functions, as it just
requires to show that two matrix spectral densities are sufficiently close for large frequencies. This
enables us to address the Matérn and Generalized Wendland models in Section 4. Theorem 2 is an
extension of Theorem 4 in Skorohod and Jadrenko (1973) from the univariate to the multivariate case.

Theorem 2. Assume that Condition 1 holds, and that∫
Rd

1
γ(λ)4

����F(0)(λ) − F(1)(λ)
����2dλ <∞.

Then, P(R(0)) ≡ P(R(1)) on the paths of Z .

As written just above, the sufficient condition in Theorem 2 is that the two matrix spectral densities
have the same asymptotic behavior for large frequency. This can be interpreted as the two multivariate
covariance functions having the same smoothness and local behavior at zero. This is well interpreted,
since under fixed domain asymptotics, the smoothness and local behavior of a univariate covariance
function at zero are of central importance, as is for instance highlighted by the vast literature on their
estimation Anderes (2010), Azaïs et al. (2020), Istas and Lang (1997), Lang and Roueff (2001), Loh
(2015).

4. Compatible multivariate Matérn and Generalized Wendland
correlation models

Let us consider the parameter vectors

θ(a) = ([σ(a)
ii

]i=1,...,p,[ρ(a)i j
]i, j=1,...,p,i< j, ν,[α(a)i j

]i, j=1,...,p,i≤ j)

and

λ(a) = ([σ(a)
ii ]i=1,...,p,[ρ(a)i j ]i, j=1,...,p,i< j, μ, κ,[β(a)i j ]i, j=1,...,p,i≤ j),

for a = 0,1.
Our first result gives sufficient conditions for the compatibility of two multivariate Matérn models

with a common smoothness parameter.

Theorem 3. Let ν > 0. If

σ
(0)
ii σ

(0)
j j ρ

(0)
i j

(α(0)i j )2ν
=
σ
(1)
ii σ

(1)
j j ρ

(1)
i j

(α(1)i j )2ν
, i, j = 1, . . . ,p, (15)

then for d = 1,2,3, the matrix valued covariance models MMθ(0) and MMθ(1) are compatible.

Some comments are in order. For each pair of covariance or cross covariance functions, the equality
condition (15) is the same as in the univariate case (Zhang, 2004). In the bivariate case, Zhang and
Cai (2015) provide conditions for compatibility of MMθ(0) and MMθ(1) for a very special case, where



Asymptotics and cokriging 2527

α
(a)
i j
= α(a) > 0 for all i, j = 1,2 and a = 0,1. Hence, the authors consider two separable models. Thus,

Theorem 3 allows for a considerable improvement with respect to Zhang and Cai (2015) as it allows
for different range parameters among the covariance and cross covariance functions. In the case where
p = 2 and α(a)11 = α

(a)
22 = α

(a)
12 for a = 0,1, Theorem 3 coincides with Zhang and Cai (2015).

Our second result gives sufficient conditions for the compatibility of two multivariate Generalized
Wendland models with a common smoothness parameter.

Theorem 4. For a given κ ≥ 0, let μ > d + 1/2 + κ. If

σ
(0)
ii
σ
(0)
j j
ρ
(0)
i j

(β(0)i j )1+2κ
=
σ
(1)
ii
σ
(1)
j j
ρ
(1)
i j

(β(1)i j )1+2κ
, i, j = 1, . . . ,p, (16)

then for d = 1,2,3, the matrix valued covariance models MWλ(0) and MWλ(1) are compatible.

Our third result gives sufficient conditions for the compatibility of a multivariate Matérn model
with a multivariate Generalized Wendland. To simplify notation, we let α(0)i j = αi j and β

(1)
i j = βi j for

i, j = 1, . . . ,p.

Theorem 5. For given ν ≥ 1/2 and κ ≥ 0, if ν = κ + 1/2, μ > d + 1/2 + κ, and

σ
(0)
ii σ

(0)
j j ρ

(0)
i j

α2ν
i j

=Cκ,μ

σ
(1)
ii σ

(1)
j j ρ

(1)
i j

β1+2κ
i j

, i, j = 1, . . . ,p, (17)

Cκ,μ = μΓ(2κ + μ+ 1)
/
Γ(μ+ 1) then for d = 1,2,3, the matrix valued covariance models MMθ(0) and

MWλ(1) are compatible.

Theorems 4 and 5 have no existing counterpart, even in the restricted setting where α(a)i j = α
(a) and

β
(a)
i j = β

(a) for all i, j = 1, . . . ,p and a = 0,1. Again, for each pair of covariance or cross covariance
functions, the conditions (16) and (17) on the covariance parameters are the same as in the univariate
case in Bevilacqua et al. (2019) (see the proof of Theorem 5 that relates Cκ,μ to the constants used in
Bevilacqua et al., 2019).

To conclude Section 4, we note that in Theorem 3, the smoothness parameter ν takes the same value
between the two models MMθ(0) and MMθ(1) . If two different values of the smoothness parameter ν
were considered for the two models MMθ(0) and MMθ(1) , then these models would not be compatible.
Indeed, the univariate covariance functions (MMθ(0) )11 and (MMθ(1) )11 would not be compatible, as
follows for instance from the fact that the two fixed values of ν are consistently estimable in input
dimension one (see for instance Loh, 2015) and that D has non-empty interior. Similar discussions
apply to Theorems 4 and 5.

5. Cokriging predictions with multivariate Generalized Wendland
and Matérn models

We now consider prediction at a new target location s0 ∈ D given a realization of a zero mean mul-
tivariate Gaussian field, using the multivariate Matérn and Generalized Wendland model, under fixed
domain asymptotics. Specifically, we focus on two properties: asymptotic efficiency of prediction and
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asymptotically correct estimation of prediction variance. Stein (1988), in the univariate case, shows that
both asymptotic properties hold when kriging prediction is performed with two equivalent Gaussian
measures.

Let {si,1, . . . , si,ni ∈ D ⊂ Rd}, i = 1, . . . ,p, be any p sets of two-by-two distinct observation locations.
Let Zn1,...,np = (Z�

1;n1
, . . . ,Z�

p;np
)� be the observation vector obtained from a p-variate Gaussian field

{Z(s) = (Z1(s), . . . ,Zp(s))�, s ∈ D}, where Z i;ni = (Zi(si,1), . . . ,Zi(si,ni ))�, i = 1, . . . ,p. Remark that
we do not necessarily assume collocated observation locations, that is the p sets {si,1, . . . , si,ni }, i =
1, . . . ,p, can be different.

Suppose we want to predict the first of the p components of the multivariate random field at s0 that
is Z1(s0), s0 ∈ D, using a misspecified multivariate model. For simplicity we only consider prediction
for the first as symmetrical arguments hold for the other p−1 components. Specifically, we denote with
MC(a) = [C(a)

i j
]p
i, j=1, a = 0,1 the true and misspecified matrix covariance function respectively.

Let c(a)1;n1 ,...,np
= (c(a)1;1;n1

�, . . . , c(a)
p;1;np

�)� with c
(a)
i;1;ni

= [C(a)
1i (||s0 − si,� ||)]ni�=1, i = 1, . . . ,p, the vector

covariances between the location to predict and Zn1,...,np . Let also C(a)
n1 ,...,np

be the (n1 + · · · + np) ×
(n1+ · · ·+np) matrix, with block i, j, of size ni ×nj , given by [C(a)

i j
(||si,� − s j ,k ||)]

ni ,n j

�=1,k=1, i, j = 1, . . . ,p,
the variance-covariance matrix associated with Zn1 ,...,np .

The (misspecifed) optimal predictor of Z1(s0), using MC(0) and MC(1), is given by,

ẐMC(a)

1;n1 ,...,np
(s0) = c

(a)
1;n1 ,...,np

�(C(a)
n1,...,np

)−1Zn1 ,...,np .

Under the correct model MC(0), the mean squared prediction error based on MC(1) is given by

VarMC(0)
[
ẐMC(1)

1;n1,...,np
(s0) − Z1(s0)

]
= (σ(0)

11 )2 − 2c(1)1;n1 ,...,np

�(C(1)
n1 ,...,np

)−1c
(0)
1;n1 ,...,np

+ c
(1)
1;n1 ,...,np

�(C(1)
n1,...,np

)−1C(0)
n1 ,...,np

(C(1)
n1 ,...,np

)−1c
(1)
1;n1 ,...,np

(18)

and if the true and misspecified models coincide then (18) simplifies for a = 0,1 to

VarMC(a)
[
ẐMC(a)

1;n1 ,...,np
(s0) − Z1(s0)

]
= (σ(a)

11 )2 − c
(a)
1;n1 ,...,np

�(C(a)
n1 ,...,np

)−1c
(a)
1;n1 ,...,np

.

The following theorem follows directly from the arguments in (Stein, 1999a, Section 4.3) extended
to the multivariate case. Hence the proof is omitted. We remark that these arguments indeed do not
require collocated observation locations.

Theorem 6. For i = 1, . . . ,p, let {si,1, . . . , si,ni } be dense in D as ni → ∞. For all s0 ∈ D, if
P(MC(0)) ≡ P(MC(1)) on the paths of Z then:

1. As n1, . . . ,np →∞

VarMC(0)
[
ẐMC(1)

1;n1 ,...,np
(s0) − Z1(s0)

]
VarMC(0)

[
ẐMC(0)

1;n1 ,...,np
(s0) − Z1(s0)

] −→1. (19)
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2. As n1, . . . ,np →∞

VarMC(1)
[
ẐMC(1)

1;n1,...,np
(s0) − Z1(s0)

]
VarMC(0)

[
ẐMC(1)

1;n1,...,np
(s0) − Z1(s0)

] −→1. (20)

Then we can apply Theorem 6 using the results on the equivalence of Gaussian measures given in
Section 4 between two multivariate Matérn models, two multivariate Generalized Wendland models
and between a multivariate Matérn and a multivariate Generalized Wendland model.

The last is probably the most interesting case. With this goal in mind, we consider the cases MC(0) =
MMθ(0) and MC(1) =MWλ(1) defined in (6) and (7).

Theorem 7. For given ν ≥ 1/2 and κ ≥ 0, consider P(MMθ(0) ) and P(MWλ(1) ). Let for simplicity

α
(0)
i j = αi j and β(1)i j = βi j for i, j = 1, . . . ,p. Assume that ν = κ +1/2, μ > d +1/2+ κ and that (17) holds.

For i = 1, . . . ,p, let {si,1, . . . , si,ni } be dense in D as ni →∞. Then for d = 1,2,3:

1. As n1, . . . ,np →∞

VarMM
θ(0)

[
Ẑ
MW

λ(1)
1;n1 ,...,np

(s0) − Z1(s0)
]

VarMM
θ(0)

[
Ẑ
MM

θ(0)
1;n1 ,...,np

(s0) − Z1(s0)
] −→1. (21)

2. As n1, . . . ,np →∞

VarMW
λ(1)

[
Ẑ
MW

λ(1)
1;n1,...,np

(s0) − Z1(s0)
]

VarMM
θ(0)

[
Ẑ
MW

λ(1)
1;n1 ,...,np

(s0) − Z1(s0)
] −→1. (22)

An important implication of (21) and (22) is that, if ν = κ + 1/2, μ > d + 1/2 + κ, and under con-
dition (17), asymptotic cokriging prediction efficiency and asymptotically correct estimates of error
variance are achieved using a multivariate Generalized Wendland model when the true model is mul-
tivariate Matérn. This result has important practical implications, since the Generalized Wendland
matrix covariance functions, unlike the Matérn ones, are compactly supported. Hence, using a Gener-
alized Wendland model provides important computational benefits, by enabling to exploit sparse matrix
structures (Bevilacqua et al., 2019, Furrer, Genton and Nychka, 2006, Kaufman, Schervish and Nychka,
2008), with a typically negligible loss of statistical accuracy if the true matrix covariance function is in
the Matérn class.

To conclude Section 5, remark that the asymptotic properties of predictions from fixed covariance
models are considered. The case of sample-size dependent or even estimated covariance models (for in-
stance an estimated smoothness parameter ν for the Matérn model) would be technically very different,
and has been much less explored, even in the univariate case (Putter and Young, 2001).

6. Numerical illustration

In this section, illustrating Section 5, we present a numerical illustration of the rates of convergence
of the ratios (21) and (22). We consider the bivariate case, with p = 2. The mean square prediction
error (MSPE) for kriging and cokriging can be interpreted as a statistic of the observation locations
in relation to the prediction location, i.e., the MSPE essentially depends on the distance to the nearest
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Figure 1. Log of ratios (21), (22) and log of MSPE of kriging versus cokriging as a function of n1 in one (left)
and two (right) dimensions. Gray lines indicate numerical instabilities.

observation location(s). Thus we work with regular grids specified as follows. In one dimension, the
observation locations for the primary variable (component of the multivariate random field) are (k −
1)/(n1 − 1), k = 1, . . . ,n1, with n1 even. For the secondary variable we select (� − 1)/(n2 − 1) with
n2 = n1,1.5n1,3n1, � = 1, . . . ,n2. In two dimensions we take n1 = n2

x observation locations at
(
(k −

1)/(nx − 1),(k ′ − 1)/(nx − 1)
)
, with nx even, k, k ′ = 1, . . . ,nx . For the secondary variable we select a

similar grid with n2 = n2
x,(1.5nx)2,(3nx)2. Prediction for the first variable is at the center of the domain,

i.e., s0 = 0.5 and s0 = (0.5,0.5), respectively.
We consider a bivariate Matérn model with θ(0) = (σ(0)

11 ,σ
(0)
22 , ρ

(0)
12 , ν,α11,α22,α12)� = (1.2,1.1,

0.2,3/2,0.05,0.09,0.07)�. In the first illustration we keep the same marginal variances and the same
correlation parameter for the bivariate Generalized Wendland model with κ = 1 and μ = 5. The range
parameters are chosen according to the equivalence condition (17) and yield for κ = 1 the parameter
vector λ(1) = (σ(1)

11 ,σ
(1)
22 , ρ

(1)
12 , μ, κ, β11, β22, β12)� = (1.2,1.1,0.2,5,1,0.297, 0.535,0.416)�.

Figure 1 illustrates the ratios (21), (22) and the ratio of MSPE of kriging (prediction of Z1(s0) based
on Z1 only) versus cokriging in one and two dimensions. The convergence of the ratios is fast, and
numerical instabilities are observed in one dimension for quite small n1. Except for the kriging/cok-
riging ratio, increasing the number of location points for the secondary variable has only a very minor
effect and can hardly be distinguished visually. The saw-tooth shape of the dashed red line is due to the
alternating even/odd number of observations n2. For a fixed n1, there is of course a nonlinear relation
between the ratios and where we exactly place the point to predict within the observed grid. In one
dimension, the log-ratio can be reduced by roughly a factor of two if we move the prediction location
from 0.5 towards the nearest right observation location n1/(2n1 − 2). The left panel of Figure 2 illus-
trates the log ratios as a function of the grid spacing and emphasizes again that the MSPE is essentially
driven by the locations of the nearby observations. The convergence rate for (21) is slightly higher
compared to (22) but equivalent to the ratio kriging versus cokriging in case of n1 = n2.

To study the effect of different ranges we modify the variance parameters of the Generalized Wend-
land by

(
σ
(1)
11 + δ,σ

(1)
22 − δ

)
, δ = −0.6,−0.4, . . . ,0.6. The range parameters are updated according to (17),

leading to shorter ranges for smaller standard deviations. The right panel of Figure 2 shows that the
ratios are quite stable with respect to different ranges. Increasing the range parameter of the secondary
variable reduces the ratio. Hence, it is possible to choose a range parameter βi j tailored to available
computing and memory amount with a bearable cost in terms of MSPE.

Note that for other values of the smoothness parameter ν the rates themselves change but the conclu-
sions remain the same. Similarly, scaling the ranges of the covariance parameters of the Matérn model
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Figure 2. Left panel: Log of ratios (21), (22) and log of MSPE of kriging versus cokriging in one (solid) and two
dimensions (dash-dotted) as a function of grid spacing. Transparent lines indicate numerical instabilities. Right
panel: Log of ratios (21), (22) for different parameter settings of the bivariate Wendland model. The inset figure
shows the different configurations with varying σ11 (+) and σ22 (×) and induced range parameters β11, β12 and
β22. (β12 is plotted at fixed x-axis value 1.15.) In both panels n2 = n1.

has no effect on the asymptotic results as the scaling is essentially equivalent to adapting the number
of observation points.

7. Proofs for Section 3

Sketch of proof for Theorem 1. We sketch the proof prior to a formal exposition.

• The crux of the proof is to prove that identity (37) holds, with the operators B(0) and B(1) as being
defined in (34).

• To do so, we start by considering the operator V in (23). We show properties of V that allow to
decompose it into a sequence of eigenfunctions. Using then approximation arguments, we can
obtain the relation (29), that relates the matrix spectral densities of the two covariance models.

• We then define the operator A through (30), Δ := I − A∗A, and show that (32) is true.
• The difference in the right-hand side of (32) is then shown to depend on B(0) and B(1), which

eventually enables us to obtain (37).

Proof of Theorem 1. Let μ ∈ Rd . We consider the integral operator V on WD(F(0)) defined by

(V f )(μ) =
∫
Rd

B(μ,λ)F(0)(λ) f (λ)dλ. (23)

We note that (13) in concert with Cauchy–Schwarz inequality imply∫
Rd

||B(μ,λ)|| ||F(0)(λ)|| || f (λ)||dλ ≤

√∫
Rd

||B(μ,λ)||2 ||F(0)(λ)||dλ

√∫
Rd

||F(0)(λ)|| || f (λ)||2dλ. (24)

The first integral in (24) is finite for almost all μ ∈ Rd from (13). The second integral in (24) is smaller
than a constant times

∫
Rd

f̄ (λ)�F(0)(λ) f (λ)dλ <∞ from Condition 1. Hence, V f is well-defined as a
function from Rd to Cp .
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Let us now check that V f belongs to WD(F(0)) when f belongs to WD(F(0)). We use f ∈
WD(F(0)) and repeatedly apply Cauchy-Schwarz inequality, so that, for a finite constant c,

||V f ||2WD (F(0)) =

∫
Rd

∫
Rd

∫
Rd

f̄ (λ)�F(0)(λ)B̄(λ, t)F(0)(t)B(t,μ)F(0)(μ) f (μ)dtdλdμ

≤
∫
Rd

∫
Rd

∫
Rd

|| f (λ)|| ||B(λ, t)|| ||F(0)(λ)|| ||F(0)(t)|| ||B(μ, t)||

||F(0)(μ)|| || f (μ)||dtdλdμ

=

∫
Rd

dt||F(0)(t)||
(∫
Rd

dλ ||F(0)(λ)|| || f (λ)|| ||B(λ, t)||
)

(∫
Rd

dμ ||F(0)(μ)|| || f (μ)|| ||B(μ, t)||
)

≤
∫
Rd

dt||F(0)(t)||

√(∫
Rd

dλ ||F(0)(λ)|| || f (λ)||2
) (∫

Rd
dλ ||F(0)(λ)|| ||B(λ, t)||2

)
√(∫

Rd
dμ ||F(0)(μ)|| || f (μ)||2

) (∫
Rd

dμ ||F(0)(μ)|| ||B(μ, t)||2
)

≤ c
(∫
Rd

dλ f̄ (λ)�F(0)(λ) f (λ)
) ∫
Rd

dt||F(0)(t)||√∫
Rd

dλ ||F(0)(λ)|| ||B(λ, t)||2
√∫
Rd

dμ ||F(0)(μ)|| ||B(μ, t)||2

= c || f ||2WD (F(0))

∫
Rd

dt||F(0)(t)||
∫
Rd

dλ ||F(0)(λ)|| ||B(λ, t)||2 < +∞.

In the strict inequality below, we have used (13). In the second to last “≤” we have used Condition 1.
Hence V maps WD(F(0)) to WD(F(0)). Let us check that V is Hermitian. For any f 1, f 2 ∈

WD(F(0)), we have

(V f 1, f 2)WD (F(0)) =

∫
Rd

dλ
(∫
Rd

dμB(λ,μ)F(0)(μ) f 1(μ)
)�

F(0)(λ) f 2(λ)

=

∫
Rd

∫
Rd

dλdμ f̄ 1(μ)�F(0)(μ)B̄(λ,μ)�F(0)(λ) f 2(λ)

=

∫
Rd

∫
Rd

dλdμ f̄ 1(μ)�F(0)(μ)B(μ,λ)F(0)(λ) f 2(λ)

=

∫
Rd

dμ f̄ 1(μ)�F(0)(μ)
(∫
Rd

dλB(μ,λ)F(0)(λ) f 2(λ)
)

=( f 1,V f 2)WD (F(0)),

where we have used B̄(λ,μ)� = B(μ,λ).
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Let us now show that V is an Hilbert–Schmidt operator. Let (φk)k∈N be an orthonormal basis of
WD(F(0)). Let, for n ∈ N, λ,μ ∈ Rd ,

Bn(λ,μ) =
n∑

a=1

(∫
Rd

B(λ, z)F(0)(z)φa(z)d z
)
φa(μ)�.

Let also En(λ,μ) = Bn(λ,μ) − B(λ,μ). Then, we have

tr
( ∫
Rd

∫
Rd

(F(0))1/2(λ)En(λ,μ)F(0)(μ)En(λ,μ)�(F(0))1/2(λ)dλdμ
)

(25)

≤ p
∫
Rd

dλ ||F(0)(λ)||
∫
Rd

dμ
������En(λ,μ)F(0)(μ)En(λ,μ)�

������
≤ p

p∑
a=1

∫
Rd

dλ ||F(0)(λ)||
∫
Rd

dμ
(
e�aEn(λ,μ)

)
F(0)(μ)

(
e�aEn(λ,μ)

)�
. (26)

We note that e�aBn(λ,μ) is the orthogonal projection in WD(F(0)) of the row a of μ 	→ B(λ,μ) on
the linear space spanned by φ�1 , . . . ,φ

�
n . For almost all λ ∈ Rd , the norm of this row in WD(F(0)) is

finite from (13). Hence, for almost all λ ∈ Rd , the inner most integral in (26) goes to zero as n →∞.
Furthermore, this inner most integral is bounded by∫

Rd
dμ
(
e�aB(λ,μ)

)
F(0)(μ)

(
e�aB(λ,μ)

)�
,

which satisfies ∫
Rd

dλ ||F(0)(λ)||
∫
Rd

dμ
(
e�aB(λ,μ)

)
F(0)(μ)

(
e�aB(λ,μ)

)�
<∞

from (13). Hence, by the dominated convergence theorem, (25) goes to zero as n →∞. Now, consider
the application

A,C 	→ tr
(∫
Rd

∫
Rd

(F(0))1/2(λ)A(λ,μ)F(0)(μ)C(λ,μ)
�
(F(0))1/2(λ)dλdμ

)
,

for functions A,C from Rd ×Rd to Cp
2

satisfying (13) with B replaced by A or C there. One can check
that this application is a scalar product. Hence, using the triangle inequality, it follows that

tr
(∫
Rd

∫
Rd

(F(0))1/2(λ)Bn(λ,μ)F(0)(μ)Bn(λ,μ)�(F(0))1/2(λ)dλdμ
)

is bounded as n →∞. This bounded quantity is equal to, using the orthogonality of φ1, . . . ,φn,

n∑
i, j=1

tr

( ∫
Rd

∫
Rd

(F(0))1/2(λ)
(∫
Rd

B(λ, z)F(0)(z)φi(z)d z
)
φi(μ)�F(0)(μ)

φ j (μ)
(∫
Rd

B(λ, z)F(0)(z)φ j (z)d z
)�

(F(0))1/2(λ)dλdμ

)
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=

n∑
i=1

tr

( ∫
Rd

(F(0))1/2(λ)
(∫
Rd

B(λ, z)F(0)(z)φi(z)d z
)

(∫
Rd

B(λ, z)F(0)(z)φi(z)d z
)�

(F(0))1/2(λ)dλ
)

=

n∑
i=1

tr

( ∫
Rd

(∫
Rd

B(λ, z)F(0)(z)φi(z)d z
)�

(F(0))1/2(λ)

(F(0))1/2(λ)
(∫
Rd

B(λ, z)F(0)(z)φi(z)d z
)

dλ

)

=

n∑
i=1

∫
Rd

(∫
Rd

B(λ, z)F(0)(z)φi(z)d z
)�

F(0)(λ)
(∫
Rd

B(λ, z)F(0)(z)φi(z)d z
)

dλ

=

n∑
i=1

||Vφi ||2WD (F(0)).

This implies that
∑∞

i=1 ||Vφi ||
2
WD (F(0))

<∞ and thus V is Hilbert–Schmidt.

Hence, there exists a sequence (gk)k∈N of eigenfunctions of V . For k ∈ N, we let gk = (gk ,1, . . . ,
gk ,p)� from Rd to Cp and we remark that we have (gk,g j)WD (F(0)) = δk , j for k, j ∈ N. We let (λk )k∈N
be the corresponding sequence of eigenvalues of V , such that we have Vgk = λkgk for k ∈ N and∑∞

k=1 λ
2
k
<∞.

Let k, j ∈ N be fixed. By definition of WD(F(0)), there exists a sequence (φk ,n)n∈N such that φk ,n :
D → Cp for n ∈ N and such that, with uk ,n = (uk ,n,1, . . . ,uk ,n,p)� from Rd to Cp defined by

uk ,n,i(λ) =
∫
D

e−ıλ�tφk ,n,i(t)dt,

for i = 1, . . . ,p and λ ∈ Rd , we have uk ,n → gk in WD(F(0)). There also exists a sequence (φ j ,n)n∈N
that is defined similarly for g j instead of gk .

We have, using (14),∫
D

∫
D
φ̄k ,n(t)�R(1)(t − s)φ j ,n(s)dtds −

∫
D

∫
D
φ̄k ,n(t)�R(0)(t − s)φ j ,n(s)dtds (27)

=

∫
D

∫
D

∫
Rd

∫
Rd

e−ıλ�t+ıμ�sφ̄k ,n(t)�F(0)(λ)B(λ,μ)F(0)(μ)φ j ,n(s)dtdsdλdμ

=

∫
Rd

∫
Rd

ūk ,n(λ)�F(0)(λ)B(λ,μ)F(0)(μ)u j ,n(μ)dλdμ. (28)

Let us find the limit of the two terms in (27) as n →∞. We have∫
D

∫
D
φ̄k ,n(t)�R(1)(t − s)φ j ,n(s)dtds =

∫
D

∫
D

∫
Rd

eıλ�(t−s)φ̄k ,n(t)�F(1)(λ)φ j ,n(s)dtdsdλ

=

∫
Rd

ūk ,n(λ)�F(1)(λ)uk ,n(λ)dλ
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−→
n→∞

∫
Rd

ḡk (λ)�F(1)(λ)g j (λ)dλ

using Lemma 1 and the triangle inequality. Similarly we have∫
D

∫
D
φ̄k ,n(t)�R(0)(t − s)φ j ,n(s)dtds −→

n→∞

∫
Rd

ḡk(λ)�F(0)(λ)g j (λ)dλ.

Let us find the limit of (28) as n →∞. We have, with a finite constant c,∫
Rd

∫
Rd

ūk ,n(λ)�F(0)(λ)B(λ,μ)F(0)(μ)u j ,n(μ)dλdμ

−
∫
Rd

∫
Rd

ḡk(λ)�F(0)(λ)B(λ,μ)F(0)(μ)u j ,n(μ)dλdμ

=

∫
Rd

∫
Rd

[
ūk ,n(λ) − ḡk(λ)

] �
F(0)(λ)B(λ,μ)F(0)(μ)u j ,n(μ)dλdμ

≤ c

√∫
Rd

∫
Rd

||F(0)(λ)|| ||B(λ,μ)||2 ||F(0)(μ)||dλdμ√∫
Rd

∫
Rd

||F(0)(λ)|| ||uk ,n(λ) − gk(λ)||2 ||F(0)(μ)|| ||u j ,n(μ)||2dμdλ

= c

√∫
Rd

∫
Rd

||F(0)(λ)|| ||B(λ,μ)||2 ||F(0)(μ)||dλdμ

√∫
Rd

||F(0)(λ)|| ||uk ,n(λ) − gk(λ)||2dλ√∫
Rd

||F(0)(μ)|| ||u j ,n(μ)||2dμ −→
n→∞

0,

where we have used the Cauchy–Schwarz inequality and the fact that uk ,n converges to gk in
WD(F(0)), together with Condition 1 and (13).

We show similarly∫
Rd

∫
Rd

ḡk (λ)�F(0)(λ)B(λ,μ)F(0)(μ)u j ,n(μ)dλdμ

−
∫
Rd

∫
Rd

ḡk(λ)�F(0)(λ)B(λ,μ)F(0)(μ)g j (μ)dλdμ −→
n→∞

0.

Hence, (28) converges to ∫
Rd

∫
Rd

ḡk(λ)�F(0)(λ)B(λ,μ)F(0)(μ)g j (μ)dλdμ

as n →∞. Thus, from (27) and (28), we obtain

(gk,g j )WD (F(1)) − (gk,g j)WD (F(0)) = λkδjk . (29)
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Let A be the operator from WD(F(0)) to WD(F(1)) defined by

Aφ = φ, φ ∈WD(F(0)). (30)

From Lemma 1, A is well-defined and bounded. Let A� from WD(F(1)) to WD(F(0)) be the adjoint
operator to A. We remark that we have for φ1,φ2 ∈WD(F(0)),

(A�Aφ1,φ2)WD (F(0)) = (Aφ1,Aφ2)WD (F(1)) = (φ1,φ2)WD (F(1)). (31)

Consider the operator Δ = I − A�A from WD(F(0)) to WD(F(0)) where I is the identity operator. Then
from (31) we have, for φ1,φ2 ∈WD(F(0)),

(Δφ1,φ2)WD (F(0)) = (φ1,φ2)WD (F(0)) − (φ1,φ2)WD (F(1)). (32)

Let now φ1, . . . ,φn be any orthonormal functions in WD(F(0)). From (29) and (32), we have, using
Bessel’s inequality and Parseval’s identity,

+∞ >

∞∑
k=1

λ2
k =

∞∑
k , j=1

(
(Δgk,g j)WD (F(0))

) 2
=

∞∑
k=1

(
||Δgk ||WD (F(0))

) 2

≥
∞∑
k=1

n∑
j=1

(
(Δgk,φ j)WD (F(0))

) 2
=

∞∑
k=1

n∑
j=1

(
(gk,Δφ j )WD (F(0))

) 2

=

n∑
j=1

(
||Δφ j ||WD (F(0))

) 2
≥

n∑
k , j=1

(
(φk,Δφ j )WD (F(0))

) 2
.

Hence, from (32) we have

n∑
k , j=1

(
(φk,φ j )WD (F(0)) − (φk,φ j)WD (F(1))

) 2
≤

∞∑
k=1

λ2
k < +∞. (33)

Let for a = 0,1, B(a) be the operator on L2,p
D defined by

B(a)( f )(t) =
∫
D
R(a)(t − u) f (u)du. (34)

Let (hk)k∈N be the orthonormal basis of L2,p
D composed of the eigenfunctions of B(0), with eigenval-

ues (ρk )k∈N (the existence can be proved as for the proof that V is Hermitian and Hilbert–Schmidt
above). Let, for k ∈ N, φk = (φk ,1, . . . , φk ,p) with φk ,i(λ) =

∫
D

hk ,i(t)e−ıλ�tdt for i = 1, . . . ,p. Then
φk ∈WD(F(0)) for k ∈ N and we have, for k, j ∈ N,

(φk,φ j )WD (F(1)) =

∫
D

∫
D

∫
Rd

h̄k(t)�eıλ�tF(1)(λ)hj (u)e−ıλ�udtdudλ

=

∫
D

∫
D

h̄k(t)�R(1)(t − u)hj(u). (35)
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Similarly,

(φk,φ j )WD (F(0)) =

∫
D

∫
D

h̄k(t)�R(0)(t − u)hj (u). (36)

In particular (φk,φ j)WD (F(0)) = δk , j ρk . Since the (φk)k∈N are not almost surely equal to zero, it
follows that ρk > 0 for k ∈ N from Condition 1.

Hence, from (33), (35) and (36), we obtain, with φ̃k = φk/ρ
1/2
k

,

∞ >

∞∑
k=1

λ2
k ≥

n∑
k , j=1

(
(φ̃k, φ̃ j)WD (F(0)) − (φ̃k, φ̃ j )WD (F(1))

) 2

=

n∑
k , j=1

(
1

√
ρk

1
√
ρj

(φk,φ j )WD (F(0)) −
1

√
ρk

1
√
ρj

(φk,φ j )WD (F(1))

) 2

=

n∑
k , j=1

(
1

√
ρk

1
√
ρj

(hk,B(0)hj )L2,p
D

− 1
√
ρk

1
√
ρj

(hk,B(1)hj)L2,p
D

) 2

.

Let now f ∈ L2,p
D

. We can write f =
∑∞

i=1 αihi with
∑∞

i=1 α
2
i < ∞. If ( f ,B(0) f )

L
2,p
D

= 1, we have∑∞
i=1 α

2
i ρi = 1 and

( f ,B(1) f )
L

2,p
D

− 1 ≤
���( f ,B(0) f )

L
2,p
D

− ( f ,B(1) f )
L

2,p
D

���
≤

∞∑
i, j=1

|αiαj |
���(hi,B(0)hj)L2,p

D

− (hi,B(1)hj)L2,p
D

���
=

∞∑
i, j=1

|αi
√
ρiαj

√
ρj |
���� 1
√
ρi

1
√
ρj

(hi,B(0)hj)L2,p
D

− 1
√
ρi

1
√
ρj

(hi,B(1)hj)L2,p
D

����
≤

√√√ ∞∑
i, j=1

α2
i ρiα

2
j ρj

√√√ ∞∑
i=i, j

(
1

√
ρi

1
√
ρj

(hi,B(0)hj)L2,p
D

− 1
√
ρi

1
√
ρj

(hj,B(1)hj)L2,p
D

) 2

≤
∞∑
k=1

λ2
k .

Hence, with (B(a))1/2 the unique operator square root of B(a) for a = 0,1, there exists a finite
constant c such that for any f ∈ L2,p

D , ((B(1))1/2 f ,(B(1))1/2 f )
L

2,p
D

≤ c((B(0))1/2 f ,(B(0))1/2 f )
L

2,p
D

.

Similarly, there exists a finite constant c′ such that for any f ∈ L2,p
D , ((B(0))1/2 f ,(B(0))1/2 f )

L
2,p
D

≤ c′((B(1))1/2 f ,(B(1))1/2 f )
L

2,p
D

. Hence from Proposition B.1 in Da Prato and Zabczyk (2014), the

image spaces of (B(0))1/2 and (B(1))1/2 are the same.
Let (B(0))−1/2 be the pseudo inverse of (B(0))1/2 (see Da Prato and Zabczyk, 2014). Let also ψk =

(B(0))1/2hk/ρ1/2
k

. Then (ψk )k∈N is an orthonormal basis of the image of B(0) in L2,p
D . We obtain,

recalling that the φ̃k for k = 1, . . . ,p are orthonormal in WD(F(0)), from (33), (35) and (36),

∞ >

∞∑
k=1

λ2
k ≥

n∑
k , j=1

(
(φ̃k, φ̃ j)WD (F(0)) − (φ̃k, φ̃ j )WD (F(1))

) 2
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=

n∑
k , j=1

(
1

√
ρk

1
√
ρj

(φk,φ j )WD (F(0)) −
1

√
ρk

1
√
ρj

(φk,φ j)WD (F(1))

) 2

=

n∑
k , j=1

(
1

√
ρk

1
√
ρj

(hk,B(0)hj)L2,p
D

− 1
√
ρk

1
√
ρj

(hk,B(1)hj)L2,p
D

) 2

=

n∑
k , j=1

(
(ψk,ψ j)L2,p

D

− ((B(0))−1/2ψk,B(1)(B(0))−1/2ψ j )L2,p
D

) 2

=

n∑
k , j=1

(
(ψk,[I − (B(0))−1/2B(1)(B(0))−1/2]ψ j )L2,p

D

) 2
.

Hence, with the orthonormal basis (ψk)k∈N of the image of B(0) in L2,p
D , we have

∞∑
k , j=1

(
(ψk,[I − (B(0))−1/2B(1)(B(0))−1/2]ψ j )L2,p

D

) 2
<∞. (37)

Hence, [I − (B(0))−1/2B(1)(B(0))−1/2] is a Hilbert–Schmidt operator from the image of B(0) to L2,p
D .

Since we have seen also that the images of (B(0))1/2 and (B(1))1/2 are the same, from Theorem 2.25 in
Da Prato and Zabczyk (2014) (see also Chapter 1 of Maniglia and Rhandi, 2004), P(R(0)) ≡ P(R(1)) on
the paths of Z .

Proof of Theorem 2. It is convenient to consider two real-valued stationary p-variate Gaussian ran-
dom fields {Z (0)(s) = (Z (0)

1 (s), . . . ,Z (0)
p (s))�, s ∈ D} and {Z (1)(s) = (Z (1)

1 (s), . . . ,Z (1)
p (s))�, s ∈ D}, where

Z (0) and Z (1) have continuous sample paths, and where, for a = 0,1, Z (a) has zero mean and matrix
covariance function R(a) = [R(a)

i j ]p
i, j=1.

Let us first assume that for all λ ∈ Rd , F(1)(λ) ≥ F(0)(λ). Let, for λ ∈ Rd , with c1 as in Condition 1,

F̃(0)(λ) = c1γ(λ)2Ip,

F̃(1)(λ) = c1γ(λ)2Ip + F(1)(λ) − F(0)(λ), and

F̃(2)(λ) = F(0)(λ) − c1γ(λ)2Ip .

Let Z̃ (0), Z̃ (1) and Z̃ (2) be three independent p-variate Gaussian processes with mean function zero
and respective matrix spectral densities F̃(0), F̃(1) and F̃(2). Then, in distribution, for a = 0,1, Z (a) =
Z̃ (a) + Z̃ (2). Hence, in order to prove the theorem, it is sufficient to show that the Gaussian measures
given by Z̃ (0) and Z̃ (1) are equivalent. Let us do this.

Let (g̃k)k∈N be an orthonormal basis in WD(F̃(0)). Let n ∈ N. Since WD is dense everywhere
in WD(F̃(0)), from Lemma 2, we can find g1, . . . ,gn in WD for which (gk,gl)WD (F̃(0)) = δk ,l for
k, l = 1, . . . ,n and

n∑
k=1

[
|| g̃k ||2WD (F̃(1)) − || g̃k ||2WD (F̃(0))

] 2
≤ 1 +

n∑
k=1

[
||gk ||2WD (F̃(1)) − ||gk ||2WD (F̃(0))

] 2
. (38)
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We have, using Cauchy–Schwarz inequality,

n∑
k=1

[
||gk ||2WD (F̃(1)) − ||gk ||2WD (F̃(0))

] 2
=

n∑
k=1

[∫
Rd

ḡk(λ)�
(
F̃(1)(λ) − F̃(0)(λ)

)
gk(λ)dλ

] 2

≤
n∑

k=1

[∫
Rd

||gk(λ)||γ(λ)
����F̃(1)(λ) − F̃(0)(λ)

���� 1
γ(λ) ||gk(λ)||dλ

] 2

≤
n∑

k=1

(∫
Rd

||gk(λ)||2γ(λ)2dλ
) (∫

Rd

����F̃(1)(λ) − F̃(0)(λ)
����2 1
γ(λ)2

||gk(λ)||2dλ
)

≤ p2dTd

c3
1(2π)d

∫
Rd

����F̃(1)(λ) − F̃(0)(λ)
����2 1
γ(λ)4

dλ,

from Lemma 3, Condition 1, and since ||gk ||WD (F̃(0)) = 1. The above display is finite and does not
depend on n. We thus have

∞∑
k=1

[
|| g̃k ||2WD (F̃(1)) − || g̃k ||2WD (F̃(0))

] 2
<∞.

Let us define V as a symmetric operator on WD(F̃(0)) by (Vg,h)WD (F̃(0)) =
∫
Rd

ḡ(λ)�F̃(1)(λ)h(λ)dλ,
for g,h ∈ WD(F̃(0)) (its existence follows from Riesz representation theorem, since for any fixed
g ∈ WD(F̃(0)), the function h 	→

∫
Rd

ḡ(λ)�F̃(1)(λ)h(λ)dλ is continuous and linear on WD(F̃(0))).
Hence,

∑∞
k=1[(g̃k,(V − I)g̃k)WD (F̃(0))]2 < ∞. Recall that F̃(1) ≥ F̃(0), so (V − I)1/2 is well-defined

and compact, so from the spectral theorem, there exists a sequence of eigenfunctions (gk)k∈N of
(V − I)1/2 with the corresponding eigenvalues (√αk )k∈N. Furthermore, we have

∑∞
k=1(

√
αk )4 < ∞.

Hence, (gk)k∈N is a sequence of eigenfunctions of V − I with eigenvalues (αk )k∈N with
∑∞

k=1 α
2
k
<∞

and so V − I is Hilbert–Schmidt.
We have, for r,q ∈ N, with constants c,c′ and using the equivalence of matrix norms and that (gk)k∈N

is an orthonormal basis of WD(F̃(0)),∫
Rd

∫
Rd

������ r+q∑
k=r

αkgk(λ)ḡk(μ)�
������2 ||F̃(0)(λ)|| ||F̃(0)(μ)||dλdμ

≤ c
∫
Rd

∫
Rd

r+q∑
k=r

������F̃(0)(λ)1/2 (αkgk(λ)ḡk(μ)�) F̃(0)(μ)1/2
������2dλdμ

≤ c′
∫
Rd

∫
Rd

tr

( [ r+q∑
k=r

αk F̃
(0)(λ)1/2gk(λ)ḡk(μ)�F̃(0)(μ)1/2

]
[ r+q∑
�=r

α� F̃
(0)(μ)1/2g�(μ)ḡ�(λ)�F̃(0)(λ)1/2

] )
dλdμ = c′

r+q∑
k ,�=r

αkα�∫
Rd

∫
Rd

tr
(
F̃(0)(λ)1/2gk (λ)ḡk(μ)�F̃(0)(μ)1/2F̃(0)(μ)1/2g�(μ)ḡ�(λ)�F̃(0)(λ)1/2

)
dλdμ
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= c′
r+q∑
k ,�=r

αkα�

∫
Rd

∫
Rd

ḡ�(λ)�F̃(0)(λ)gk(λ)ḡk(μ)�F̃(0)(μ)g�(μ)dλdμ =
r+q∑
k=r

α2
k .

Since (αk )k∈N is square summable, it follows that

B(μ,λ)� =
∞∑
k=1

αkgk(λ)ḡk(μ)�

is well-defined as a limit of Cauchy sequence and we have∫
Rd

∫
Rd

����B(λ,μ)����2 ||F̃(0)(λ)|| ||F̃(0)(μ)||dλdμ <∞.

Let R̃(j) be the matrix covariance function of Z̃ j for j = 0,1. For i = 1, . . . ,p, let ψi,r(λ) = e−ıλ�rei for
r ∈ Rd . We have, for i, j = 1, . . . ,p,[

R̃(1)(t − s) − R̃(0)(t − s)
]
i, j
= e�i

(∫
Rd

eı(t−s)�λ F̃(1)(λ)dλ
)

ej − e�i
(∫
Rd

eı(t−s)�λ F̃(0)(λ)dλ
)

ej

=

∫
Rd
ψ̄i,t(λ)�F̃(1)(λ)ψ j ,s(λ)dλ −

∫
Rd
ψ̄i,t(λ)�F̃(0)(λ)ψ j ,s(λ)dλ

=
(
(V − I)ψi,t,ψ j ,s

)
WD (F̃(0))

=

∞∑
k=1

αk
(
ψi,t,gk

)
WD (F̃(0))

(
gk,ψ j ,s

)
WD (F̃(0))

=

∞∑
k=1

αk

∫
Rd

∫
Rd

e�i eıλ�tF̃(0)(λ)gk(λ)ḡk(μ)�F̃(0)(μ)e−ıμ�sejdλdμ

= e�i
(∫
Rd

∫
Rd

eı(λ�t−μ�s)F̃(0)(λ)B(μ,λ)�F̃(0)(μ)dλdμ
)

ej .

Hence using R̃
(a)(−h) = R̃

(a)(h)� for a = 0,1 and F̃(0) = (F̃(0))�, we obtain

R̃(1)(t − s) − R̃(0)(t − s) =
∫
Rd

∫
Rd

e−ıλ�teıμ�sF̃(0)(λ)B(λ,μ)F̃(0)(μ)dλdμ.

Hence, from Theorem 1, the Gaussian measures given by Z̃ (0) and Z̃ (1) are equivalent, thus so are
the Gaussian measures given by Z (0) and Z (1) as remarked previously.

Let us now drop the assumption that for all λ ∈ Rd , F(1)(λ) ≥ F(0)(λ). Let t+ be the positive part of
t ∈ R and let, for λ ∈ Rd ,

F̃(0)(λ) = c1γ(λ)2Ip,

F̃(1)(λ) = c1γ(λ)2Ip +
[

sup
||v ||=1

(
v̄�F(1)(λ)v − v̄�F(0)(λ)v

) ] +
Ip,

F̃(2)(λ) = F(0)(λ) − c1γ(λ)2Ip and

F(3)(λ) = F̃(1)(λ) + F̃(2)(λ).
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Let Z̃ (0), Z̃ (1), Z̃ (2) and Z (3) be four independent p-variate Gaussian processes with mean function
zero and respective matrix spectral densities F̃(0), F̃(1), F̃(2) and F(3).

Then, in distribution, Z (0) = Z̃ (0) + Z̃ (2) and Z (3) = Z̃ (1) + Z̃ (2). We have∫
Rd

1
γ(λ)4

||F̃(0)(λ) − F̃(1)(λ)||2dλ ≤
∫
Rd

1
γ(λ)4

||F(0)(λ) − F(1)(λ)||2dλ < +∞.

Hence the Gaussian measures given by Z (0) and Z (3) are equivalent.
We remark that for any λ ∈ Rd and v ∈ Cp with ||v || = 1, we have

v̄�F(3)(λ)v − v̄�F(1)(λ)v

= v̄�F(0)(λ)v − v̄�F(1)(λ)v +
[

sup
||v ||=1

(
v̄�F(1)(λ)v − v̄�F(0)(λ)v

) ] +
≥ 0.

Hence, applying the previous step of the proof, the measures given by Z (1) and Z (3) are equivalent
since∫
Rd

1
γ(λ)4

����F(3)(λ) − F(1)(λ)
����2dλ ≤ 4

∫
Rd

1
γ(λ)4

����F(0)(λ) − F(1)(λ)
����2dλ <∞.

Hence the Gaussian measures given by Z (0) and Z (1) are equivalent.

The next lemma is immediate.

Lemma 1. Assume that Condition 1 holds. With c3 = c2/c1, for λ ∈ Rd ,

F(1)(λ) ≤ c3F
(0)(λ).

Lemma 2. We can find g1, . . . ,gn in WD as described in (38).

Proof of Lemma 2. By density, for ε > 0, we can find ĝ1, . . . , ĝn in WD such that for k = 1, . . . ,n,
|| ĝk − g̃k ||WD (F̃(0)) ≤ ε/n2. Let M = [(ĝk, ĝ�)WD (F̃(0))]k ,�=1,...,n. We have, for k,� = 1, . . . ,n,���(ĝk, ĝ�)WD (F̃(0)) − (g̃k, g̃�)WD (F̃(0))

��� ≤ ���(ĝk − g̃k, ĝ�)WD (F̃(0))

��� + ���(g̃k, ĝ� − g̃�)WD (F̃(0))

���
≤ 3ε

n2 , (39)

from Cauchy–Schwarz. Also, from Lemma 1,���(ĝk, ĝ�)WD (F̃(1)) − (g̃k, g̃�)WD (F̃(1))

��� ≤ ���(ĝk − g̃k, ĝ�)WD (F̃(1))

��� + ���(g̃k, ĝ� − g̃�)WD (F̃(1))

���
≤ c33ε

n2 . (40)

From Gershogrin’s circle theorem, we thus have ||M − In || ≤ 3ε/n. For k = 1, . . . ,n, let gk =∑n
�=1(M

−1/2)k ,� ĝ� . Then, g1, . . . ,gn satisfy (gk,gl)WD (F̃(0)) = δk ,l for k, l = 1, . . . ,n. Furthermore,
there exists a constant cn <∞, not depending on ε , such that ||gk − g̃k ||WD (F̃(0)) ≤ cnε/n2.
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We then have, with a constant c′n not depending on ε ,����� n∑
k=1

[
|| g̃k ||2WD (F̃(1)) − || g̃k ||2WD (F̃(0))

] 2
−

n∑
k=1

[
||gk ||2WD (F̃(1)) − ||gk ||2WD (F̃(0))

] 2
�����

=

����� n∑
k=1

(
|| g̃k ||2WD (F̃(1)) − ||gk ||2WD (F̃(1)) − || g̃k ||2WD (F̃(0)) + ||gk ||

2
WD (F̃(0))

)
(
|| g̃k ||2WD (F̃(1)) + ||gk ||

2
WD (F̃(1)) − || g̃k ||2WD (F̃(0)) − ||gk ||2WD (F̃(0))

) ���
≤ c′n

ε

n2 ,

proceeding as for (39) and (40). This concludes the proof since ε can be chosen arbitrarily small.

Lemma 3. In the context of the proof of Theorem 2, for n ∈ N, let g1, . . . ,gn in WD for which
(gk,gl)WD (F̃(0)) = δk ,l for k, l = 1, . . . ,n. Then for any λ ∈ Rd , with a finite constant T,

n∑
k=1

||gk(λ)||2 ≤
p2dTd

γ2(λ)c2
1(2π)d

.

Proof of Lemma 3. For λ ∈ Rd and k = 1, . . . ,n, let hk(λ) = (hk ,1(λ), . . . ,hk ,p(λ))� = γ(λ)gk(λ). By
convolution, with a finite constant T , there exist p square summable functions ψk ,1, . . . ,ψk ,p from
[−T,T]d to C such that for i = 1, . . . ,p

hk ,i(λ) =
∫
[−T ,T ]d

e−ıλ�tψk ,i(t)dt.

We have, for k,� = 1, . . . ,n

c1

∫
Rd

ḡk(λ)�γ(λ)2g�(λ)dλ = δk ,�

and thus

c1

∫
Rd

h̄k(λ)�h�(λ)dλ = δk ,� .

By Plancherel’s theorem we obtain

c1

∫
[−T ,T ]d

ψ̄k ,1(t)ψ�,1(t)dt + · · · + c1

∫
[−T ,T ]d

ψ̄k ,p(t)ψ�,p(t)dt =
1

(2π)d
δk ,� .

Hence, c1(2π)d/2((ψk ,1, . . . ,ψk ,p)�)k=1,...,n = c1(2π)d/2(ψk)k=1,...,n is an orthonormal system in
L2,p
[−T ,T ].

For i = 1, . . . ,p, let φλ,i(t) = (0, . . . ,0,eıλ�t,0, . . . ,0)� for λ, t ∈ Rd , where the non-zero element is at
position i. From Bessel’s inequality we obtain

n∑
k=1

|hk ,i(λ)|2 =
n∑

k=1

����∫
[−T ,T ]d

ψk ,i(t)e−ıλ�tdt
����2 = n∑

k=1

����∫
[−T ,T ]d

φ̄λ,i(t)�ψk(t)dt
����2
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≤ 1
c2

1(2π)d

∫
[−T ,T ]d

||φλ,i(t)||2dt ≤ 1
c2

1(2π)d
(2T)d .

Hence
n∑

k=1

γ(λ)2 ||gk(λ)||2 =
p∑
i=1

n∑
k=1

|hk ,i(λ)|2 ≤
p(2T)d

c2
1(2π)d

.
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