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a b s t r a c t

The equivalence of Gaussian measures is a fundamental tool to establish the asymptotic
properties of both prediction and estimation of Gaussian fields under fixed domain asymp-
totics. The paper solves Problem 18 in the list of open problems proposed by Gneiting
(2013). Specifically, necessary and sufficient conditions are given for the equivalence of
Gaussian measures associated to random fields defined on the d-dimensional sphere Sd,
and with covariance functions depending on the great circle distance. We also focus on a
comparison of our result with existing results on the equivalence of Gaussian measures for
isotropic Gaussian fields onRd+1 restricted to the sphere Sd. For such a case, the covariance
function depends on the chordal distance being an approximation of the true distance
between two points located on the sphere. Finally, we provide equivalence conditions for
some parametric families of covariance functions depending on the great circle distance.
An important implication of our results is that all the parameters indexing some families
of covariance functions on spheres can be consistently estimated. A simulation study
illustrates our findings in terms of implications on the consistency of the maximum
likelihood estimator under fixed domain asymptotics.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Statistical analysis of processes defined over the entire globe has attracted a lot of attention in recent years and as a result,
the literature on Gaussian random fields defined over spheres is becoming ubiquitous in areas as diverse as mathematical
analysis [3,26,40,41], probability theory [2,16,27,36], spatial point processes [42], spatial geostatistics [22,28,29], space–
time geostatistics [4,15,44], andmathematical physics [32,37,38]. Global models, especially for climate data, are also finding
applications in many fields; see, e.g., [9,10,12,44], and references therein.

The equivalence of Gaussian measures [30,47] represents an essential tool to establish the asymptotic properties of
both prediction and estimation of Gaussian fields defined on Euclidean spaces, under fixed domain (also called infill)
asymptotics. Such a framework typically applies when more and more data are collected by sampling densely in a bounded
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set. Notable examples of application of the equivalence of Gaussian measures to fixed domain asymptotics for prediction
can be found in [50,53,54]. The equivalence of Gaussianmeasures has been used in [57], andmore recently in [5], for specific
parametric families of covariance functions.

Fixed domain asymptotics is a natural framework for studying Gaussian random fields defined on d-dimensional spheres.
However, the literature on conditions for the equivalence of Gaussian measures associated to stochastic processes over
d-dimensional spheres has been sparse. We quote verbatim from Problem 18 in [24] as follows

‘‘Stein [53] provides a comprehensive discussion of the effects ofmisspecification of the covariance structure in spatial
statistical models. Under infill asymptotics, the Euclidean case is well understood, and many technical details depend
on the equivalence (or not) of the corresponding Gaussianmeasures. In this light, what are necessary and/or sufficient
conditions for the equivalence of mean zero Gaussian measures that are indexed by d-Schoenberg sequences?’’

This paper solves this problem and analyzes the implications in terms of equivalence of Gaussian measures for some
parametric families of covariance functions.

1.2. Discussion of the literature on Euclidean spaces

Equivalence and orthogonality of probability measures for Gaussian fields defined over bounded sets of Rd+1 and with a
given stationary covariance function, have been studied by Gikhman et al. [21], Skorokhod et al. [47], and Da Prato et al. [17].
There has been substantial work on Gaussian measures, and we refer to notable contributions in [21,34,35,45,54–56].
Excellent treatises on the equivalence of Gaussian measures can be found in the textbooks by Bogachev [7] and Chatterji
and Mandrekar [14]. An interesting bridge between equivalence of Gaussian measures and stochastic partial differential
equations has been proposed in [31,48], and more recently in [11].

The results obtained in this direction motivated [50–54] to engage a ‘‘tour de force’’ in studying the effect of kriging
prediction with a misspecified covariance function, and under fixed domain asymptotics.

A simple sufficient condition for the equivalence of two Gaussianmeasures is given in [47]. In the same paper, conditions
are provided for the equivalence of Gaussianmeasures associated to isotropic Gaussian fields defined onRd+1 and restricted
to the d-dimensional sphere. The result is limited to Gaussian processes with a covariance function that depends on the
chordal distance.

There has been some criticism around the use of the chordal distance, and we refer the reader to [23] and to [44], where
it is also argued that the correct metric for stochastic processes over spheres is the great circle distance, which describes an
arc between any points located on the sphere. Hence, the need for studying conditions for equivalence of Gaussianmeasures
associated to stochastic processes defined on the d-dimensional sphere.

1.3. Background

Let d be a positive integer. We consider the unit sphere Sd of Rd+1, defined as Sd
= {x ∈ Rd+1

: ∥x∥2
= 1}, where

∥ · ∥ denotes the Euclidean norm. The natural distance on the sphere is the geodesic or great circle distance, defined as the
mapping θ : Sd

×Sd
→ [0, π] so that, for all x, y ∈ Sd, θ (x, y) = arccos(⟨x, y⟩), with ⟨·, ·⟩ denoting the classical dot product in

Rd. Thus, the geodesic distance describes an arc between any pair of points located on Sd. Throughout, we shall equivalently
use θ (x, y) or its shortcut θ to denote the geodesic distance, whenever no confusion can arise.

An approximation of the true distance between any two points on the sphere is the chordal distance dCH given, for all
x, y ∈ Sd, by

dCH(x, y) = 2 sin {θ (x, y)/2} . (1)

Thus, the chordal distance defines the segment ‘‘below’’ the arc joining two points on the sphere. We consider zero mean
Gaussian fields {Z(x) : x ∈ Sd

} with finite second order moment. The finite-dimensional distributions are completely
specified by the covariance function K : Sd

× Sd
→ R defined, for all x, y ∈ Sd, by K (x, y) = cov{Z(x), Z(y)}. Covariance

functions are positive definite: for any N distinct points {xi}Ni=1 ⊂ Sd and constants c1, . . . , cN ∈ R, we have
N∑
i=1

N∑
j=1

ciK (xi, xj)cj ≥ 0;

see [6]. Porcu et al. [43] call K geodesically isotropic if K (x, y) = σ 2ψ{θ (x, y)}, for some mapping ψ : [0, π] → R such that
ψ(0) = 1. Here, σ 2 denotes the variance of Z . The function ψ is called the geodesically isotropic part of K [19]. Henceforth,
we shall refer to both K and ψ as covariance functions, in order to simplify exposition. For a characterization of geodesic
isotropy, the reader is referred to [46] and the essay in [23].

From [39] and references therein, any zero mean isotropic Gaussian process on the d-dimensional sphere admits a series
representation of the type

Z(x) =

∞∑
n=0

h(n,d+1)∑
ℓ=1

αnℓYnℓ(x),
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Table 1
Parametric families of covariance functions depending on the great circle distance. The last column reports their d-Schoenberg coefficients. In all cases,
σ is strictly positive.

Family Expression Parameters restrictions d-Schoenberg coefficients

Multiquadric ψM (θ; p, τ , σ ) = σ 2
{

(1−δ)2

1+δ2−2δ cos θ

}τ
δ ∈ (0, 1), τ = (d − 1)/2 bn,d = σ 2

(2τ+n−1
n

)
δn(1 − δ)2τ

Sine power ψS (θ;α, σ ) = σ 2
{1 − (sin θ/2)α} α ∈ (0, 2) bn,1 = σ 2 Γn+1 (α/2) /

√
2

Γn+1 (α/2) =
−1

(n+1)!

∏n
m=0 (m − α/2)

Exponential ψE (θ; b, σ ) = σ 2 exp (−θ/b) b > 0 bn,1 =
2bσ2

π (1+b2n2)
{1 + (−1)n+1 exp(−π/b)}

b0,1 = cσ 2
{1 − exp(−π/c)}/π

Askey ψA(θ; c, σ ) = σ 2(1 − θ/c)3
+

c > 0 bn,1 = 240σ 2/(πc5n6)×
{(cn)2 + (cn) sin(cn) + 4 cos(cn) − 4}

b0,1 = cσ 2/(4π )
Møller Unavailable α, β, κ > 0 bn,d = σ 2

{1 + β exp(n/α)κ }−1

where x ∈ Sd and Ynℓ are the spherical harmonics of degree n [18], with their uniquely determined cardinality h(n, d + 1),
n ∈ N∪ {0}; see Appendix A for details on spherical harmonics. Here, {αnℓ : n ∈ N∪ {0}, 1 ≤ ℓ ≤ h(n, d+ 1)} is a sequence
of Gaussian random variables defined by

αnℓ =
1

∥Sd∥

∫
Sd

Z(x)Ynℓ(x)dωd(x),

where ∥Sd
∥ denotes the total mass of ωd on Sd (see Appendix A), and ωd being the surface measure of the d-dimensional

sphere. The elements of the sequence αnℓ satisfy E(αnℓ) = 0 and

E(αnℓ αn′ℓ′ ) =
∥Sd

∥ cn,d
h(n, d + 1)

1({n=n′}
⋂

{ℓ=ℓ′}), (2)

where E(·) denotes mathematical expectation, and where 1A is the indicator function of a Borel set A. Here, cn,d ≥ 0,
n ∈ N ∪ {0}, and the variance σ 2 of Z is given by

σ 2
=

∞∑
n=0

cn,d.

Indeed, arguments in [39] in concert with the addition theorem for spherical harmonics (see Corollary 1.2.8 in [18]) show
that

K (x, y) = E{Z(x)Z(y)} = σ 2ψ(θ ) = σ 2
∞∑
n=0

bn,d
C (d−1)/2
n (cos θ )

C (d−1)/2
n (1)

, (3)

where θ ∈ [0, π], and
(
bn,d

)∞
n=0 is a uniquely determined probability mass system; see [23].

Following [19], we call
(
bn,d

)∞
n=0 a sequence of d-Schoenberg coefficients, bn,d. Here C

λ
n is the Gegenbauer polynomial [36]

of degree n and order λ > 0. Note that bn,d = cn,d/σ 2, with cn,d as described in Eq. (2). A closed form for the d-Schoenberg
coefficients is available as a by-product of the Funk–Hecke theorem; see Theorem 1.2.9 in [18]. Gneiting [23] classified the
d-Schoenberg coefficients as follows. For d ≥ 2, we have

bn,d =
2n + d − 1

23−dπ

[Γ {(d − 1)/2}]2

Γ (d − 1)

∫ π

0
ψ(θ )C (d−1)/2

n (cos θ )(sin θ )d−1dθ. (4)

For d = 1 and all n ∈ N ∪ {0}, we have

b0,1 =
1
π

∫ π

0
ψ(θ )dθ and bn,1 =

2
π

∫ π

0
cos(nθ )ψ(θ )dθ.

Examples of parametric families of geodesically isotropic covariances are reported in Table 1, together with their
parameter restrictions and their d-Schoenberg coefficients. The Multiquadric family ψM has been introduced by [23]. For
special cases, see also [13]. The Sine Power family was introduced by [49]. The validity of the Exponential and Askey families
has been proved by [23] and the respective 1-Schoenberg coefficients have been given by [42]. Finally, we call Møller family
the class of covariances specified directly through the d-Schoenberg coefficients, which does not admit an explicit closed
form [42].

A Gaussian field defined on Rd+1 is called isotropic in the Euclidean sense if its covariance function depends exclusively
on Euclidean distance; see [19] for details. A different construction principle for a Gaussian field on the sphere is suggested
in [47]. It is based on the restriction of an Euclidean isotropic Gaussian field on Rd+1 to the d-dimensional sphere. In this
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case, the great circle distance is no longer the natural metric for the associated covariance function, which depends on the
chordal distance dCH defined in (1). In particular, we have

K (x, y) = 2(d−1)/2Γ

(
d + 1
2

)∫
∞

0

J(d−1)/2{ξ dCH(x, y)}
{ξ dCH(x, y)}(d−1)/2 dF (ξ ), (5)

where F is a positive and boundedmeasure, and where, for ν > 0, Jν denotes a Bessel function of order ν [25]. Thus, we have
that, for any Euclidean isotropic covariance function on Rd+1, the restriction of the covariance to the chordal distance dCH is
positive definite on Sd.

We also need some background on equivalence and orthogonality of Gaussian probability measures. Denote by µ1, µ2
two probability measures defined on the same measurable space (Ω,B), where B denotes the Borel σ -algebra on Ω . Then
µ1 and µ2 are said to be equivalent if µ2(A) = 1 for any A ∈ B implies µ1(A) = 1 and vice versa. Furthermore, µ1 and µ2
are said to be orthogonal if there exists an event A such that µ2(A) = 1 but µ1(A) = 0. Arguments in [17,30] and [34] show
that Gaussian measures are either equivalent or orthogonal. For a real-valued Gaussian random field Z = {Z(x) : x ∈ Sd

}, to
define previous concepts, we restrict the event A to the σ -algebra generated by Z . We emphasize this restriction by saying
that the two measures are equivalent on the paths of Z .

1.4. Plan of the paper

The plan of the paper is the following. Section 2 states a characterization theorem for the equivalence of Gaussian
measures on d-dimensional spheres in terms of d-Schoenberg coefficients. We then provide equivalence results for specific
families of parametric covariances on spheres, described in Table 1. Section 3 illustrates our finding through simulations, and
elucidates the statistical implications of our theoretical results in terms ofML estimation, under infill asymptotics. The paper
ends with discussion. For neater exposition, Appendix A reports technical mathematical background that is not needed to
read the main text. All the proofs of the new theoretical results are deferred to Appendix B. Finally, Appendix C generalizes
the main results of Section 2 to two-point homogeneous spaces.

2. Results

We split this section into two parts. The former provides a characterization of equivalence in terms of d-Schoenberg
coefficients as defined in Eq. (4), solving Problem 18 in [24]. The latter analyzes equivalence of Gaussian measures indexed
by some parametric families of covariance functions listed in Table 1.

2.1. A characterization of equivalence on d-dimensional spheres

We start by stating this paper’s main result.

Theorem1. Let µ1,µ2 be two zeromeanGaussianmeasures, such that, under µi, the random field Z = {Z(x) : x ∈ Sd
} is Gaussian

with covariance function uniquely determined through d-Schoenberg coefficients bn,d,i, defined according to representation (3).
Then, µ1 and µ2 are equivalent on the paths of Z if and only if

∞∑
n=0

h(n, d + 1)
(
bn,d,1
bn,d,2

− 1
)2

< ∞. (6)

Some comments are in order. Condition (6) is the analogue of the (only sufficient) condition provided in Theorem4 of [47]
in Euclidean spaces. In Theorem 6 of the same paper, Skorokhod and Yadrenko provide necessary and sufficient conditions
for two Euclidean isotropic Gaussian random fields defined onRd+1 and restricted to Sd. Namely, the Gaussian measures are
equivalent if and only if

∞∑
n=0

h(n, d + 1)

(
b̆n,d,1
b̆n,d,2

− 1

)2

< ∞, (7)

where, for i ∈ {1, 2},

b̆n,d,i = 2dΓ

(
d + 1
2

)
π (d+1)/2

∫
∞

0

J2n+d/2 (λ)

λd−1 dFi(λ),

and Fi is a positivemeasure from the representation (5) of an isotropic covariance function depending on the chordal distance
dCH. Thus, Theorem 6 of [47] and Theorem 1 are complementary since they are related to two different constructions of
Gaussian fields over spheres, which in turn imply different geometries.

The consequences of Theorem 1 are not merely mathematical, as we are going to discuss below. The covariance models
based on the great circle distance (see, e.g., Table 1) may not be, in general, valid when adapted to the chordal distance.
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Table 2
Candidate functions C that can be adapted to the great circle or to the chordal distances, with their corresponding parameter restrictions. Here,Kν denotes
a modified Bessel function of order ν > 0. In all cases, b and σ are strictly positive.

Family Expression Parameters restrictions Parameter restrictions
for ψ(θ ) = C[0,π ](θ ) for C(dCH)

Matérn CM(t; b, ν, σ ) = σ 2(t/b)νKν (t/b) ν ∈ (0, 1/2] ν > 0
Gen. Cauchy CC(t; b, α, β, σ ) = σ 2

{1 + (t/b)α}−β/α α ∈ (0, 1], β > 0 α ∈ (0, 2], β > 0
Dagum CD(t; b, α, τ , σ ) = σ 2

[
1 − [(t/b)τ /{1 + (t/b)}τ ) α/τ

]
τ ∈ (0, 1), α ∈ (0, τ ) τ ∈ (0, 1), α ∈ (0, τ )

Instead, any Euclidean isotropic model valid on Rd+1 can be restricted to Sd by replacing the Euclidean distance with the
chordal one.

Table 2 enriches the comparison of our Theorem 1 with Theorem 6 in [47]. Specifically, we consider candidate functions
C : [0,∞) → R together with the corresponding adaptation to the spheres in terms of great circle or chordal distance. For
the great circle, we haveψ(θ ) = C[0,π ](θ ), where C[0,π ] denotes the restriction to the interval [0, π]. For the chordal distance,
we just consider the composition C(dCH). A clear advantage of the chordal distance is that it allows for less restrictions on the
parameters associated to the candidate functions C in Table 2. For instance, the Matérn family [53] has been very popular in
geostatistics because of the parameter ν, which allows to govern themean square differentiability of the associated Gaussian
field. The severe restriction of the parameter space of the adaptation to the great circle [23] makes its use unpractical on the
sphere. Instead, the corresponding adaptation to the chordal distance allows to attain positive definiteness on the sphere for
any positive ν.

The use of the chordal distance has drawbacks aswell. For instance, because the chordal distance underestimates the true
distance between the points on the sphere, Porcu et al. [44] argue that this fact has a non-negligible impact on the estimation
of the spatial scale.Moreover, Gneiting [23] argues that the chordal distance is counter to spherical geometry for larger values
of the great circle distance, and thus may result in physically unrealistic distortions. Further, covariance functions based on
the chordal distance inherit the limitations of isotropic models in Euclidean spaces in modeling covariances with negative
values. For instance, a covariance based on the chordal distance on S2 does not allow for values lower than −0.21σ 2, with
σ 2 being the variance as before. Instead, properties of Legendre polynomials imply that correlations based on the geodesic
distance can attain any value between −1 and +1.

A final relevant remark is that verifying the Skorokhod– Yadrenko condition in Eq. (7) is prohibitive to say the least,
because it involves the calculation of the coefficients b̆n,d, where the integral depends on Bessel functions. Instead, we show
subsequently that our Theorem 1 can be verified at least for some parametric families.

2.2. Consequences of Theorem 1 for some parametric families

This section visits some classes of covariance functions that depend on the great circle distance. We start with the
Multiquadric family ψM (·; δ, τ , σ ), being the first entry in Table 1. Specifically, we provide the following result.

Proposition 1. Let µ1, µ2 be two zero mean Gaussian measures on S2 such that for each i ∈ {1, 2}, under µi, the random field
Z = {Z(x) : x ∈ S2

} is Gaussian with Multiquadric covariance function ψi(θ ) = ψM (θ; δi, τ , σi) with τ = (d − 1)/2 = 1/2,
δi ∈ (0, 1) and σi > 0. Then, µ1 and µ2 are equivalent on the paths of Z if and only if σ 2

1 = σ 2
2 and δ1 = δ2.

Proposition 1 has important implications both in terms of estimation and prediction of Gaussian fields under infill
asymptotics. On the one hand, it shows that the parameters δ and σ 2 can be consistently estimated. On the other,
Proposition 1 shows that misspecified kriging prediction has a nonnegligible impact even asymptotically.

We have been able to obtain a similar result for the case of twoGaussianmeasureswith Sine Power covarianceψS(·;α, σ )
as defined through the second entry of Table 1.

Proposition 2. Let µ1, µ2 be two zero mean Gaussian measures on S1 such that for each i ∈ {1, 2}, under µi, the random field
Z = {Z(x) : x ∈ S1

} is Gaussian with covariance function ψi(θ ) = ψS(θ;αi, σi). Then, µ1 and µ2 are equivalent on the paths of
Z if and only if α1 = α2 and σ 2

1 = σ 2
2 .

Similar comments apply here and the simulation results in Section 3will confirmour findings.Workingwith condition (6)
can be extremely difficult, because the d-Schoenberg coefficients might oscillate away from zero. This is the case, e.g., of the
Exponential and Askey families [42], denotedψE andψA, respectively. Indeed, it has not been possible to obtain any analogue
of Propositions 1 and 2 in these cases.

3. Simulation study

We now explore numerically the consequences of the results in Section 2 in terms of consistency of the ML estimator for
some parametric families of covariance functions, under fixed domain asymptotics. To favor a neater exposition, we slightly
abuse of notation when denoting σ 2

k , k ∈ {M, S, E}, the variances associated to the Multiquadric (ψM ), the Sine Power (ψS)
and the Exponential (ψE) models, being respectively the first three entries in Table 1.
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Fig. 1. Illustration of the increasing sequence of location sites on the unit sphere (N ∈ {100, 800, 2000}) considered in the simulation study.

Fig. 2. From left to right: Multiquadric (ψM ), Sine Power (ψS ) and Exponential (ψE ) correlation functions considered in the simulation study, with practical
range equal to 1 (Scenario A, solid line) and equal to 2 (Scenario B, dashed line).

We first give an account on the computation of the great circle distance on the unit sphere S2 embedded in R3, where
any point x has spherical coordinates x = (ϕ, ϑ)⊤, with ϕ ∈ [0, π] and ϑ ∈ [0, 2π ) being, respectively, the polar and
the azimuthal angles (equivalently, latitude and longitude). Here, ⊤ stands for the transpose operator. Then, the great circle
distance is computed, for any x1, xi ∈ S2, through

θ (x1, x2) = arccos (sinϕ1 sinϕ2 + cosϕ1 cosϕ2 cos(|ϑ1 − ϑ2|)) .

The results in Propositions 1 and 2 are somehow counterintuitive if comparedwith those obtained for classes of Euclidean
isotropic covariance functions. For instance, Zhang [57] proved that two zero mean Gaussian measures with Euclidean
isotropic Exponential covariance functions and parameters bi, σ 2

E,i with i ∈ {1, 2}, are equivalent on any bounded set of
Rd, for d ∈ {1, 2, 3}, if and only if

σ 2
E,1b

−1
1 = σ 2

E,2b
−1
2 . (8)

This result implies that the parameters σ 2
E and b cannot be estimated consistently, under fixed domain asymptotics, onRd,

for d ∈ {1, 2, 3}. Instead, the so-called microergodic parameter [53], defined by σ 2
E b

−1, is consistently estimable. A brilliant
approach in [1] shows instead that all parameters of the Exponential covariance can be estimated consistently when d > 4.
Similar results are obtained in [5] for certain parametric classes of compactly supported correlation functions.

The results in Propositions 1 and 2 imply that all the parameters of the Multiquadric model (ψM ) on S2, and of the Sine
Powermodel (ψS), on the circle S1, can be estimated consistently under fixed domain asymptotics. To confirm this finding,we
first consider 2000 points being uniformly distributed over the unit sphere. Then, we mimic a typical asymptotic setting, by
considering the increasing sequence N ∈ {100, 200, 400, 800, 1200, 1600, 2000} points, randomly chosen from the original
set of 2000 points; see Fig. 1 for the cases N ∈ {100, 800, 2000}. For each N , 1000 replicates of zero mean Gaussian fields are
simulated through Cholesky decomposition, using either the Multiquadric, the Sine Power, or the Exponential model. We
set unit variance for all cases (σ 2

k = 1, k ∈ {M, S, E}), and consider the following scenarios:

Scenario A: δ = 0.95, α = 0.074, b = 1/3; Scenario B: δ = 0.92, α = 0.30, b = 2/3.

Scenarios A and B are depicted in Fig. 2. Under Scenario A, the three covariances have a common practical range,
approximately equal to 1. The same criterion is used for Scenario B, under which the three covariances have a common
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Fig. 3. Relative sample variance of themaximum likelihood estimates of the scale (first column) and variance (second column) parameters when increasing
the number of location sites on the unit sphere for the Exponential, Sine Power and Multiquadric covariance models, under Scenarios A (first row) and B
(second row). Relative sample variance of the maximum likelihood estimates of the microergodic parameter in the Exponential case (third column), under
Scenarios A (first row) and B (second row).

practical range, equal to 2. For each N , model and simulation, we estimate through ML the parameters (σ 2
M , δ)

⊤, (σ 2
S , α)

⊤

and (σ 2
E , b)

⊤ respectively for models ψM , ψS and ψE .
In order to check for consistency of the parameters we look at the behavior of the sample variance of the maximum

likelihood estimates when increasing N ∈ {100, 400, . . . , 2000}. To take into account the different orders of magnitude of
the variances of each parameter, we consider a relative sample variance: for each N , we first consider the sample variances
of the estimates. Then, the ratio between the sample variances and the maximum of them is computed.

As expected, for N = 100, the relative sample variance is overall equal to 1. Fig. 3 (first column) shows for each model
how the sample relative variance of the ML estimates of the scale parameters δ, α and b decreases when the number of
location sites increases under Scenarios A and B (from top to bottom). Fig. 3 (second column) shows for each model how
the sample variance of the maximum likelihood estimates of σ 2

k , k ∈ {M, S, E} decreases when increasing the number of
location sites, under Scenarios A and B (from top to bottom). Finally, Fig. 3 (third column) shows the relative sample variance
of the maximum likelihood estimates of the microergodic parameter σ 2

E b
−1 for the Exponential model.

Note that we do not have any theoretical result for the Exponential model. Nevertheless from this example it becomes
apparent that sampling more data on S2 may not improve the joint estimation of the scale and variance parameters when
using the Exponential model. Instead, it is apparent from Fig. 3 (third column), that the microergodic parameter can be
estimated consistently. These numerical results suggest that the equivalence condition in Eq. (8) is still valid at least on S2.

For the Multiquadric covariance model, as expected from Proposition 1, there is a clear pattern of decreasing relative
sample variance for both parameters when jointly estimating the scale and variances parameters. For the Sine Powermodel,
even if Proposition 2 is valid on S1, our simulation results suggest that orthogonality is still valid on S2.

4. Discussion

Thiswork lays down the basis for studying the asymptotic properties ofML estimation andmisspecified kriging prediction
under fixed domain asymptotics, for covariance models depending on geodesic isotropy. A necessary step in terms of future
research is to use the results of this paper as building blocks for more sophisticated constructions. For instance, using the
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stochastic expansion proposed by [33], it should be possible to obtain equivalence conditions under the hypothesis of axial
symmetry. This should bemade at the expense of relaxing Condition (2) and evoking again the constructive arguments used
in Appendix B to prove Theorem 2.
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Appendix A. Mathematical background and auxiliary results

We need some background for a self-contained exposition and a neater illustration of the proofs coming subsequently.
A spherical harmonic of degree n for Sd is the restriction to Sd of a real-valued harmonic homogeneous polynomial in Rd+1

of degree n. Together with the zero function, the spherical harmonics of degree n form a finite dimensional vector space
denoted Hn(Sd). It is a subspace of the space of continuous functions on Sd [4]. For every n ∈ N ∪ {0}, we have

h(n, d + 1) = dim{Hn(Sd)} =
(2n + d − 1) (n + d − 2)!

n! (d − 1)!
,

with h(0, d + 1) = 1 for all d ≥ 1, and where h(n, d + 1) = O(nd−1). The spaces Hn(Sd) are mutually orthogonal subspaces
of the Hilbert space L2(Sd) of real-valued squared-integrable functions on the sphere Sd, endowed with the inner product

⟨f , g⟩L2(Sd) =
1

∥Sd∥

∫
Sd

f (x)g(x)dωd(x),

for every f , g ∈ L2(Sd) and x ∈ Sd. Here, ∥Sd
∥ denotes the total mass of the surface measure dωd on Sd, defined as

∥Sd
∥ =

∫
Sd

dωd =
2 π (d+1)/2

Γ {(d + 1)/2}
.

Not only that, but the space L2(Sd) is generated by the spaces Hn(Sd): any f ∈ L2(Sd) has an orthogonal expansion

f =

∞∑
n=0

fn,

where fn ∈ Hn(Sd). Subsequently we denote {Ynℓ : n ∈ N ∪ {0}, 1 ≤ ℓ ≤ h(n, d + 1)} an orthonormal basis of Hn(Sd), i.e.,

⟨Ynℓ, Ynℓ′⟩L2(Sd) = 1{ℓ=ℓ′}, 1 ≤ ℓ, ℓ′
≤ h(n, d + 1).

For i ∈ {1, 2}, let {Zi(x) : x ∈ Sd
} be two zero mean Gaussian random fields with geodesically isotropic covariance

functions ψi(θ ). Following [47], we have that for each i ∈ {1, 2}, Zi induces, on the space L2(Sd), a Gaussian measure with
covariance operators Ci defined, for all f ∈ L2(Sd), by

Ci
(
f
)
(x) =

∫
Sd
ψi{θ (x, y)}f (y)dωd(y). (A.1)

Let µ1, µ2 be two Gaussian measures, defined on the Borel σ -algebra B(Sd), with corresponding covariance operators Ci. An
operator D : L2(Sd) → L2(Sd) is called a Hilbert–Schmidt operator if it is bounded and with finite norm ∥ · ∥L2(Sd) defined by

∥D∥
2
L2(Sd) =

∑
k

∥Dek∥2
L2(Sd),

with (ek) an orthonormal basis, and with ∥f ∥L2(Sd) = ⟨f , f ⟩L2(Sd).
Two important ingredients are needed to prove our results. We state them formally to have a self contained exposition.

The former is known as the Feldman–Hájek theorem [17], and the latter can be found as Theorem 1 in Chapter 3 of [30]. Let
us first introduce the entropy distance R [30], defined by

R = −E1(ln L) + E2(ln L), (A.2)

where L = dµ2/dµ1 is the likelihood ratio between the two measures defined on Sd. Here, Ei denotes mathematical
expectation with respect to the measure µi, with i ∈ {1, 2}. Details on how to compute L will be given later.

Theorem 2 (Feldman–Hájek Theorem). Let µ1, µ2 be two zero mean Gaussian measures defined on the Borel σ -algebra B(Sd),
with corresponding covariance operators Ci as defined in Eq. (A.1). Let I be the identity operator. Then, µ1 and µ2 are equivalent
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if and only if the operator

D = C−1/2
2 C1C

−1/2
2 (A.3)

is a positive definite, invertible, and bounded, with D − I a Hilbert–Schmidt operator. Moreover, the Radon–Nikodym derivative
of µ2 with respect to µ1 is given by

dµ2

dµ1
=

∞∏
n=0

h(n,d+1)∏
ℓ=1

√
1 + λℓn exp

{
−λℓn

2(1 + λℓn)
⟨C−1/2

2 f (x), eℓn⟩
2
L2(Sd)

}
,

where eℓn are the eigenvectors of D − I , and λℓn are their corresponding eigenvalues.

Theorem 3 (Equivalence and Entropy). Gaussian measures are either equivalent or orthogonal. Two Gaussian measures are
equivalent if and only if their entropy distance R, defined at (A.2), is finite.

Appendix B. Proofs of the results in Section 2

Proof of Theorem 1. We first provide a sketch of the proof, with the details discussed subsequently.

Necessity. For this part, we apply Theorem 3. Thus, we need to proceed as follows.

1. Compute the entropy distance R as in Eq. (A.2) between the two Gaussian measures on (Sd,B(Sd)).
2. Show that R is a function of the respective d-Schoenberg coefficients bn,d,1, ibn,d,2, as defined in Eq. (4).
3. Sum up the two previous point and obtain condition (6).

Sufficiency. For sufficiency, we use Theorem 2 and show that the operator D defined through (A.3) is a function of the ratio
bn,d,1/bn,d,2. The proof is completed by showing that D − I is a Hilbert–Schmidt operator.

We now provide the details.

Necessity. Let µ1 and µ2 be two equivalent Gaussian measures and let L be the likelihood ratio defined around Eq. (A.2).
Direct inspection, see also [53], shows that

L =

∞∏
n=0

h(n,d+1)∏
ℓ=1

√
1 + λℓn exp

{
−λℓn

2(1 + λℓn)

⟨
C−1/2
2 f (x), eℓn

⟩2
L2(Sd)

}

= exp
[
−

1
2

∞∑
n=0

h(n,d+1)∑
ℓ=1

{⟨
C−1/2
2 f (x), eℓn

⟩2
L2(Sd)

λℓn

(1 + λℓn)
− ln(1 + λℓn)

}]
,

where C2 is the covariance operator, and where, according to Theorem 2, the eℓns and λ
ℓ
ns are, respectively, the eigenvectors

and eigenvalues associated to the operator D − I , with D defined through Eq. (A.3)), and I the identity operator. The log-
likelihood is defined by

ln L = −
1
2

∞∑
n=0

h(n,d+1)∑
ℓ=1

{⟨
C−1/2
2 f (x), eℓn

⟩2
L2(Sd)

λℓn

(1 + λℓn)
− ln(1 + λℓn)

}
. (A.4)

To find a closed form of the entropy distance R in (A.2), we need to calculate the expectation of (A.4) with respect to
µ1 and µ2. By assumption, µ1 and µ2 are equivalent. Thus, we invoke arguments in Theorem 1 of Skorokhod et al. [47] to
assume that

Ei

{⟨
C−1/2
2 f (x), eℓn

⟩2
L2(Sd)

}
=

{
1 for i = 1,
1 + cn for i = 2,

where cn ≥ 0 and
∑

c2n < ∞. Hence, we conclude that the convergence of the series in (A.4) can be evaluated on the basis
of the following argument:

E1

{⟨
C−1/2
2 f (x), eℓn

⟩2
L2(Sd)

λℓn

(1 + λℓn)
− ln(1 + λℓn)

}
=

λℓn

(1 + λℓn)
− ln(1 + λℓn) = O{(λℓn)

2
},

E2

{⟨
C−1/2
2 f (x), eℓn

⟩2
L2(Sd)

λℓn

(1 + λℓn)
− ln(1 + λℓn)

}
= (1 + cn)

λℓn

(1 + λℓn)
− ln(1 + λℓn) = O{(λℓn)

2
}.

Summing up, we have just shown that

R =

∞∑
n=0

h(n,d+1)∑
ℓ=1

O{(λℓn)
2
}.
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By unique decomposition of positive definite operators [17], and using the fact that the operators C1 and C2 are diagonal, we
obtain λℓn = bn,d,1/bn,d,2 − 1. We can now invoke Theorem 2 to obtain condition (6).

Sufficiency. We now assume that (6) holds for two Gaussian measures µ1, µ2, with corresponding geodesically isotropic
covariance functions ψ1, ψ2 and covariance operators C1, C2 : L2(Sd) → L2(Sd). Let D be the operator defined by Eq. (A.3).
Using the fact that the operators C1, C2 are diagonal and positive definite, we have that D is also positive definite, with
eigenvalues system {̃λℓn} of strictly positive eigenvalues. Also, note that λ̃ℓn and λℓn are obviously related and we have, for all
ℓ and n ∈ N∪ {0}, λ̃ℓn = bn,d,1/bn,d,2. Furthermore, we have that the operator D− I is diagonal, which in turn implies that its
eigenvalues are strictly larger than −1. By (6), we conclude that D− I is a Hilbert–Schmidt operator. By invoking Theorem 2,
the proof is completed. □

Proof of Proposition 1. Wework on the sphere S2, so that h(n, 3) = 2n+1. Using the first entry in Table 1, we have that for
each i ∈ {1, 2}, the Schoenberg coefficient bn,2,i associated toψi(θ ) = ψM (θ; δi, 1/2, σi) can bewritten as bn,2,i = σ 2

i δ
n
i (1−δi).

By Theorem 1, to prove the orthogonality of µ1 and µ2 we need to show that the series in (6) is always divergent. For our
case, the series (6) is of the form

∞∑
n=0

h(n, 3)
(
bn,2,1
bn,2,2

− 1
)2

=

∞∑
n=0

(2n + 1)

{(
σ1

σ2

)2(
δ1

δ2

)n (1 − δ1

1 − δ2

)
− 1

}2

. (A.5)

To check the convergence or divergence of this series, we use Raabe’s test as follows. Set

an = (2n + 1)

{(
σ1

σ2

)2(
δ1

δ2

)n (1 − δ1

1 − δ2

)
− 1

}2

, an+1 = (2n + 3)

{(
σ1

σ2

)2(
δ1

δ2

)n+1 (1 − δ1

1 − δ2

)
− 1

}2

,

and compute n (an/an+1 − 1). To find the limit of this expression, we consider two different cases. If δ1 < δ2, then (δ1/δ2)n
and (δ1/δ2)n+1 tend to zero as n → ∞. Hence,

lim
n→∞

n
(

an
an+1

− 1
)

= lim
n→∞

n
(
2n + 1
2n + 3

− 1
)

= lim
n→∞

(
−2n

2n + 3

)
= −1 < 1.

Then Raabe’s test yields divergence, meaning that the Gaussian measures µ1 and µ2 are orthogonal. If δ1 > δ2, then
(δ1/δ2)

n+1 tends to infinity faster than (δ1/δ2)n as n → ∞. Hence, n (an/an+1 − 1) → −∞. Then the series (A.5) is always
divergent. The proof is complete. □

Proof of Proposition 2. We nowwork on the circle S1 and assume covariancesψi(θ ) = ψS(θ;αi, σi) for i ∈ {1, 2}. Using the
second entry in Table 1, we have, for each i ∈ {1, 2},

bn,1,i =
σ 2
i

√
2
Γn+1

(αi

2

)
, Γn+1

(αi

2

)
=

−1
(n + 1)!

n∏
m=0

(
m −

αi

2

)
.

According to Theorem 1, we need to check the convergence of the series in (6) to determine if the given Gaussian measures
µ1 and µ2 are equivalent or orthogonal. So, for our case the series in (6) has expression

∞∑
n=0

h(n, 2)
(
bn,1,1
bn,1,2

− 1
)2

=

∞∑
n=0

2

{
Λ

n∏
m=0

(
2m − α1

2m − α2

)
− 1

}2

, (A.6)

whereΛ = (σ1/σ2)
2. We use again Raabe’s test to check the convergence of (A.6). Set

an =

{
Λ

n∏
m=0

(
2m − α1

2m − α2

)
− 1

}2

, an+1 =

{
Λ

n+1∏
m=0

(
2m − α1

2m − α2

)
− 1

}2

and compute n (an/an+1 − 1). To find the limit of this expression, we consider two cases. If α1 > α2, then (2m − α1)/(2m −

α2) < 1 and hence n (an/an+1 − 1) → 0 < 1. Thus, the series (A.6) is divergent. If α1 < α2, then (2m − α2)/(2m − α1) < 1.
Moreover, we have

lim
n→∞

n
(

an
an+1

− 1
)

= lim
n→∞

n

⎡⎢⎣
⎧⎨⎩ Λ−

∏n
m=0

(
2m−α2
2m−α1

)
Λ

2n+1−α1
2n+1−α2

−
∏n

m=0

(
2m−α2
2m−α1

)
⎫⎬⎭

2

− 1

⎤⎥⎦
= lim

n→∞
n

{(
2n + 1 − α2

2n + 1 − α1

)2

− 1

}
= α1 − α2 < 1.

Thus, the series (A.6) is divergent. Since the series is always divergent, we get that the Gaussian measures µ1 and µ2 are
always orthogonal. □
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Appendix C. Generalization to two-point homogeneous spaces

We now inspect necessary and sufficient conditions for equivalence of Gaussian measures on two-point homogeneous
spaces (Riemannian symmetric spaces of rank one). A compact two-point homogeneous spaces of dimension d will be
denoted by Md. Following [20], two-point homogeneous spaces Md include, as special case, the following spaces:

(I) Sd, for d ∈ {1, 2, 3, . . .};
(II) the real projective spaces Pd(R), for d ∈ {2, 3, 4, . . .};
(III) the complex projective spaces Pd(C), for d ∈ {4, 6, 8 . . .};
(IV) the quaternion projective spaces Pd(H), for d ∈ {8, 12, 16 . . .};
(V) the Cayley projective plane P16(Cay).

The geodesic distance over Md is the mapping θMd : Md
× Md

→ [0, π] defined, for all x, y ∈ Md, as in [8] by
θMd = arccos(⟨x, y⟩). According to [20], any isotropic positive definite function Ĉ(x, y) = ψ̂{θMd (x, y)} on Md has the
spectral representation based on the Jacobi polynomials Pα,βn [18] of degree n ∈ N, α, β > −1with α = (d−2)/2 as follows

ψ̂(θMd ) =

∞∑
n=0

Υ (d−2)/2,β
n

P (d−2)/2,β
n (cos θMd )

P (d−2)/2,β
n (1)

, (9)

where {Υ
(d−2)/2,β
n }

∞

n=0 are non-negative coefficients and
∑

nΥ
(d−2)/2,β
n < ∞; see [20]. For any fixed n ∈ N, the coefficient

Υ
(d−2)/2,β
n in the Jacobi expansion (9) of a positive definite function has the following explicit formula

Υ (d−2)/2,β
n =

(2n + β + d/2) Γ (n + β + d/2)
2β+d/2 Γ (n + β + 1) Γ (d/2)

×∫ π

0
P (d−2)/2,β
n (cos θMd )ψ̂(θMd )sind−1θMd (1 + cos θMd )β−(d−2)/2dθMd , (10)

where

P (d−2)/2,β
n (1) =

Γ (n + d/2)
n! Γ (d/2)

.

Also, in the spectral representation given by (9), β = (d − 2)/2,−1/2, 0, 1, 3, for Sd,Pd(R),Pd(C), Pd(H) and P16(Cay),
respectively.

Using the ingredients above and mimicking the proof of Theorem 1, it becomes fairly easy to prove the following.

Theorem4. Let µ1,µ2 be two zeromeanGaussian randommeasures onMd with corresponding coefficientsΥ (d−2)/2,β
n,1 ,Υ (d−2)/2,β

n,2
defined according to representation (9). Then, µ1 and µ2 are equivalent if and only if

∞∑
n=0

ℏ(n, d, β)

(
Υ

(d−2)/2,β
n,1

Υ
(d−2)/2,β
n,2

− 1

)2

< ∞, (11)

where ℏ(n, d, β) denotes the dimension of the Laplacian eigenspace related to the eigenvalues −n(n + d/2 + β), and given by
(see [8])

ℏ(n, d, β) =
(2n + β + d/2) Γ (n + d/2) Γ (β + 1) Γ (n + β + d/2)
Γ (d/2) Γ (n + 1) Γ (n + β + 1) Γ (d/2 + β + 1)

.

We observe that Theorem 4 agrees with Theorem 1 when β = (d− 2)/2. The proof of Theorem 4 comes exactly from the
same arguments as in Theorem 1. We report it here for the sake of completeness.

Proof. Necessity. Let µ1 and µ2 be two equivalent Gaussian measures on Md. The likelihood ratio between µ1 and µ2 for
that case is given by

L =

∞∏
n=0

ℏ(n,d,β)∏
ℓ=1

√
1 + λ̂ℓn exp

{
−λ̂ℓn

2(1 + λ̂ℓn)

⟨
C−1/2
2 f (x), êℓn

⟩2
L2(Md)

}

= exp
[
−

1
2

∞∑
n=0

ℏ(n,d,β)∑
ℓ=1

{⟨
C−1/2
2 f (x), êℓn

⟩2
L2(Md)

λ̂ℓn

(1 + λ̂ℓn)
− ln(1 + λ̂ℓn)

}]
, (12)

where C2 is the covariance operator, and where, according to Theorem 2, the eℓns and λ̂
ℓ
ns are, respectively, the eigenvectors

and eigenvalues associated to the operator D − I , with D defined through Eq. (A.3) and I the identity operator. The log-
likelihood is defined by

ln L = −
1
2

∞∑
n=0

ℏ(n,d,β)∑
ℓ=1

{⟨
C−1/2
2 f (x), êℓn

⟩2
L2(Md)

λ̂ℓn

(1 + λ̂ℓn)
− ln(1 + λ̂ℓn)

}
. (13)
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To find a closed form of the entropy distance R in (A.2), we need to calculate the expectation of (13) with respect toµ1 and
µ2. By assumption, µ1 and µ2 are equivalent. Thus, we invoke arguments in Theorem 1 of Skorokhod et al. [47] to assume
that

Ei

(⟨
C−1/2
2 f (x), êℓn

⟩2
L2(Md)

)
=

{
1 for i = 1,
1 + ĉn for i = 2,

where ĉn ≥ 0 and
∑

ĉ2n < ∞. Hence, we conclude that the convergence of the series in (13) can be evaluated on the basis
of the following argument

E1

{⟨
C−1/2
2 f (x), êℓn

⟩2
L2(Md)

λ̂ℓn

(1 + λ̂ℓn)
− ln(1 + λ̂ℓn)

}
=

λ̂ℓn

(1 + λ̂ℓn)
− ln(1 + λ̂ℓn) = O{(λ̂ℓn)

2
},

E2

{⟨
C−1/2
2 f (x), êℓn

⟩2
L2(Md)

λ̂ℓn

(1 + λ̂ℓn)
− ln(1 + λ̂ℓn)

}
= (1 + ĉn)

λ̂ℓn

(1 + λ̂ℓn)
− ln(1 + λ̂ℓn) = O{(λ̂ℓn)

2
}.

Summing up, we have just shown that

R =

∞∑
n=0

ℏ(n,d,β)∑
ℓ=1

O{(λ̂ℓn)
2
}.

By unique decomposition of positive definite operators [17], and using the fact that the operators C1 and C2 are diagonal, we
obtain

λ̂ℓn = Υ
(d−2)/2,β
n,1 /Υ

(d−2)/2,β
n,2 − 1.

We can now invoke Theorem 2 to obtain condition (11).
Sufficiency. We now assume that (11) holds for two Gaussian measures µ1, µ2 with corresponding geodesically isotropic
covariance function ψ̂1, ψ̂2 and covariance operators C1, C2 : L2(Md) → L2(Md). Let D be the operator defined by Eq. (A.3).
Using the fact that the operators Ci are diagonal and positive definite,we have thatD is also positive definite,with eigenvalues
system {λ̂ℓn} of strictly positive eigenvalues. Also, note that for all ℓ and n ∈ N ∪ {0},

λ̂ℓn = Υ
(d−2)/2,β
n,1 /Υ

(d−2)/2,β
n,2 .

Furthermore, the operator D − I is diagonal, which in turn implies that its eigenvalues are strictly larger than −1. By (11),
we conclude that D − I is a Hilbert–Schmidt operator. By invoking Theorem 2, the proof is completed. □
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