Valid inference for group analysis of functionally
aligned fMRI images

Inferenza valida per I’analisi di gruppo di immagini
JMRI allineate funzionalmente
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Abstract Functional magnetic resonance imaging (fMRI) data require preprocess-
ing steps before statistical analysis. Multi-subjects fMRI studies are complicated:
the brain’s anatomical and functional structure varies across subjects. Anatomical
alignment does not capture the functional variability across subjects; the functional
alignment is then applied. Generally, group analysis on functionally aligned fMRI
data refers to between-subject classification. We propose an inference group analy-
sis arguing that using functional aligned images based on Procrustes transformation
does not affect type I error.

Abstract [ dati di risonanza magnetica funzionale (fMRI) necessitano di fasi di
pre-elaborazione prima dell’analisi statistica. Gli studi fMRI multi-soggetto sono
complessi: la struttura anatomica e funzionale del cervello varia tra i soggetti.
L’allineamento anatomico non cattura la variabilita funzionale tra i soggetti, si ap-
plicano dunque metodi di allineamento funzionale. Generalmente, ci si riferisce ad
analisi di classificazione quando si parla di studi multi-soggetto su dati allineati
funzionalmente. In questo lavoro proponiamo un’analisi di gruppo inferenziale
sostenendo che utilizzare immagini allineate funzionalmente tramite metodi basati
sulla trasformazione di Procuste non influisce sull’errore di tipo L.
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1 Introduction

Functional Magnetic Resonance Image (fMRI) is the most used technique to study
the neural underpinnings of human cognition. The brain activation is expressed in
the correlation between the sequence of cognitive stimuli and the sequence of mea-
sured blood oxygenation levels (BOLD). In reaction to neural activity, changes in
brain hemodynamics impact the local intensity of the magnetic resonance signal,
i.e., the voxel intensity (single volume elements). The voxel expresses statistically
significant neural activity if the correlation computed is statistically significant con-
cerning an inactive region null hypothesis. However, when group analysis is per-
formed, many problems arise.

First, brain activity is not functionally nor anatomically aligned across subjects
since brains’ anatomical and functional structures vary across subjects, even in re-
sponse to identical sensory inputs. Anatomical normalization (e.g., [13]) fixes the
anatomical misalignment; but it fails to capture the functional variability across sub-
jects. Second, analyzing group activation means performing several statistical tests
equal to the number of voxels (i.e., roughly 200,000 statistical tests). It leads to
multiple testing problems, and family-wise error rate must be controlled.

In this paper, we proposed a method that simultaneously resolves the functional
misalignment and gains power in group analysis inference without affecting the type
I error. The functional alignment is done by the ProMises model [2] which can be
seen as a procedure that sorts the null hypotheses based on a priori information. The
brain images’ functional alignment can be described as a sorting criterion indepen-
dent from the test statistics, making the inference on aligned data completely valid.
This procedure is not new in the literature; some methods use, for example, previ-
ous findings in similar experiments or the total variance of the variables if central
location tests are used [5].

The outline of the paper is as follows. Subsect. 2.1 introduces the ProMises model
[2], while Subsect. 2.2 shows the group analysis procedure in fMRI data. The valid
inference using functionally aligned data is described in Subsect. 2.3. Finally, the
ProMises model is evaluated by performing a group-level inference, analyzing task-
related fMRI data in Sect. 3. The entire code used in this work is available in [3].

2 Methods

2.1 ProMises model

Let {X; € R™};_; _n a set of matrices to be aligned and M € R"*™ the shared
unknown matrix. The ProMises model uses similarity transformation [7], i.e., scal-
ing, rotation/reflection, and translation, to map {X; € R}, into a common
reference matrix M. The model is defined as follows:
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Xi=0o(M+E)R] +1,1 (1)

where E; is the random error matrix with a normal matrix distribution [8] E; ~
MN m(0,2,,Z,), R; is the orthogonal matrix parameter with a von Mises-Fisher
distribution [4] (i.e, f(R;) ~ C(F,k)exp(kFR;) with F € R™* " location parameter,
k € R* regularization parameter and C(F, k) normalizing constant), o; is the scaling
parameter and #; is the translation parameter with 1, a n-dimensional vector of ones.

The maximum a posteriori estimates for the sets {R;}i=; ..y and {a,‘}i:h,_u’N equal
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where || - || is the Frobenius norm, and U;D;V;' is the singular value decomposition
of X X, 'MX,;' + kF. For further details about the estimation process, see [2].

2.2 Group-level analysis

Let consider the set {X; € R"*"},_; _n. After the X; matrices’ functional alignment
(e.g., using the ProMises model explained in Subsection 2.1), the first-level analysis
(i.e., subject-level analysis) is performed to find significant activation in the set of
m voxels for each subject under the null hypothesis of no activation. Therefore, we
consider for each subject i the following model:

Xi=DB;+ZG; +E, 3)

where D € R"*? and Z € R"*Y are fixed matrices, B; € R?*", G; € R?*™ and B; =
B+ U;, G; = G+ g; with B is the true matrix of fixed effects of interest, G of fixed
nuisance effects. [U;"|g;'] ~ 4N (0,Z,,%,,) is the matrix of random effects.

We have now a set of N matrices {él yeen ,I§N; B; e RP*™MY which for example
describes the difference between the neural activation during two stimuli recorded
in the voxel k € {1,...,m} of the subject i. The one-sample t-test [11] is generally
performed to study the group’s mean activation due to the difference between the
neural activation during two stimuli:

A

o
T—r/\/ﬁ, (€]

where fi = YV B;/N is the sample mean between-subjects with i € RP*™, and
6 = v LV (Bi — 1)? is the sample variance between-subjects with & € RP*™.
Therefore, we have one local test 7; for each voxel/null hypothesis H(’)‘ =0
against the two-sided alternative hypothesis.

In the ProMises model (1) we assume M equals for all subjects, while in (3)
the mean effect is subject-specific, that is M; = DB; = DB + DU; = M + DU;. The
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additional random matrix DU; must be then inserted in (1). However, E(U;) = 0 by
definition, and E(M;) = M. We assume that under Hy the random effect involved in
B; is null (i.e., these terms does not impact the estimation process of R;).

2.3 Valid Inference

Here, we propose a theorem that ensures the validity of inference using functionally
aligned data.

Theorem 1. Let consider the p-values py related to the statistical test Ty, where
keM={1,...,m}. If the ProMises model defined in Subsection (2.1) is valid, then:

Pr(pr <a|R,&)=0a, VkeS 5)

where S C M is the set of true null hypotheses, & is the significance level, and R;
defined as (2).

Proof. Let assume that the the ProMises model defined in Equation (1) is valid, then
we have:
X = (X,'(Mi -l—E,')RiT = (X,'(DB,’ +ZG; + E,')RIT. (6)

W.lLo.g. we assume the set {X,-}izly,,,yN to be column-centered matrices. Write
H;=2(2"2)7'Z",s0 B; = (D" (I— H,)D)"'D' (I — H,)X;. The ProMises model
becomes X; = o;(ZG; —|—E,-)R,T under Hy. It is now easy to see that the B; | R;, &; is
normal zero-centered under Hy like B; with variance X. In addition, the informa-
tion involved in the estimation of R; and B; are orthogonal (i.e., E((ZG; + E;) " (I —
H)X;) =tr(X,] (I — Hz))X, which is independent of D and other subjects’s infor-
mation, and Xj.; are independent of (I — H;)X; by definition). This implies that
also the statistical test T | ﬁi, &; defined in (4) is normal zero-centered and finally
Pr(py < o | Iéi,&i) =aVkeN.

Theorem 1 assures the validity of the group analysis inference when data func-
tionally aligned by the ProMises model are used instead of the raw data. In the
next section, we apply the ProMises model to fMRI images and then we perform
one-sample t-tests for each voxel to analyze the group mean activation. The gain in
power is notable if the functionally aligned data are used instead of the raw ones.

3 Application

3.1 Data

The auditory data collected by [12] are analyzed, available at https://openne
uro.org/datasets/ds000158/versions/1.0.0. The study consists
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of neural activation of 218 subjects passively listening to vocal, i.e., speech, and
nonvocal sounds. We randomly select 18 subjects.

We preprocess the data using the FMRIB Software Library (FSL) [10] using a
standard processing procedure. For further details about the experimental design
and data acquisition, please see [12]. We perform a higher-level analysis ROI, i.e.,
group-subject analysis [11], considering the superior temporal gyrus (STG) as ROI,
which is well known to be involved in auditory processing [6]. The STG was ex-
tracted from the Harvard Oxford cortical structural atlas (http://£fsl.fmri
b.ox.ac.uk/fsl/fslwiki/Atlases). The matrices are then composed of
310 rows (time points/stimuli) and 10233 columns (voxels). The ProMises model is
implemented in [3] based on the programming language Python [14] according to
the PyYMVPA package [9].

3.2 Results

Using the ProMises model, we found notable results for group analysis of fMRI
data. The left panel of Figure 1 illustrates the one-sample t-tests (4) computed using
the images aligned by the anatomical alignment [13] and by the ProMises model.
The right panel of Figure 1 shows the empirical cumulative distribution function of
these one-sample t-tests. The ProMises model returns a set of t-tests 85.85% higher
in mean (in absolute value) than the t-tests computed using anatomical alignment.
In the case of equivalent t-tests, the percentage would equal 50%.
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Fig. 1 Left panel: Scatter plot of the one-sample t-tests in absolute value considering the fMRI
images of 18 subjects aligned by anatomical alignment (x-axis) and the ProMises model (y-axis).
Right panel: Empirical Cumulative Distribution Function of one-sample t-tests in absolute value
considering the fMRI images of 18 subjects aligned by anatomical alignment (red line) and the
ProMises model (blue line).
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4 Discussion

In this manuscript, we evaluated the ProMises model in the context of group-level
inference analysis of fMRI data. We proved the validity of the inference if func-
tionally aligned data are used instead of the raw ones (where only the anatomical
registration is performed). The information used in the ProMises model to estimate
the orthogonal matrix parameter can be seen as prior information used to sort the
statistical tests in the group analysis. Finally, we showed an interesting application
where the one-sample t-tests at the group level using data aligned by the ProMises
model illustrate higher absolute values than the one-sample t-tests computed using
data aligned by the anatomical alignment.
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