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Nonseparable, Space-Time Covariance Functions

with Dynamical Compact Supports

Emilio Porcu, Moreno Bevilacqua, and Marc G. Genton

Abstract: The paper provides new classes of nonseparable space-time

covariance functions with spatial (or temporal) margin belonging to

the Generalized Wendland class of compactly supported covariance

functions. An interesting feature of our covariances, from the com-

putational viewpoint, is that the compact support is a decreasing

function of the temporal (spatial) lag. We provide conditions for the

validity of the proposed class, and analyze the problem of differentia-

bility at the origin for the temporal (spatial) margin. A simulation

study explores the finite sample properties and the computational

burden associated with the maximum likelihood estimation of the co-

variance parameters. Finally, we use the proposed covariance models
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on Irish wind speed data and compare them with Gneiting-Matérn

models in terms of fitting, prediction efficiency and computational

burden. Necessary and sufficient conditions together with other re-

sults on dynamically varying compact supports are provided in the

Online Supplement to this paper.

Key words and phrases: Generalized Wendland covariance function;

Geostatistics; Kriging; Random field; Sparse matrices.

1. Introduction

There has been an increasing interest for space-time modeling through covari-

ance functions in the last decades; we refer the reader to Gneiting (2002a), Stein

(2005), Zastavnyi and Porcu (2011), Gneiting et al. (2007) and Schlather (2010)

as examples of this interest. Typically, data observed over space and time are

frequently modeled as a realization of a stationary Gaussian random field hav-

ing a covariance function that is spatially isotropic and temporally symmetric

(Gneiting, 2002a). Specifically, for a stationary random field Z(x, t), with x

a point of Rd and t denoting time, spatial isotropy is coupled with temporal

symmetry through a continuous function, φ : [0,∞)× [0,∞)→ R such that

cov {Z(x, t), Z(x + h, t+ u)} = φ (‖h‖, |u|) , (1.1)



with (h, u) ∈ Rd × R being the space-time lag vector and with φ(0, 0) = σ2

denoting the variance of Z. For the reminder of the paper, we use r for ‖h‖ and

we use the abuse of notation u for |u|. Also, the margins φ(r, 0) and φ(0, u) are

called, respectively, spatial and temporal margins. A covariance function φ is

called separable if φ factors into the product of a purely spatial with a purely

temporal covariance function.

A popular example of nonseparable space-time covariance functions of the

type (1.1) is the Gneiting class (Gneiting, 2002a; Zastavnyi and Porcu, 2011).

We define it here as

φ(r, u) =
σ2

ψ(u2)d/2
g

(
r2

ψ(u2)

)
, (r, u) ∈ [0,∞)× [0,∞), (1.2)

where g is completely monotonic on the positive real line, so that it is infinitely

differentiable on (0,∞) and (−1)kg(k)(t) ≥ 0 for t ≥ 0. The function ψ is

strictly positive and has a completely monotonic derivative. Additionally, with

no loss of generality, we assume that g(0) = ψ(0) = 1 so that φ(0, 0) = σ2.

Sufficient conditions for the validity of this class have been found by Gneiting

(2002a). Then Zastavnyi and Porcu (2011) found the necessary conditions and

additionally relaxed the hypothesis on the function ψ. A subclass of the Gneiting

class in (1.2) that became especially popular has expression

φ(r, u) =
σ2

ψ(u2)d/2
Mµ

(
r

ψ(u2)

)
, (r, u) ∈ [0,∞)× [0,∞), (1.3)



where

Mµ(r) =
21−µ

Γ(µ)
rµKµ(r), r ≥ 0,

with µ > 0 and Kµ a modified Bessel function of the second kind of order µ,

is the so called Matérn class (Stein, 1999). Hence, the class in Equation (1.3)

has been termed Gneiting-Matérn class. The parameter µ characterizes the

differentiability at the origin and, as a consequence, the differentiability of the

sample paths of a Gaussian field in Rd with Matérn covariance function. In

particular for a positive integer k, the sample paths are k times differentiable,

in any direction, if and only if µ > k.

A spatial covariance function is called compactly supported if it vanishes

after a given spatial distance. There is a large literature about compactly sup-

ported covariance functions in many branches of probability theory, geostastics

and approximation theory, and the reader is refereed to Golubov (1981), Wend-

land (1995), Schaback and Wu (1995), Wu (1995), Buhmann (2000), Gneiting

(2002b), Zastavnyi and Trigub (2002), Zastavnyi (2006), Schaback (2011), Zhu

(2012), Hubbert (2012), Porcu and Zastavnyi (2014), Chernih et al. (2014) as

well as to the more recent results in Bevilacqua et al. (2018) and the review by

Porcu et al. (2018).

Compactly supported covariance functions are relevant to various ends: com-

putationally efficient spatial prediction (Furrer et al., 2006, with the references



therein) and estimation (Kaufman et al., 2008) in the covariance tapering tech-

nique, fast and exact simulation, and appeal among practitioners (Gneiting,

2002b). The recent work by Bevilacqua et al. (2018) shed some light on their

importance for kriging predictions, since it was shown that the Generalized

Wendland class (Zastavnyi and Trigub, 2002; Gneiting, 2002a) is compatible

with the Matérn class. This implies that, under fixed domain asymptotics, and

under some specific conditions on the parameters indexing the covariance func-

tions, the misspecified linear unbiased predictor with the Generalized Wendland

class is asymptotically as efficient as the true simple kriging predictor using

a Matérn class. Thus, kriging prediction can be performed with a compactly

supported function without any loss of asymptotic prediction efficiency.

The problem of construction of nonseparable compactly supported space-

time covariance functions is almost unexplored. A mathematical formulation of

the problem was made in Zastavnyi and Porcu (2011), who suggested to replace

the function g in Equation (1.2) with another function having compact support.

They could not find any solution to such problem, a characterization of which re-

mains elusive. The present paper challenges this problem. Specifically, we show

how to generate covariance functions of the type (1.2) by replacing the function

g with another function with compact support. Further, we replace the Matérn

function used in the Gneiting-Matérn class in (1.3) with generalized Wendland



functions that are compactly supported, and that have the same properties of

the Matérn class in terms of differentiability at the origin (Bevilacqua et al.,

2018).

A simulation study explores the finite sample properties of the maximum

likelihood (ML) estimation of the covariance parameters. Finally, we apply our

models on Irish wind speed data and compare them with Gneiting models in

terms of fitting, prediction efficiency trough some predictive scores and compu-

tational burden.

The plan of the paper is the following. Section 2.1 contains the necessary

background and introduces the Generalized Wendland class. Section 2.2 provides

the results on the new classes of space-time covariance functions proposed in

this paper. Section 2.3 discusses examples and parameterization. Section 2.4

provides conditions to improve the differentiability of the temporal margins of

the proposed classes. Section 3 explores our findings through both simulation

and real data. Section 4 concludes the paper.

In the Online Supplement (OS throughout) we provide a collection of more

technical results: on the one hand, we generalize the results in Section 2 to

wider classes of functions with compact support. On the other hand, Fourier

analysis and completely monotone functions are used to explore necessary and

sufficient conditions. In the OS we also provide some figures that are discussed



in the paper.

2. Compactly Supported Space-Time Covariance Functions

2.1 Background Material

To favor a neater exposition, some preliminaries are needed. Space-time co-

variance functions as in Equation (1.1) are positive semidefinite. That is, for

any finite collection {(xk, tk)}Nk=1 ⊂ Rd × R and for any system of constants

{ck}Nk=1 ⊂ R, we have

N∑
k=1

N∑
h=1

ckchφ(‖xk − xh‖, |tk − th|) ≥ 0.

In what follows we propose a class of candidate functions with compact support

that can be used to replace the function g in Equation (1.2) while preserving

positive definiteness. We introduce the Generalized Wendland class (Gneiting,

2002b; Zastavnyi and Trigub, 2002) ϕν,κ : [0,∞)→ R, defined through

ϕν,κ(r) =
1

B(2κ+ 1, ν)

∫ ∞
r

(t2 − r2)κϕν−1,0(t) dt r ≥ 0, (2.1)

where κ > 0 and with B denoting the beta function, that is

B(2κ+ 1, ν) =
Γ(2κ+ 1)Γ(ν)

Γ(2κ+ ν + 1)
.

Here, ϕν,0 denotes the Askey family of functions (Askey, 1973), defined by

ϕν,0(r) := (1− r)ν+ , ν > 0, (2.2)



2.1 Background Material

where (·)+ denotes positive part. Let d be a positive integer. The function

ϕν,0(r) is positive definite in Rd if and only if ν ≥ (d + 1)/2 (Golubov, 1981).

Arguments in Zastavnyi and Trigub (2002) show that ϕν,κ is positive definite

in Rd if and only if ν ≥ (d + 1)/2 + κ. Additionally, ϕν,κ(·/b) is compactly

supported over the ball of Rd with radius b > 0. Closed form solutions of the

integral in Equation (2.1) can be obtained when κ = k, a non negative integer.

In this case,

ϕν,k(r) = ϕν+k,0(r)Pk(r), r ≥ 0,

with Pk a polynomial of order k. See the first column of Table 1 for some exam-

ples with k = 0, 1, 2, 3. These functions, termed (original) Wendland functions,

were originally proposed by Wendland (1995). Other closed form solutions of

the integral (2.1) can be obtained when κ = k + 1/2, using some results in

Schaback (2011). Hubbert (2012) showed some other closed forms based on hy-

pergeometric functions. Finally, Chernih et al. (2014) showed that, for κ tending

to infinity, a rescaled version of the model (2.1) converges to a Gaussian model.

As noted by Gneiting (2002b), the Generalized Wendland and Matérn models

exhibit the same behavior at the origin when the smoothness parameters of the

two covariance models are related by the equation ν = κ + 1/2. This fact is

depicted by Table 1, where some specific cases of Wendland functions are com-

pared with the Matérn covariance in terms of sample paths differentiability of



2.1 Background Material

Table 1: Generalized Wendland correlation ϕν,κ(r) and Matérn correlation Mµ(r)

with increasing smoothness parameters κ and µ. SP (k) means that the sample paths

of the associated Gaussian field are k times differentiable. Taken from Bevilacqua et

al. (2018).

κ ϕν,κ(r) µ Mµ(r) SP (k)

0 (1− r)ν+ 0.5 e−r 0

1 (1− r)ν+1
+ (1 + r(ν + 1)) 1.5 e−r(1 + r) 1

2 (1− r)ν+2
+ (1 + r(ν + 2) + r2(ν2 + 4ν + 3) 1

3
) 2.5 e−r(1 + r + r2

3
) 2

3
(1− r)µ+3

+

(
1 + r(ν + 3) + r2(2ν2 + 12ν + 15) 1

5
3.5 e−r(1 + r

2
+ r2 6

15
+ r3

15
) 3

+r3(ν3 + 9ν2 + 23ν + 15) 1
15

)

the associated Gaussian random field. Generalized Wendland functions include

many other popular classes of covariance functions with compact support, and

for a recent review the reader is referred to Porcu et al. (2018).

We finish this section with a new definition that opens to the results pro-

vided in the subsequent section. Let φ be a space-time covariance functions as in

Equation (1.1). We call a temporally dynamical radius, ψ, the continuous map-

ping from [0,∞) into (0,∞) such that, for each uo ∈ [0,∞), the margin φ(·, uo)

is compactly supported on the interval [0, ψ(uo)). Clearly, both Askey and Gen-

eralized Wendland classes are special cases of dynamical compact support, when

ψ ≡ b > 0 is the constant function.



2.2 Space-time Gneiting-Wendland functions with dynamical compact
support

2.2 Space-time Gneiting-Wendland functions with dynamical com-

pact support

The results coming subsequently are based on a constructive criterion provided

by Porcu and Zastavnyi (2012).

Lemma 1. Let d be a positive integer. Let (Ω,F , P ) be a measure space with

P a positive measure. Let H(·; ·) : Ω× [0,∞)→ R and F (·; ·) : [0,∞)×Ω→ R

such that

1. H(ξ; ·) is a temporal covariance function for all ξ ∈ Ω;

2. F (·; ξ) is an isotropic spatial covariance function in Rd for all ξ ∈ Ω;

3. H(·;u)F (r; ·) ∈ L1(Ω,F , P ) for any r, u ≥ 0.

Then, the mapping

φ(r, u) = σ2

∫
Ω
F (r; ξ)H(ξ;u)P (dξ)∫

Ω
F (0; ξ)H(ξ; 0)P (dξ)

, (r, u) ∈ [0,∞)× [0,∞), (2.3)

with σ2 > 0, defines a space-time covariance function in Rd×R that is isotropic

in the spatial argument and symmetric in time.

An intuitive way to understand the formal statement in Lemma 1 is to see

the integral in Equation (2.3) as a scale mixture of a spatial and a temporal

covariance. Conditions 1 and 2 are needed to have well defined spatial and

temporal covariances. Condition 3 ensures the integral (2.3) to be well defined.



2.2 Space-time Gneiting-Wendland functions with dynamical compact
support

Another relevant comment is that the denominator in Equation (2.3) is a nor-

malization constant, so that φ(0, 0) = σ2.

Theorem 2.1. Let d be a positive integer. Let ϕν,0 be the Askey function in

(2.2). Let ψ be a continuous and positive function on the positive real line, with

ψ(0) = 1 and such that 1/ψ is increasing and concave on the positive real line,

with limt→∞ ψ(t) = 0. Then, the mapping

φ(r, u) = ψ(u)αϕν,0

(
r

ψ(u)

)
, (r, u) ∈ [0,∞)× [0,∞), (2.4)

defines a space-time covariance function in Rd × R provided ν ≥ (d + 5)/2 and

α ≥ (d+ 3)/2.

Proof. The proof is an application of Lemma 1. Specifically, we use the scale

mixture argument of Equation (2.3) under some appropriate choices of the func-

tions H and F .

We now proceed formally and consider the mapping F (r; ξ) = ϕn,0(r/ξ). Ar-

guments in Golubov (1981) show that F (·; ξ) is a isotropic spatial covariance

function in Rd for any ξ > 0 provided n ≥ (d + 1)/2. Thus, Condition 2 in

Lemma 1 is satisfied. As for the choice of the function H, we consider the

mapping

H(ξ;u) = Hn,γ(ξ;u) = ξnϕγ,0

(
1− ξ

ψ(u)

)
+

, ξ > 0, u ≥ 0, γ ≥ 1, n > 0.



2.2 Space-time Gneiting-Wendland functions with dynamical compact
support

In virtue of the properties of the function ψ, we have that Hn,γ is positive,

decreasing and convex, with limt→∞Hn,γ(ξ; t) = 0 for any ξ > 0. Thus, we can

invoke the Pólya criterion (Pólya , 1949) to show that Hn,γ(ξ;u) is a covariance

function in R. This fact shows that Condition 1 in Lemma 1 is satisfied. Finally,

observe that Condition 3 of Lemma 1 holds trivially. Thus, we can now apply

the scale mixture in Equation (2.3) with Ω = [0,∞) and P being the Lebesgue

measure:

φ(r, u) =

∫
(0,∞)

F (r; ξ)H(ξ;u)dξ

=

∫
(0,∞)

(
1− r

ξ

)n
+
ξn
(

1− ξ

ψ(u)

)γ
+

dξ

=
1

ψ(u)γ

∫ ψ(u)

r

(ξ − r)n(ψ(u)− ξ)γ dξ

=
1

ψ(u)γ

∫ ψ(u)−r

0

tn(ψ(u)− r − t)γ dt

=
1

ψ(u)γ

∫ 1

0

(ψ(u)− r)n+γ+1vn(1− v)γ dv

= B(n+ 1, γ + 1)ψ(u)n+1

(
1− r

ψ(u)

)n+γ+1

= B(n+ 1, γ + 1)ψ(u)n+1 ϕn+γ+1,0

(
r

ψ(u)

)
, (2.5)

with B denoting the beta function, and where the third line in the chain of

equalities is justified by the fact that, by definition, φ is identically equal to zero

whenever r > ψ(u). We now let α = n+ 1 and ν = n+ γ + 1. Thus, Equations

(2.4) and (2.5) agree modulo a positive factor, that is the normalization constant.



2.2 Space-time Gneiting-Wendland functions with dynamical compact
support

This fact completes the proof. The conditions on α and ν are easily verified from

the previous identities.

Theorem 2.2. Let d be a positive integer and κ > 0. Let ϕν,κ be the Generalized

Wendland class of functions in (2.1). Let ψ be a continuous and positive function

on the positive real line, with ψ(0) = 1 and such that 1/ψ(·) is increasing and

concave on the positive real line, with limt→∞ ψ(t) = 0. Then, the mapping φ

defined through

φ(r, u) = ψ(u)αϕν,κ

(
r

ψ(u)

)
, (r, u) ∈ [0,∞)× [0,∞), (2.6)

defines a space-time covariance function in Rd×R provided that ν ≥ (d+5)/2+κ

and α ≥ (d+ 3)/2 + 2κ.

Proof. We give a constructive proof by applying again Lemma 1 for some specific

choices of the functions H and F in the scale mixture (2.3). As for the choice

of the function F , let κ > 0, n ≥ (d + 1)/2 + κ and F (r; ξ) = ϕn,κ(r/ξ), with

ϕn,κ as defined in Equation (2.1). Clearly, Condition 1 in Lemma 1 is satified.

Further, we observe that arguments in Zastavnyi and Trigub (2002) show that

ϕn,κ can be rewritten as:

ϕn,κ(w) =
1

B(n, 2κ+ 1)

∫ 1

w

(1− t)n−1(t2 − w2)κ dt , w ≥ 0.



2.2 Space-time Gneiting-Wendland functions with dynamical compact
support

In particular, following Daley et al. (2015), we have that, for 0 < y < ξ ≤ 1,

ϕn,κ

(y
ξ

)
=

1

B(n, 2κ+ 1)

∫ 1

y/ξ

(1− t)n−1
(
t2 − y2

ξ2

)κ
dt

=
1

B(n, 2κ+ 1)

∫ ξ

y

(
1− v

ξ

)n−1

(v2 − y2)κ
dv

ξ2κ+1
.

We now choose the function

H(ξ;u) = Hn,κ,γ(ξ;u) = ξn+2κ

(
1− ξ

ψ(u)

)γ
+

, ξ > 0, u ≥ 0, γ ≥ 1, n > 0,

with κ positive and ψ as stated. Again, it is easy to show that Hn,κ,γ(ξ; ·) is

positive, decreasing and convex with limt→∞Hn,κ,γ(ξ; t) = 0 for all ξ > 0. Thus,

Condition 2 of Lemma 1 is satisfied. Condition 3 holds trivially. We can thus

apply the scale mixture argument in Equation (2.3) with Ω = [0,∞) and P

being the Lebesgue measure. We write ψ for ψ(u) and have

∫ ∞
0

ϕn,κ

(r
ξ

)
Hn,κ,γ(ξ;u)dξ =

∫ ψ

r

ϕn,κ

(r
ξ

)
ξn+2κ

(
1− ξ

ψ

)γ
dξ

=
1

B(n, 2κ+ 1)

∫ ψ

r

ξn+2κ
(

1− ξ

ψ

)γ
dξ

∫ ξ

r

(
1− v

ξ

)n−1

(v2 − r2)κ
dv

ξ2κ+1

=
ψ−γ

B(n, 2κ+ 1)

∫ ψ

r

(v2 − r2)κ dv

∫ ψ

v

(ψ − ξ)γ(ξ − v)n−1 dξ

=
ψ−γ

B(n, 2κ+ 1)
B(n, γ + 1)

∫ ψ

r

(ψ − v)n+γ(v2 − r2)κ dv

= ψn+2κ+1 B(n, γ + 1)

B(n, 2κ+ 1)

∫ 1

r/ψ

(1− t)n+γ

(
t2 − r2

ψ2

)κ
dt

=
B(n, γ + 1)

B(n, 2κ+ 1)
B(n+ γ + 1, 2κ+ 1) ψn+2κ+1ϕn+γ+1,κ

( r
ψ

)
= B(n+ 2κ+ 1, γ + 1) ψn+2κ+1ϕn+γ+1,κ

( r
ψ

)
,



2.3 Examples and Parameterizations

with B being the beta function as before. We now let ν = n + γ + 1 and

α = n + 2κ + 1. Rescaling at the origin and using the same arguments as in

Theorem 2.1, we easily arrive at the assertion.

Using the arguments in Gneiting (2002b), it can be shown that for any increasing

sequence {cn}n≥0 we have ϕcn,κ{ r
ψ(u)cn

} → M1/2+κ{r/ψ(u)}, with the conver-

gence being uniform on any bounded set. Thus, the class in Equation (2.6)

converges to the Gneiting-Matérn class and when u = 0 the smoothness param-

eters of the two covariance models are related by the equation µ = κ+ 1/2 (see

again Table 1 for an illustration).

2.3 Examples and Parameterizations

Several examples from the mappings ψ that satisfy the requirements in Theorems

2.1 and 2.2 can be found in Table 1 in Porcu and Schilling (2011). A notable

example comes from the choice

ψ(t; δ, β) =
(
1 + tδ

)−β/δ
, t ≥ 0, (2.7)

for 0 < δ ≤ 1 and 0 ≤ β ≤ δ. In particular, in the following sections, we work

with the special case ψ(·; β) := ψ(·; 1, β), valid for β ∈ [0, 1].

For κ = k, a nonnegative integer, we find that the classes in (2.6) can be



2.3 Examples and Parameterizations

written as

φ(r, u) = ψ(u)αϕν+k,0

(
r

ψ(u)

)
Pk

(
r

ψ(u)

)
, r, u ≥ 0,

where the constraints on α and ν are specified in Theorems 2.1 and 2.2, with

Pk being a polynomial of degree k. In particular, we make use of the cases

k = 0, 1, 2 for ease of illustration. Using the first three entries in Table 1 coupled

with Equations (2.4) and (2.6), we obtain

φ(r, u) = ψ(u)α
(

1− r

ψ(u)

)ν
+

,

φ(r, u) = ψ(u)α
(

1− r

ψ(u)

)ν+1

+

(
1 + (ν + 1)

r

ψ(u)

)
, (2.8)

φ(r, u) = ψ(u)α
(

1− r

ψ(u)

)ν+2

+

(
1 + (ν + 2)

r

ψ(u)
+

1

3

(
(ν + 2)2 − 1

)(
r

ψ(u)

)2
)
,

where α and ν must be determined according to Theorems 2.1 (for the first

example) and 2.2 (for the other two examples). For geostatistical applications,

it is useful to consider rescaled versions φ(r/b, u/a), which in turn allow to

consider the marginal spatial compact support b > 0, the dynamical compact

support bψ(u/a), and the temporal scale parameter a > 0. In many instances,

a reparameterization of the proposed covariance models is useful. For instance,

using the function (2.7) in the construction (2.8), and replacing βα with τ > 0,

we obtain the space-time correlation functions:

φ(r, u) =
1

(1 + u/a)τ
ϕν,k

(
r

b(1 + u/a)β

)
, r, u ≥ 0, (2.9)
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with τ ≥ 2.5 + 2k and k = 0, 1, 2. If we fix τ , we obtain a parametric family

with an easily interpretable space-time nonseparable parameter 0 ≤ β ≤ 1 which

includes as special case a separable covariance, obtained when β = 0.

Figure S1 (OS) shows the contour-plot of the nonseparable space-time cor-

relation functions with dynamical compact support in Equation (2.9). Specifi-

cally, we fix b = 0.15, a = 0.2, ν = 3.5 + κ and τ = 2.5 + 2κ for κ = 0, 1 and

β = 0, 0.5, 1. Apparently, when increasing β, the rate of decay of the dynamical

compact support is more severe. Thus, this parameter affects the dynamical

compact support, that is, the sparsness of the associated correlation matrix.

Figure S2 (OS) shows a simulation on a regular grid of 12, 544 location sites

over the unit square and over temporal instants u = 1, 1.5, obtained through

Cholesky decomposition, of a space-time Gaussian field with correlation (2.9)

(top) fixing κ = 1, τ = 6.5, ν = 4.5 b = 0.15 a = 0.2 and β = 0.5. The

same figure depicts a realization of a space-time Gaussian random field with

covariance function from the Gneiting-Matérn class:

φ(r, u) =
1

(1 + u/0.2)6.5
M1.5

(
r

0.0226(1 + u/0.2)1/4

)
, r, u ≥ 0. (2.10)

The two simulations share the same Gaussian realization in the Cholesky decom-

position method. The two covariance models have the same marginal temporal

correlation and the spatial scale parameter in the Gneiting-Matérn model is cho-

sen such that the marginal spatial correlation is lower than 0.01 when r > 0.15,
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i.e., greater than the marginal compact support of the Generalized Wendland

model. It is apparent from Figure S2 that the two simulations look very similar.

Remark 2.1. The members of the classes in Theorems 2.1 and 2.2 are dynam-

ically compactly supported in space. Thus, they are computationally suitable

covariance models for space-time data with a relatively large number of location

sites with respect to the temporal instants.

It is important to remark that the constructions in Theorems 2.1 and 2.2 can

be interchanged, so to have space-time covariances being compactly supported

over time, and with a compact support which evolves dynamically according to

spatial distance. We omit such a specification of the mathematical conditions

because the analogue specification is literal. Then, for instance, an analogue

version of the model in Equation (2.9) is:

φ(r, u) =
1

(1 + r/b)τ
ϕν,κ

(
u

a(1 + r/b)β

)
, r, u ≥ 0. (2.11)

In this model the parameter a is the marginal temporal compact support and

the decreasing dynamical compact support is given by aψ(r/b).

This kind of models is computationally more suitable for space-time data

with a relatively large number of temporal instants with respect to the location

sites as in the Irish wind speed data in Section 3.2.
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2.4 Improving Temporal Differentiability at the Origin

The ψ functions that can be used for the purposes of Theorems 2.1 and 2.2

are, by construction, non-differentiable at the origin. This implies that we can

govern the degree of differentiability in the spatial component, but not in the

temporal one. This issue is studied in detail in the OS, where we show necessary

conditions based on Fourier analysis that preserve positive definiteness of the

constructions proposed in Theorems and 2.1 and 2.2.

Having a model that allows for different degrees of temporal differentiability at

the origin is important for attaining more flexibility in the analysis of space-

time datasets. Another important fact is that differentiability at the origin

has a crucial impact on spatial and temporal prediction (Stein, 1999). Since

we are approximating the Gneiting-Matérn class with a compactly supported

structure, it is important to be able to attain the same level of differentiabilty

of both spatial and temporal margins.

Sufficient conditions that allow to improve the differentiability of the tem-

poral margin can be improved on the basis of the following facts. The function

$τ,λ(r) := ϕτ,0
(
rλ
)

=
(
1− rλ

)τ
+
, r ≥ 0, λ ∈ (0, 2), τ > 0, (2.12)

has attracted the interest of several mathematicians in the past, and we refer the

reader to Gneiting (2001), with the references therein. In particular, the univari-



ate case, d = 1, has an interesting history and we again refer to Gneiting (2000)

in his tour de force. We have that $ν,2 is not positive definite on R, regardless

of the value of ν. Kuttner (1944) showed that there exists a function κ1(λ),

λ ∈ (0, 2), such that $τ,λ(r) is positive definite on R if and only if τ > κ1(λ).

The function κ1(λ) is continuous and strictly increasing, with limλ→0 κ1(λ) > 0,

κ1(1) = 1, limλ→2 κ1(λ) =∞ , and κ1(λ) > λ if λ 6= 1.

We now apply our results to Theorem 2.2 and consider the function

φ(r, u) = (1 + uλ)−αϕν(τ),κ

(
r

(1 + uλ)

)
, (r, u) ∈ [0,∞)× [0,∞),

where ν is a function of τ as described through Equation (2.12). The same scale

mixture arguments as in the proof of Theorem 2.2 apply (see Lemma 1), hence

we omit them. We have that, for a given d ∈ N, φ is positive definite on Rd×R

provided α ≥ (d+ 3)/2 and

ν ≥ (d+ 3)/2 + κ+ τ, τ ≥ κ1(λ), λ ∈ (0, 2).

Table 2.4, taken from Gneiting (2000), allows to obtain the corresponding values

for a given λ ∈ (0, 2).

3. Numerical Results

We start by describing the performance of the ML estimation of the parameters

of the Gneiting-Wendland model. Then we compare the Gneiting-Matérn model
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Table 2: Lower bounds for κ1(λ) for given values of λ. Taken from Gneiting

(2000).

λ 1.05 1.15 1.25 1.45 1.55 1.75 1.95

κ1(λ) 1.0507 1.1572 1.2706 1.5247 1.7234 2.3462 3.9084

with the proposed Gneiting-Wendland model from a modeling, prediction per-

formance and computational point of view when used as space-time covariance

models for the Irish wind speed data.

3.1 Simulation Studies

Following Remark 2.1, we consider two possible scenarios:

1. A dataset with many spatial location sites and few temporal observations.

Specifically, we have xi, i = 1, 2, . . . , 60 location sites uniformly distributed

on the unit square, and u = 0, 0.25, . . . , 2.25 temporal instants;

2. A dataset with few spatial location sites and many temporal observations,

that is xi, i = 1, 2, . . . , 10 location sites uniformly distributed on the unit

square and u = 0, 0.25, . . . , 14.75 temporal instant;

For both scenarios, the total number of observations is kept relatively small

(600 observations) in order to make ML estimation feasible. Under Scenario 1,
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we simulate 1000 zero mean space-time Gaussian random fields with covariance

in Equation (2.9), setting k = 0, 1, 2 in order to consider different levels of

differentiability in the spatial covariance margin. Then, following Theorems 2.1

and 2.2, we fix τ = 2.5 + 2κ and ν = 3.5 + κ.

We set σ2 = 1, b = 0.15, a = 0.2 and we fix β = 0, 0.5, 1. For each

simulation we estimate with ML the parameters σ2, a and b. Table 3 reports

bias and variance associated to ML estimation of σ2, a and b, for k = 0.1, 2 and

β = 0, 0.5, 1.

Similarly, under the Scenario 2, we simulate 1000 zero mean space-time

Gaussian random fields with covariance as in Equation (2.11), with k = 0, 1, 2,

fixing τ = 2.5 + 2k and ν = 3.5 + k. We set σ2 = 1, a = 0.75, b = 0.2 and we

consider β = 0, 0.5, 1. For each simulation we estimate with ML the parameters

σ2, a and b. The spatial and temporal scales parameters in both scenarios have

been chosen in order to attain a small dependence in space and time. Table

3 reports bias and standard deviation (SD) associated to ML estimation of

σ2, a and b, for k = 0.1, 2 and β = 0, 0.5, 1. The bias is overall negligible,

and increasing β does not affect the bias and the SDs of the ML estimation.

Under Scenario 1 the SD of the spatial marginal compact support b increases

considerably when increasing k. Similarly, under Scenario 2, the SD of the

temporal marginal compact support a increases when increasing k.
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The bottleneck when evaluating a Gaussian likelihood is the computation of

the inverse and the determinant of the covariance matrix, and both can be eas-

ily obtained from its Cholesky decomposition. Some computational gains can

be achieved in the Gaussian likelihood computation using specific algorithms

for sparse matrices using our models. The sparsity of the covariance matrix

changes at each iteration of the maximization algorithm. In our implementa-

tion, Gaussian likelihood optimization is performed exploiting algorithms for

sparse matrices as implemented in the R package spam (Furrer and Sain, 2010)

using the maximization algorithm proposed in Nelder and Mead (1965) and im-

plemented in the optim function of the R software (R Development Core Team,

2016).

Substantial further computational gains are achieved when performing krig-

ing prediction, since in this case the sparsity of the covariance matrix is fixed.

More details are given in the next section.

3.2 Irish Wind Speed Data

The main goal of this section is to compare the Gneiting-Matérn model with the

proposed Gneiting-Wendland model from a modeling, prediction performance

and computational point of view when used as space-time covariance models for

the Irish wind speed data (Haslett and Raftery, 1989).
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We consider daily wind speeds collected over 18 years, from 1961 to 1978,

at 12 sites in Ireland. Following Gneiting et al. (2007) we omit the Rosslare

station, we consider the square root transformation of the data and we remove

the seasonal component. The latter is estimated by calculating the average of the

square roots of the daily means over all years and stations and regressing this

on a set of annual harmonics. The resulting transformed data, {z(xi, tj), i =

1, . . . , 11, j = 1, . . . , 6574}, are assumed to be a realization from a zero-mean

space-time Gaussian random field. Since we perform ML estimation, we focus

on a subset of the data for computational reasons. Specifically, we focus on

z = {z(xi, tj), i = 1, . . . , 11, j = 366, . . . , 910}. Thus, we have 11× 545 = 5, 995

observations and ML estimation is still feasible.

From Figure S3 (OS) it becomes apparent that the empirical temporal

marginal semivariogram attains the sill at a temporal distance of 3 days approx-

imately. Thus, following Remark 2.1, a nonseparable, temporally compactly

supported covariance model, as defined through Equation (2.11), seems to be

a natural choice for this kind of data. We compare the following space-time

covariance models. A Gneiting-Matérn model:

CM(r, u;θM) =
σ2
M

ψ(r/aM)τM
Mµ

(
u

bMψ(r/aM)βM/2

)
, µ = 0.5, 1.5, 2.5,

(3.1)
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and our Gneiting-Wendland model:

CW (r, u;θW ) =
σ2
W

ψ(r/aW )τW
ϕν,k

(
u

bWψ(r/aW )βW

)
, k = 0, 1, 2, (3.2)

where ψ(r) = 1+r, r ≥ 0, and θM = (σ2
M , aM , bM , βM)> and θW = (σ2

W , aW , bW )>.

For the model in Equation (3.2), according to the choices k = 0, 1, 2, we

fix τW = 2.5 + 2k and ν = 3.5 + k according to Theorem 2.2, so that positive

definiteness is attained. Then, for each k, we deliberately choose βW equal to

0, 0.5, 1 in order to increase the sparsity of the associated covariance matrix,

and we estimate θW using ML. Similarly, for model (3.1) we consider the cases

µ = 0.5, 1.5, 2.5 fixing τM = 2.5 + 2(µ− 0.5) and we estimate θM using ML.

This setting makes the models (3.1) and (3.2) comparable, because they

share the same spatial margin. Besides, the temporal margins are of the Matérn

and Generalized Wendland type respectively, with the same level of differentia-

bility at the origin for µ = 0.5, 1.5, 2.5 and k = 0, 1, 2 respectively.

Table 4 (top) reports the ML estimation of θW for each k = 0, 1, 2 and for

each βW = 0, 0.5, 1 with associated loglikelihood, and Table 4 (bottom) reports

the ML estimation of θM for each µ = 0.5, 1.5, 2.5 with associated loglikelihood.

A comparison of the two models in terms of loglikelihood shows that the best

models are obtained when k = 0 and µ = 0.5, that is when the temporal margin

is not differentiable at the origin for both cases. For the Gneiting-Wendland

model, the best fitting is obtained for the case βW = 0. Increasing this parameter
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leads to a small loss in terms of fitting and, at the same time, a decreasing

number of non-zero values in the associated covariance matrix. The estimation

of the spatial scale and the variance parameters are overall very similar, as

expected, for k = 0, 1, 2 and for µ = 0.5, 1.5, 2.5. A graphical comparison

between empirical and estimated temporal semivariograms using model (3.1)

when µ = 0.5 and model (3.2) when k = 0 and βW = 0 is provided in Figure S3

(OS).

In order to compare covariance models (3.1) and (3.2) from prediction perfor-

mance and computational viewpoint, we use three predictive scores as described

in Gneiting and Raftery (2007) and Zhang and Wang (2010). Let Ẑ(xi, tj) be

the best linear prediction of Z at the space-time location (xi, tj) based on all

data except z(xi, tj). The first prediction score is the root mean square error

(RMSE) defined as

RMSE =

[
1

545× 11

11∑
i=1

910∑
j=366

(
z(xi, tj)− Ẑ(xi, tj)

)2
]1/2

. (3.3)

The logarithmic score is defined as

logS =
1

545× 11

11∑
i=1

910∑
j=366

[
1

2
log(2πσ(xi, tj)) +

1

2
(Y (xi, tj))

2

]
, (3.4)

where Y (xi, tj) =
z(xi,tj)−Ẑ(xi,tj)

σ(xi,tj)
and {σ(xi, tj)}2 is the prediction variance as-

sociated with Ẑ(xi, tj). Finally, we consider the continuous ranked probability
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score (CRPS) which can be written in the Gaussian case as

CRPS =
1

545× 11

11∑
i=1

910∑
j=366

σ(xi, tj)

(
Y (xi, tj) [2F{Y (xi, tj)} − 1]

+2F{Y (xi, tj)} −
1√
π

)
, (3.5)

where F is the Gaussian cumulative distribution. In Table 4, RMSE, logS and

CRPS are shown for each considered covariance model. Comparing the covari-

ances (3.1) and (3.2) for µ = 0.5, 1.5, 2.5 and k = 0, 1, 2 respectively, a very small

loss of prediction efficiency can be appreciated for the compactly supported mod-

els. For instance, when µ = 0.5 and k = 0 and βW = 0 the associated RMSE is

0.2174 and 0.2198, respectively.

The three prediction scores can be computed efficiently avoiding to calculate

iteratively all these drop-one predictions involved in (3.3), (3.4) and (3.5) (Zhang

and Wang, 2010). This efficient computation depends on the inverse of the

covariance matrix. Let Σ(θ̂) be the estimated covariance matrix associated to

one of the covariance models considered in Equations (3.1) or (3.2). Then, for

instance, RMSE can be written as RMSE= (f>f/5995)
1
2 where f = DΣ(θ̂)−1z

and D = (diag(Σ(θ̂)−1))−1.

As outlined in Furrer et al. (2006), efficient computation of the inverse of a

(possibly large) symmetric positive definite matrix, with a given Cholesky ma-

trix factorization, requires the solution of two triangular linear systems trough
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back substitution. In our implementation, for covariance models obtained from

Equation (3.2), the solution can be obtained through Cholesky factorization us-

ing the block sparse Cholesky algorithm of Ng and Peyton (1993) implemented

in the spam package (Furrer and Sain, 2010). In Table 4, for a given percentage

of non-zero values in the covariance matrix, we report the total time (in sec-

onds) needed for computing the Cholesky factor and the inverse through back

substitution for Gneiting-Wendland models. In Table 4 (bottom), we show the

total time needed for computing the Cholesky factor through classical Cholesky

decomposition, and the inverse trough back substitution for Gneiting-Matérn

models. Time in seconds is expressed in terms of elapsed time using the func-

tion system.time of the R software on a laptop with 2.4 GHz processor and 16

GB of memory. As expected, the computational gains obtained using Gneiting-

Wendland models are huge. For instance, computation of the inverse is approx-

imatively 30 times faster with respect to the Gneiting-Matérn when comparing

the cases k = 0, βW = 1 and µ = 0.5, and approximatively 157 times faster

when comparing the cases k = 2, βW = 1 and µ = 2.5. Similar computational

gains can be achieved when computing classical space-time kriging and when

performing simulation using Cholesky decomposition.

In conclusion, we have shown that our models allow for a substantial compu-

tational gain at the expense of a very small loss in terms of fitting and prediction



performance.

4. Conclusion

l As outlined in Bevilacqua et al. (2018), in recent years the dataset sizes associ-

ated to spatially or spatio-temporally correlated random processes have steadily

increased, so that straightforward statistical tools are computationally too ex-

pensive. The use of covariance functions with an (inherent or induced) compact

support, leading to sparse matrices, is a very accessible and scalable approach.

The nonseparable compactly supported space-time covariance models introduced

in this paper have spatial (temporal) marginal covariance of the Generalized

Wendland type and a dynamical decreasing compact support, an appealing fea-

ture from a computational viewpoint, in particular when dealing with datasets

with a large number of location sites (temporal instants) and a relatively small

number of temporal instants (location sites).

The recent work of Bevilacqua et al. (2018) gives a central importance to

our covariance models with dynamical compact supports for prediction. In fact,

Bevilacqua et al. (2018) showed that under some specific conditions, Matérn

and Generalized Wendland covariance models are compatible, i.e., the induced

Gaussian measures are equivalent. This implies that, under fixed domain asymp-

totics, the missspecified linear unbiased predictor with a Generalized Wendland



model is asymptotically as efficient as the true simple kriging predictor using a

Matérn model. This fact applies to some extent to our space-time dynamical

supports, albeit some caution is needed because of the apparent lack of a solid

asymptotic framework that allows to merge fixed domain asymptotic in space

with increasing domain in time.

Finally, the construction of nonseparable covariance models with both marginal

covariances of the Generalized Wendland type and with dynamical decreasing

compact support is very challenging from a theoretical point of view. This is an

interesting possible topic for future research.

Online Supplement

The OS contains some material that integrates the main results provided in the

manuscript. Specifically, Section 2 provides a generalization of Theorems 2.1

and 2.2 in the paper to a broad class of functions, called multiply monotonic.

Section 3 explores necessary and sufficient conditions in a general framework

through Fourier analysis. The OS reports the figures discussed through the

paper.
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Table 3: Top: Bias and Standard Deviation (SD) for ML estimation of spatial and

temporal scales and variance for the Gneiting-Wendland model in Equation (2.9) for

κ = 0, 1, 2 and β = 0, 0.5, 1 under Scenario 1. Bottom: Scenario 2.

a b σ2

κ β bias SD bias SD bias SD

0 0 -0.00016 0.02168 0.00076 0.04889 0.00024 0.06181

0.5 -0.00018 0.02145 0.00092 0.04796 0.00021 0.06164

1 -0.00017 0.02121 0.00105 0.04690 0.00019 0.06156

1 0 0.00036 0.01342 -0.01943 0.12685 0.00027 0.06156

0.5 0.00038 0.01342 -0.01841 0.12194 0.00028 0.06156

1 0.00042 0.01342 -0.01596 0.11485 0.00034 0.06156

2 0 0.00054 0.01225 0.01040 0.18746 0.00034 0.06132

0.5 0.00053 0.01225 0.00910 0.18185 0.00035 0.06132

1 0.00054 0.01225 0.00636 0.17438 0.00037 0.06140

0 0 -0.00228 0.05000 0.00209 0.06812 0.00038 0.06419

0.5 -0.00158 0.04743 0.00251 0.06745 0.00043 0.06411

1 -0.00140 0.04506 0.00257 0.06626 0.00037 0.00409

1 0 -0.01809 0.11091 0.00064 0.03768 0.00084 0.06395

0.5 -0.01763 0.10266 0.00086 0.03768 0.00040 0.06496

1 -0.01741 0.09644 0.00103 0.03782 0.00095 0.06496

2 0 -0.01131 0.16199 0.00021 0.03674 0.00040 0.06380

0.5 -0.01388 0.15556 0.00033 0.03688 0.00095 0.06372

1 -0.01692 0.15063 0.00040 0.03688 0.00098 0.06372
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Table 4: Top: ML estimation of σ2
W aW , bW for covariance model in equation

(3.2) for κ = 0, 1, 2 and βW = 0, 0.5, 1. RMSE, logS and CRPS computed

using the ML estimated covariance matrix, the percentage of non zero values

associated and time (in seconds) needed to compute inverse. Bottom part:

ML estimation of σ2
M aM , bM , βM for covariance model in equation (3.1) for

µ = 0, 1, 2.

βW aW bW σ2
W Loglik RMSE logS CRPS % Time

κ = 0 0 1313.13 4.64 0.325 -691.23 0.2198 -0.1212 0.4399 1.64 4.5

0.5 1274.87 3.95 0.323 -724.74 0.2210 -0.1140 0.4396 1.28 3.8

1 1342.21 3.12 0.335 -788.79 0.2234 -0.1020 0.4419 0.95 3.6

κ = 1 0 2451.25 3.21 0.319 -765.29 0.2234 -0.1020 0.4419 1.28 3.7

0.5 2500.77 2.88 0.324 -795.82 0.2240 -0.1036 0.4487 0.09 2.8

1 2648.16 2.56 0.338 -829.81 0.2246 -0.1018 0.4504 0.09 2.8

κ = 2 0 3586.95 3.33 0.319 -773.65 0.2235 -0.1065 0.4492 1.28 3.7

0.5 3637.85 3.09 0.323 -795.05 0.2239 -0.1043 0.4494 1.20 3.5

1 3768.07 2.86 0.332 -818.62 0.2244 -0.1028 0.4503 0.09 2.8

βM aM bM σ2
M Loglik RMSE logS CRPS % Time

µ = 0.5 0.54 1374.01 1.322 0.333 -634.44 0.2174 -0.1343 0.4375 100.00 109

κ = 1.5 1.0 2498.58 0.528 0.326 -702.77 0.2205 -0.1196 0.4437 100.00 393

κ = 2.5 1.0 3604.60 0.368 0.323 -724.16 0.2214 -0.1153 0.4454 100.00 441


