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ABSTRACT
Understanding the behavior of deep neural networks for Information
Retrieval (IR) is crucial to improve trust in these effective models.
Current popular approaches to diagnose the predictions made by
deep neural networks are mainly based on: i) the adherence of
the retrieval model to some axiomatic property of the IR system,
ii) the generation of free-text explanations, or iii) feature impor-
tance attributions. In this work, we propose a novel approach that
analyzes the changes of document and query embeddings in the
latent space and that might explain the inner workings of IR large
pre-trained language models. In particular, we focus on predicting
query/document relevance, and we characterize the predictions by
analyzing the topological arrangement of the embeddings in their
latent space and their evolution while passing through the layers
of the network. We show that there exists a link between the em-
bedding adjustment and the predicted score, based on how tokens
cluster in the embedding space. This novel approach, grounded
in the query and document tokens interplay over the latent space,
provides a new perspective on neural ranker explanation and a
promising strategy for improving the efficiency of the models and
Query Performance Prediction (QPP).

CCS CONCEPTS
• Information systems→ Languagemodels; •Computingmethod-
ologies → Ranking.
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1 INTRODUCTION
Simple yet effective Neural Information Retrieval (NeuIR) models
derived from Large Language Models (LLMs), are increasingly used
in state-of-the-art retrieval strategies. As an example, the leader-
board of the well-known MS MARCO [10] passage ranking contest
is currently dominated by methods that employ re-ranking models
based on LLMs, such as BERT [12], RoBERTa [8], and ELECTRA [1].
In this work, we are interested in analyzing the prediction phase of
cross-encoder models, more specifically, the class of models also
known as Mono-X models [22]. In particular, we focus on the role
of the embeddings and their spatial placement in the latent space
to understand how a cross-encoder model behaves during the rank-
ing score prediction phase and to unveil if this information can be
used to estimate the quality of the prediction without knowing the
ground truth, i.e., for QPP.
One of the common and most used methods to explain predictions
of Machine Learning (ML) models for IR is to assign an importance
score to each feature of an input instance. In this category of ex-
planations, we can cite methods like EXS [17], LIRME [20], and
DeepSHAP for NeuIR model [4]. We should consider this approach
a “shallow” explanation method because it only provides a score
assessing the importance of a certain token, leaving unresolved the
question of “why” a model has arrived to give more importance
to a document rather than to another one. The explanation via
query intent modeling is another approach specific to the IR field.
The intent modeling can be done via query expansion [18] or by
generating a verbose query description [24]. However, this type of
explanation is more beneficial for the end-user than the ML devel-
opers since it is difficult to understand if the explanation is faithful
to the model behavior. Another type of explanation for the IR field
is the explanation by proving IR axioms. Examples of such research
direction are the work of Rennings et al. [15] and of Câmara and
Hauff [2]. Even though these works aim to answer the same ques-
tion that we address, we claim that such axioms are reasonable for
humans to explain the relevance of a ranked query/document pair,
but in general, what applies to humans does not directly apply to
machines, as discussed in [2]. Like various other works, we instead
present explanations through model analysis. In this approach, the
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Figure 1: Distance between the mean of query/document pairs with a high score (in orange) and query/document pairs with a
low score (in blue) using all the metrics with cosine, l2, and JSD. The shadowed area represents the interquartile range.

NeuIR model is analyzed to understand if some of its characteristics
can be associated with a specific human cognitive way of reasoning
or to describe the inference strategy. This kind of analysis is mostly
conducted on the attention layers to understand their role in the
final prediction. Examples of such approaches in the IR field are
presented in [23] and in [13]. Since we consider the geometry of the
embedding space rather than the attention layers, the closest works
to our are [3] and [14], where the authors analyze the geometry
of LLMs, and find interesting insights about the contextualization
of words. However, their works do not consider, as we do, some
peculiar aspects related to the ranking problem, such as the rela-
tionship between query tokens and document tokens and between
score and relevance judgments.

2 EMBEDDING ANALYSIS IN MONO-X
MODELS

Our work is based on an intuition derived from analyzing the main
components of LLMs based on transformer blocks, i.e., the attention
mechanism [19]. It might seem intuitive to explain an LLM-ranker’s
prediction using the information stored in the attention layers.
However, the role of attention in explaining the prediction of a
LLM-based NeuIR model is currently not well-defined. There are
works claiming that attention is not really useful to be used as an
explanation [5, 16], while others claim that it might be helpful in
some scenarios [21]. In this work, we analyze the inference phase of
such models from a different perspective. The attention mechanism
commonly used is self-attention, which can be seen as a simple
weighted sum of the embeddings in input in the attention layer
since the queries and the keys used are the same [11]. We recall that
inside a LLM such as BERT we have multiple self-attention heads
for each transformer block. If we have a uniform distribution of
the attention weights in every attention head of each transformer

block and we assume that other parts of the network (e.g., the
fully-connected layers) do not change the embeddings too much,
we should observe tokens passing through the various blocks and
asymptotically converge to a single point.
Research questions. Given the aforementioned intuitions and
motivations, we formulate the following research questions:

RQ1. Do embeddings of a LLM-based neural ranker follow a com-
mon pattern in their movement in the latent space during
the traversal of the various transformers block?

RQ2. Can we use the geometry information from the embeddings
to understand whether the predictions are accurate?

Unlike previous approaches, by RQ1, we focus on the embedding
movements in the latent space and investigate if we can recognize
meaningful patterns that can be useful for model debugging and/or
model efficiency improvement. Instead, RQ2 focuses on finding a
correlation between the score produced, the true relevance of the
query/document pair, and the arrangement of the embeddings in
the latent space. If present, it can be very interesting for various IR
open problems, including, for instance, QPP.
Dataset and models used. Our analysis employs different ver-
sions of the Microsoft Machine Reading Comprehension Dataset
(MS MARCO) for passage re-ranking. Specifically, we use the ver-
sions provided by ir-dataset [9]. We refer to specific dataset versions
by using their id in ir-dataset. To fine-tune our models, we used the
version containing only queries with at least one relevance judg-
ment (msmarco-passage/train/judged). To analyze our models, we
used the query relevance judgment from the msmarco-passage/trec-
dl-2019/judged and msmarco-passage/trec-dl-2020/judged versions
of the dataset. Since we are interested in comparing the score of
the model w.r.t. the real relevance judgments, we considered for
each query only the documents having an associated relevance
judgment.
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(a) Low Score (b) High Score

Figure 2: PDF of query and document tokens (via PCA) rep-
resented with contour lines for both low-score (a) and high-
score (b) instances at the last transformer block (𝑇12). Ref.
trec-dl-2019 - Query ID: 130510, Document ID (low score):
2061706, Document ID (high score): 8612903.

In this work, we analyze three popular NeuIR models based on
three different LLMs considered among the state-of-the-art methods
for text ranking: BERT, RoBERTa [8], ELECTRA [1]. We used the
small version of each model with 12 transformer blocks. We fine-
tuned1 the pre-trained models following [12]. The only adjustment
made during the fine-tuning is related to the batch size, which
was reduced to fit our GPU memory. Specifically, we used batch
sizes of 64 and 32. The performance of our models in terms of
𝑀𝑅𝑅 with a cutoff at ten over the official small development set
(msmarco-passage/dev/small) are 0.337 for MonoBERT, 0.340 for
MonoRoBERTa and 0.347 for MonoELECTRA, aligned with the
results available in the literature [7, 22].

3 ANALYZE THE DISTANCE BETWEEN
QUERY AND TOKEN EMBEDDINGS

To answerRQ1 we apply a simple and intuitive analysis focused
on the spatial relation of query and document tokens. To this end,
we label query tokens and document tokens as forming in the
embedding space two distinct classes of tokens 𝑆𝑞 and 𝑆𝑑 . We
highlight that, in almost all the experiments in this study, we discard
all the special tokens, like, for example, the tokens [SEP], [CLS], and
[PAD] in MonoBERT.
We base our analysis on three different distance measures between
the two groups of tokens: cosine distance (cosine), Euclidean dis-
tance (l2), and Jensen–Shannon Divergence (JSD) distance. For
cosine and l2, we compute the maximum, minimum, and average
values between the tokens in 𝑆𝑞 and 𝑆𝑑 (identified with the prefixes
max, min, and avg respectively), and we also consider the distance
from the centroids of 𝑆𝑞 and 𝑆𝑑 (identified with the prefix center).
Concurrently, we compute JSD distance by modeling the probabil-
ity distribution over 𝑆𝑞 and 𝑆𝑑 as follows. First, we project the token

1Code available at: https://github.com/veneres/ltr-emb-analysis
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Figure 3: Area Under the Curve (AUC) over the test set for
each model and metric under consideration. The false posi-
tive rate represents the rate of query/document pairs wrongly
classified as misprediction.

high-dimensional space on a lower one by Principal Component
Analysis (PCA). To perform this conversion, we used all the em-
beddings (query, documents, special tokens, and padding) as input
data. Then, by the first two principal components, we compute the
Probability Density Function (PDF) of both query and document
token sets via Kernel Density Estimation (KDE), particularly suit-
able for our purpose being a non-parametric method. Finally, we
measure the distance between these two distributions through the
square root of the JSD. Let 𝜙𝑑 and 𝜙𝑞 be the two distributions, then
the JSD is defined by JSD(𝜙𝑑 | |𝜙𝑞) = 𝐻

(
𝜙𝑑+𝜙𝑞

2

)
− 𝐻 (𝜙𝑑 )+𝐻 (𝜙𝑞 )

2 ,
where 𝐻 (·) is the Shannon entropy.
We analyze the aforementioned measures w.r.t. each transformer
block 𝑇 , starting from 𝑇0 until 𝑇12. 𝑇0 represents the initial input
embeddings fed into the neural network while 𝑇12 represents the
last transformer block of each architecture under analysis (we use
the small version of each LLMs under consideration). For the sake of
brevity, we present the results obtained on the trec-dl-2019 dataset
and only for MonoBERT. The results comparing high and low score
embedding trends for cosine, l2, and JSD distance are shown in
Figure 1. It is clear from the plots that there is a difference in the
behavior of tokens belonging to high-scored (greater than 0.5) and
low-scored (less than 0.5) documents, especially formin-cosine,min-
l2 and JSD. To confirm the intuition from the plots, we perform
a permutation test with the assumption that the data comes from
the same distribution as null hypothesis and a one-side alternative
hypothesis where we hypothesize that the mean of the high-scored
documents is higher with respect to the mean of the low-scored
documents. The results of the statistical test, setting a p-value limit
to 0.01, show that the difference is statistically significant for min-
cosine, center-cosine,min-l2, center-l2 and JSD in all the transformer
blocks. We highlight that a difference between the token distance
is expected. According to the common intuition that the token is
contextualized during the transformation in each transformer block,
i.e., we expect that query tokens are contextualized in the document
tokens when the score is high. However, quite unexpectedly, this
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Table 1: Results in terms of BAcc and Acc for cross-validation
on the development (d) and test sets (t).

Model Distance BAcc (d) BAcc (t) Acc (t)

MonoBERT
cosine 0.57 ± 0.02 0.60 0.74
l2 0.55 ± 0.02 0.55 0.76
JSD 0.52 ± 0.02 0.57 0.77

MonoRoBERTa
cosine 0.75 ± 0.02 0.84 0.85
l2 0.78 ± 0.02 0.81 0.85
JSD 0.64 ± 0.01 0.66 0.79

MonoELECTRA
cosine 0.63 ± 0.02 0.64 0.75
l2 0.66 ± 0.01 0.60 0.76
JSD 0.50 ± 0.00 0.52 0.73

behavior starts from the very beginning (𝑇0) for certain metrics (e.g.,
min-cosine); this fact can have a huge impact also on the creation of
new early-exit strategies since the inference could be stopped when
𝑆𝑞 and 𝑆𝑑 are too far away and the document scored is likely to be
not relevant. An illustrative example of this behavior is depicted
in Figure 2: here, we show two pairs of query and document token
PDFs, each representing a score level (low/high). Interestingly, the
closer the two distributions, the higher the score.

4 TOWARDS UNDERSTANDING MODEL
PREDICTION ACCURACY

In our exploratory analysis, we found that the score predicted by
the model is more aligned with the real relevance of a document
when the query and document tokens follow a well-specified trans-
formation in the space related to RQ1. Thus, to answer RQ2, we
create different classifiers (shallow decision trees) using the infor-
mation of similarity between 𝑆𝑞 and 𝑆𝑑 to predict the probability of
having a misprediction, i.e., predicting that a document is relevant
for the query when is not and vice-versa. That is, in the case of
cosine and l2, we create a new dataset in which each row identi-
fies a query/document pair and where it has as features all the
different similarities for each block from 𝑇0 to 𝑇12, for a total of 52
features (using min, max, avg, and center), and 13 features for JSD.
Since the goal of the prediction task is to predict the probability of
having a misprediction, but the score predicted by the model is a
real number between 0 and 1, we apply a min-max scaling to the
score of the documents query-wise, and then we bin the score in
2 classes, low-score and high-score. Then, we binned the ground
truth relevance in 2 classes: low-relevance within the interval [0, 2]
and high-relevance considering high-relevant only the documents
with relevance 3. Other binning criteria could have been consid-
ered, however with these settings we want to emphasize in our
misprediction classifier the role of very high-relevance judgments.
Finally, let the binned score be 𝑠𝑏 and binned relevance be 𝑟𝑏 , with
value 0 when they represent a low score/relevance and value 1
when they represent a high score/relevance. The objective of our
classifier is to predict the label 𝑦 = |𝑟𝑏 − 𝑠𝑏 |. It is easy to see that we
have 𝑦 = 0 when the model correctly scores the query/document
pair, while we have 𝑦 = 1 when the model assigns a high score to
a non-relevant document or vice-versa. In Table 1, we present the

accuracy obtained by our classifiers. The results are presented in
terms of Balanced Accuracy (BAcc) and Accuracy (Acc) and AUC.
We used BAcc in our classification problem to summarize the accu-
racy taking into account that the datasets are imbalanced and there
are more non-relevant documents w.r.t. relevant documents [6].
For example, for MonoELECTRA (the most effective model) in trec-
dl-2019, we have 2801 documents misclassified (𝑦 = 1) and 6459
correctly classified (𝑦 = 0). We used as training set and develop-
ment set for our shallow decision trees the trec-dl-2019 subset of
MS MARCO, and we fine-tuned our classifier w.r.t. the number of
leaves needed between {4, 8, 16, 32} using 5-fold cross-validation.
We then evaluate the classification accuracy on datasets created
from trec-dl-2019. The results for BAcc and Acc are summarized in
Table 1, while in Figure 3 we present the results for the AUC. From
the results, we see we can achieve good classification performance
with both the methods and distance measures, except for the JSD
in MonoELECTRA where we get 0.52, close to random noise (our
baseline). In addition, no distance seems to outperform the others
in all the cases, and thus different metrics seem to be suitable for
different models. Finally, we highlight that by inspecting the feature
importance offered by the decision trees created, we can see that
the most important ones are the ones in the last transformer blocks
and in the first transformer blocks. For example, for MonoBERT
and cosine distance, we have that the most important feature is the
minimum distance at 𝑇12 and the second most important feature is
the distance at𝑇1. This furthermore proves our claim that consider-
ing the evolution of the embeddings along the transformer blocks
is useful to understand the prediction made by the model.

5 CONCLUSIONS AND FUTUREWORK
In this work, we presented an initial analysis of the behaviors of the
embeddings in Mono-X models during inference time. We propose
two different research questions with the goal of zooming in on
the latent space of the embeddings and understanding if there is
a connection between the arrangement of the tokens, their score,
and the prediction accuracy. Multiple future works can be based on
the observations of this work, including the development of a new
early-exit strategy observing the evolution of the tokens, improving
the accuracy of the model by looking at the distribution of the
tokens, creating new QPP methods and applying the same analysis
also to dual encoder approaches. To conclude our work, given the
analysis presented, we claim that we can answer the question: “Can
Embeddings Analysis Explain Large Language Model Ranking?”
in an affirmative way. In particular, we highlight that analyzing
the distance between query and document tokens can be useful in
understanding possible pitfalls of the model.
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