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Tables are everywhere, from scientiic journals, papers, websites, and newspapers all the way to items we buy at the
supermarket. Detecting them is thus of utmost importance to automatically understanding the content of a document. The
performance of table detection has substantially increased thanks to the rapid development of deep learning networks. The
goals of this survey are to provide a profound comprehension of the major developments in the ield of Table Detection, ofer
insight into the diferent methodologies, and provide a systematic taxonomy of the diferent approaches. Furthermore, we
provide an analysis of both classic and new applications in the ield. Lastly, the datasets and source code of the existing models
are organized to provide the reader with a compass on this vast literature. Finally, we go over the architecture of utilizing
various object detection and table structure recognition methods to create an efective and eicient system, as well as a set of
development trends to keep up with state-of-the-art algorithms and future research. We have also set up a public GitHub
repository where we will be updating the most recent publications, open data, and source code. The GitHub repository is
available at https://github.com/abdoelsayed2016/table-detection-structure-recognition.

CCS Concepts: · Computing methodologies→ Object detection; Object recognition.

Authors’ addresses: Mahmoud Kasem, mahmoud.salah@aun.edu.eg, Assuit University, Faculty of Computers and Information, Assuit, Egypt;
Abdelrahman Abdallah, abdelrahmanelsayed@aun.edu.eg, Assuit University, Faculty of Computers and Information, Assuit, Egypt and
Ca’ Foscari University of Venice, Venice, Italy; Alexander Berendeyev, aberendeyev@gmail.com, Satbayev University, Almaty, Kazakhstan;
Ebrahem Elkady, Assuit University, Faculty of Computers and Information, Assuit, Egypt, ebrahemelkady@aun.edu.eg; Mohamed Mahmoud,
Assuit University, Faculty of Computers and Information, Assuit, Egypt, College of Electrical and Computer Engineering and Chungbuk
National University, Cheongju, Korea, mohamedabokhalil@aun.edu.eg; Mahmoud Abdalla, mahmoudelsayed201999@gmail.com, Information
Technology Institute(ITI), Alexandria, Egypt; Mohamed Hamada, Department of Information System, International IT University, Almaty,
Kazakhstan, M.hamada@iitu.edu.kz; Sebastiano Vascon, Ca’ Foscari University of Venice, Venice, Italy, sebastiano.vascon@unive.it; Daniyar
Nurseitov, JSC NC KazMunayGas, Astana, Kazakhstan, D.Nurseitov@niikmg.kz; Islam Taj-Eddin, Faculty of Computer and Information,
Assuit University, Assuit, Egypt, itajeddin@aun.edu.eg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0360-0300/2024/4-ART
https://doi.org/10.1145/3657281

ACM Comput. Surv.

HTTPS://ORCID.ORG/0000-0002-8513-570X
HTTPS://ORCID.ORG/0000-0001-8747-4927
HTTPS://ORCID.ORG/0000-0003-2150-8287
HTTPS://ORCID.ORG/0000-0002-7248-8880
HTTPS://ORCID.ORG/0000-0001-6764-8969
HTTPS://ORCID.ORG/0000-0002-4270-2268
HTTPS://ORCID.ORG/0000-0002-0442-3663
HTTPS://ORCID.ORG/0000-0002-7855-1641
HTTPS://ORCID.ORG/0000-0003-1073-4254
HTTPS://ORCID.ORG/0000-0003-3028-6751
https://github.com/abdoelsayed2016/table-detection-structure-recognition
https://orcid.org/0000-0002-8513-570X
https://orcid.org/0000-0001-8747-4927
https://orcid.org/0000-0003-2150-8287
https://orcid.org/0000-0002-7248-8880
https://orcid.org/0000-0001-6764-8969
https://orcid.org/0000-0002-4270-2268
https://orcid.org/0000-0002-0442-3663
https://orcid.org/0000-0002-7855-1641
https://orcid.org/0000-0003-1073-4254
https://orcid.org/0000-0003-1073-4254
https://orcid.org/0000-0003-3028-6751
https://doi.org/10.1145/3657281
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3657281&domain=pdf&date_stamp=2024-04-10


2 • Kasem and Abdallah, et al.

Additional Key Words and Phrases: convolutional neural networks, deep learning, table detection, table structure recognition.

1 INTRODUCTION

Textbooks, lists, formulae, graphs, tables, and other elements are common in documents. Most papers, in particular,
contain several sorts of tables. Tables, as a signiicant part of papers, may convey more information in fewer
words and allow readers to quickly explore, compare, and comprehend the content. Table detection and structure
identiication are crucial tasks in image analysis because they allow retrieving vital information from tables in a
digital format. Because of the document’s type and the variety of document layouts, detecting and extracting
images or document tables is tough. Researchers have previously used heuristic techniques to recognize tables or
to break pages into many parts for table extraction[51]. Few studies have focused on table structure recognition
in documents following table detection[45, 141].
The layout and content analysis of documents are used to detect tables. Tables come in a number of layouts

and formats. As a result, creating a general method for table detection and table structure recognition is quite
diicult. Table detection is regarded as a diicult subject in the scientiic community. A large number of studies
have been conducted in this sector, although the majority of them have limitations, such as Table areas cannot be
fully detected from document images using current commercial and open-source document analysis algorithms,
such as Tesseract. [44].
Detecting and Structure recognition of tables in documents is challenging due to their varied layouts and

formats, making the development of a universal detection and recognition method diicult. Despite extensive
research, current algorithms like Tesseract struggle to accurately identify table areas, underscoring the complexity
of this issue in document analysis [44].
In recent years, a variety of remarkable and creative strategies have been used to improve deep learning

model detection accuracy and solve complex challenges encountered during the training and testing process of
deep learning object recognition models. Modiication of the activation function of deep CNNs [136], Transfer
learning [71, 83], Image Inpainting [79, 138], cancer diagnosis, detection [1, 46], and classiication[20], and medical
question answers[2ś4, 84], as well as software engineering applications such as optimizing the time and schedule
of software projects[8, 34], Customer Segmentation[6, 54], Intrusion Detection in IoT [80, 133] and handwritten
recognition for various languages[55, 81, 91, 125], and inventive ways in the combined selection of the activation
function and the optimization system for the proposed deep learning model are among these unique strategies.
Among the various variables and initiatives that have contributed to the rapid advancement of table detection
algorithms, the development of deep convolutional neural networks and GPU computational capacity should
be credited. Deep learning models are now widely used in many aspects of computer vision, including general
table detection[28, 109]. Table structures, on the other hand, receive far less attention, and the table structure is
typically characterized by the rows and columns of a table [52, 82].
Figure 1 shows a basic pipeline comparison of deep learning techniques and conventional approaches for

the task of understanding tables. Traditional table recognition techniques either can’t handle varied datasets
well enough or need extra metadata from PDF iles. Extensive pre- and post-processing were also used in the
majority of early approaches to improve the efectiveness of conventional table recognition systems. However,
deep learning algorithms retrieve features using neural networks, primarily convolutional neural networks [126],
instead of manually created features. Object detection or segmentation networks then try to diferentiate the
tabular portion that is further broken down and recognized in a document image.

This survey examines deep learning-based table detection, recognition, and classiication architectures in depth.
While current evaluations are comprehensive [19, 139], the majority of them do not address recent advancements
in the ield.
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Table detection [78, 94, 105] is a foundational task in the domain of document image analysis. This process
seeks to identify the presence and precise location of tables within a document or image. The primary goal of table
detection is not to interpret or understand the data within the table but rather to demarcate its boundaries within
the broader document space. Tables are structured data representations that carry substantial informational
weight in documents, making their accurate detection crucial. This is especially signiicant in scanned documents
or PDFs where tables cannot be programmatically accessed but need to be extracted for further data analysis
or transformation. While table detection is about inding where a table is, table structure recognition [48, 109]
delves deeper. It involves understanding the internal layout, organization, and relationships of components
within a detected table. Speciically, this means identifying individual rows, columns, headers, footers, and cells.
Recognizing the structure is pivotal for any subsequent data extraction or transformation tasks. Without a clear
understanding of the table’s structure, the data within it can be misinterpreted. For instance, mistaking a header
for a data row could lead to incorrect data parsing. Table classiication is the process of categorizing tables based
on various criteria, such as layout, content type, purpose, or complexity. For instance, tables could be classiied as
full-line tables, partial-line tables, and more. Not all tables serve the same purpose, and understanding the type or
category of a table can aid in subsequent processing steps.

The primary contributions of this paper include:

(1) A comprehensive overview of historical and contemporary Table Datasets, emphasizing their distinct
characteristics.

(2) An in-depth review of pivotal table detection methodologies, tracing their development and evolution.
(3) An exhaustive exploration of table structure recognition techniques, providing a deep dive into their

intricacies.
(4) A comparative study of various Table Classiicationmethods, illing a noticeable gap in the existing literature

where such a broad summary was previously absent.
(5) Presentation of experimental results based on several datasets related to table detection.

(a) Traditional Table Detection approaches (b) Deep Learning approaches for Table Detection

Fig. 1. Table analysis pipeline comparison of conventional and deep learning methods. While convolutional networks are used

in deep learning techniques, classical approaches primarily perform feature extraction through image processing techniques.

Deep learning methods for interpreting tables are more generalizable and independent of data than conventional approaches.
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There are several challenges associated with table detection and structure recognition. Some of these challenges
include:

(1) Tables can have a wide range of shapes, sizes, and styles, which can make it diicult for algorithms to
accurately detect and recognize them.

(2) Tables can be located in a variety of diferent contexts, such as in documents, web pages, or natural images,
which can make it diicult for algorithms to generalize to diferent settings.

(3) Tables can contain a wide range of diferent types of information, such as text, numbers, and images, which
can make it diicult for algorithms to extract and interpret this information.

(4) Tables can be distorted or occluded by other objects in the scene, which can make it diicult for algorithms
to accurately detect and recognize them.

(5) Tables can be presented in a variety of diferent formats, such as HTML tables, PDF tables, or scanned
images, which can make it diicult for algorithms to handle diferent input formats.

Overall, these challenges can make it diicult for algorithms to accurately and reliably detect and recognize tables
in a wide range of diferent settings.
1.1 Comparison with Previous Reviews

For many years, the issue with table analysis has been widely acknowledged. Figure 2 shows the upward trend in
publications during the previous eight years; these analysis values were derived from Scopus. There have been
notable table detection and table classiication surveys published. There are outstanding studies on the subject
of table detection in these surveys [19, 139]. There have been few recent surveys that speciically address the
subject of table detection and classiication. B. Coüasnon [15] released another review on table recognition and
forms. The review gives a quick rundown of the most recent techniques at the time, S. Khusro [58] stands as the
latest comprehensive survey on PDF table extraction, to our knowledge. Despite deep learning’s breakthroughs
in ields like visual recognition and medical image analysis, there’s a gap in exhaustive surveys on deep learning
approaches for table detection. A detailed review is essential for progress in this area, particularly beneiting
researchers new to the ield.

Fig. 2. shows an illustration of an expanding trend in the area of table analysis. This information was gathered by looking

through the annual reports on table detection and table identification from the years 2015 to 2022, this analysis values were

derived from Scopus.

1.2 Scope
The vast number of studies on deep learning for table detection precludes a full review within a single paper,
necessitating selective focus on top-tier journal and conference publications. This paper aims to ofer a detailed
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survey of deep learning techniques for detecting, recognizing, and classifying tables, including a taxonomy for
understanding these approaches based on datasets, evaluation metrics, and methods. The taxonomy is designed
to clarify the similarities and diferences between various strategies, aiding readers and guiding future research
directions.
2 MAJOR CHALLENGES

2.1 Object detection Challenges

Developing a general-purpose algorithm that fulills two competing criteria of high quality/accuracy and great
eiciency is ideal for object detection. High-quality detection must accurately localize and recognize objects in
images or video frames, allowing for the distinction of a wide range of object categories in the real world and
localization and recognition of object instances from the same category, despite intra-class appearance variations,
for high robustness. High eiciency necessitates that the full detection process is completed in real time while
maintaining reasonable memory and storage requirements.
2.2 Table Detection Challenges

Although a trained segmentation model can accurately locate tables, conventional machine learning techniques
have laws in the structural identiication of tables. A major issue is the large number of things in such a little
space. As a result, the network misses out on critical visual cues that may aid in the detection and recognition
of tables [109]. As physical rules are available, intersections of horizontal and vertical lines are computed to
recognize table formations. The Hough transform is a prominent approach in computer vision that aids in the
detection of lines in document scans [123]. Length, rotation, and average darkness of a line are utilized to ilter out
false positives and determine if the line is, in fact, a table line [67]. The intersections of the remaining horizontal
and vertical lines are computed after the Hough lines have been iltered. Table cells are created based on the
crossings.
2.3 Table Structure Recognition Challenges

Table recognition in document analysis is a multifaceted task that involves comprehending the intricate structures
of tables within textual content. In the realm of table structure recognition, scholars and researchers have identiied
two fundamental aspects: logical structure recognition and physical structure recognition. Logical structure
recognition delves into the semantic meaning of the table, focusing on understanding relationships and hierarchies
among diferent elements within the table, such as headers, rows, and columns. On the other hand, physical
structure recognition centers on the spatial arrangement of table elements on a document page, concentrating on
precise localization, boundary delineation, and positional information of cells. In this comprehensive exploration,
we delve into these two pivotal aspects separately, discussing the diverse methodologies and techniques employed
to tackle each facet.[65, 100]
3 A QUICK OVERVIEW OF DEEP LEARNING

From image classiication and video processing to speech recognition and natural language understanding, deep
learning has transformed a wide range of machine learning activities. Given the incredible rate of change[74],
there is a plethora of current survey studies on deep learning [31, 73, 137, 142], medical image analysis applications
[73], natural language processing [137], and speech recognition systems [142].
Convolutional neural networks (CNNs), the most common deep learning model, can use the fundamental

properties of actual signals: translation invariance, local connection, and compositional hierarchies. A typical
CNN comprises a hierarchical structure and numerous layers for learning data representations at diferent levels
of abstraction [66]. We start with a convolution.
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between a feature map from the previous layer l-1 and an input feature map ��−1 , convolved using a 2D
convolutional kernel (or ilter or weights)�� . This convolution is seen as a series of layers that have been subjected
to a nonlinear process � , such that with a bias term ��� and a convolution between the � �−1 input feature maps

��−1� and the matching kernel��
�, � . For each element, the element-wise nonlinear function � (.) is commonly a

rectiied linear unit (ReLU) for each element, Finally, pooling is the process of downsampling and upsampling
feature maps. Deep convolution neural networks(DCNNs) are CNNs with a large number of layers, often known
as "deep" networks. A CNN’s most basic layers consist of a series of feature maps, each of which operates as a
neuron. A set of weights��, � connects each neuron in a convolutional layer to feature maps from the preceding
layer (essentially a set of 2D ilters). Whereas convolutional and pooling layers make up the early CNN layers,
the subsequent layers are usually completely connected. The input picture is repeatedly convolved from earlier
to later layers, and the receptive ield or region of support grows with each layer. In general, the irst CNN layers
extract low-level characteristics (such as edges), whereas subsequent layers extract more generic features of
increasing complexity [9, 66].
DCNNs have a hierarchical structure that allows them to learn data representations at numerous levels of

abstraction, the ability to learn highly complicated functions, and the ability to learn feature representations
directly and automatically from data with minimum domain expertise. The availability of huge-size labeled
datasets and GPUs with extremely high computational capabilities is what has made DCNNs so successful.
Despite the enormous achievements, there are still acknowledged laws. There is a critical need for labeled

training data as well as expensive computational resources, and selecting proper learning parameters and network
designs still requires substantial expertise and experience. Trained networks are diicult to comprehend, and lack
resistance to degradations, and many DCNNs have been proven to be vulnerable to assaults [31], all of which
restrict their applicability in real-world applications.

4 DATASETS AND EVALUATION METRICS

4.1 Datasets

This section will describe datasets that are available and have been most commonly used for table detection, table
structure recognition, and classiication tasks.
4.1.1 ICDAR 2013. The ICDAR2013 dataset, used as the oicial practice dataset for the ICDAR2013 competition,
was created by collecting PDFs from Google searches, limited to europa.eu and *.gov sites for public domain
documents[30]. It includes 150 tables from 27 EU and 40 US Government documents, focusing on table detection
and structure recognition tasks. The dataset challenges methods in identifying table cell structures and spans
multiple pages, as shown in Figure 3.
4.1.2 ICDAR 2017 POD. The ICDAR2017 Page Object Detection (POD) dataset[26], published for testing table
detection methods, contains 2417 images from 1500 CiteSeer scientiic papers, including igures, tables, and
formulae. It’s larger than the ICDAR2013 table dataset, with 1600 images for training (731 tabular areas) and 817
for testing (350 tabular regions). Examples are shown in Figure 3.
4.1.3 ICDAR2019. ICDAR2019 [25] introduced a dataset for table detection (TRACK A) and recognition (TRACK
B), divided into historical and modern types. The modern dataset includes diverse formats from scientiic papers,
forms, and inancial documents, while the historical dataset features images from sources like handwritten ledgers
and old books. It consists of 1600 training images and 839 testing images, with TRACK A providing images
containing tables and TRACK B divided into two sub-tracks for table structure recognition with or without prior
knowledge. Annotations follow a format similar to ICDAR 2013 [30], using XML iles to detail table and cell
positions. Examples are shown in Figure 3
4.1.4 TabStructDB. TabStructDB is a diferent publicly available image-based table structure recognition dataset
that was promoted by SA Siddiqui [115]. The authors enhanced the well-known Page-Object Detection dataset

ACM Comput. Surv.
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(a) ICDAR 2013 (b) ICDAR 2017 (c) ICDAR 2019 (d) RVL-CDIP

Fig. 3. Examples of images in ICDAR 2013, ICDAR 2017, ICDAR 2019, and RVL-CDIP

from ICDAR-17 by incorporating detailed structural information for all the tabular regions within the dataset.
Figure 4 illustrates two examples of this dataset.
4.1.5 TABLE2LATEX-450K. TABLE2LATEX-450K [16], a large dataset released at the latest ICDAR conference,
comprises 450,000 annotated tables and associated images. It was created by crawling LaTeX source documents
and ArXiv publications from 1991 to 2016, leading to a high-quality, reined dataset. Examples from this dataset
are shown in Figure 4.
4.1.6 RVL-CDIP (SUBSET). The RVL-CDIP dataset, a prominent collection in document analysis, contains
400,000 images across 16 categories [37]. P. Riba [106] created a subset of this dataset by annotating 518 invoices
speciically for table detection research. This subset, publicly available, is vital for testing table identiication
methods in invoice document images. Examples from this dataset are illustrated in Figure 3.
4.1.7 IIIT-AR-13K. IIT-AR-13K, introduced by A Mondal [85], is a new dataset formed from publicly available
annual reports in multiple languages, and is the largest manually annotated dataset for graphical page object
recognition. It includes diverse annotations like igures, natural images, logos, signatures, and tables, with 11,000
training samples, and 2,000 and 3,000 samples for validation and testing, respectively. Examples from this dataset
are in Figure 5.
4.1.8 CamCap. CamCap, proposed by W. Seo [110], is a dataset of camera-captured photos comprising only
85 images, including 38 tables on curved surfaces (1295 cells) and 47 tables on planar surfaces (1162 cells). It is
publicly available for detecting and identifying table structures and is crucial for assessing the accuracy of table
identiication techniques in camera-captured document images. Two examples from this dataset are shown in
Figure 5.
4.1.9 UNLV Table. The UNLV Table dataset [112] consists of 2889 pages of scanned document images from
diverse sources such as magazines, newspapers, and business letters, available in bitonal, grayscale, and fax
formats with resolutions between 200 to 300 DPI. It includes ground truth data with manually marked zones,
detailed in text format. Examples from this dataset are displayed in Figure 5.
4.1.10 UW-3 Table. The UW-3 Table dataset [96] contains 1600 skew-corrected English document images from
books and magazines, with manually edited bounding boxes for page frames, text, non-text zones, lines, and
words. Approximately 120 images include at least one marked table zone. Ground truth, stored in XML, was
prepared using the T-Truth tool, with manual validation and corrections for accuracy. Challenges in labeling,
especially for column-spanning cells and varying table structures, are noted. Examples from this dataset are in
Figure 5.
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(a) PubTabNet (b) TABLE2LATEX-450K

(c) SynthTabNet (d) TabStructDB

Fig. 4. Examples of images in PubTabNet, TABLE2LATEX-450K, SynthTabNet, and TabStructDB .

(a) IIIT-AR-13K (b) CamCap (c) UNLV (d) UW3

Fig. 5. Examples of images in IIIT-AR-13K, CamCap, UNLV and UW3

4.1.11 Marmot. TheMarmot dataset [23], a pioneer in table detection, comprises 2000 PDF pages from conference
papers in both English and Chinese, ranging from 1970 to 2011, and includes ground truth data. Labeling was
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standardized and double-checked by 15 people to ensure consistency. The dataset, still expanding, features a
balance of Chinese and English pages, with the Chinese pages sourced from over 120 e-Books in Founder Apabi’s
digital library, and the English pages in both one and two columns. It covers a variety of table types, including
ruled, partially and non-ruled, horizontal, vertical, inside-column, and span-column tables. Samples from this
dataset are displayed in Figure 6.

(a)Marmot (b) TableBank

Fig. 6. Examples of images in Marmot and TableBank

4.1.12 TableBank. The TableBank dataset [70] introduced a novel weak supervision method for automatically
creating a dataset that is signiicantly larger and of higher quality than existing human-labeled datasets for table
analysis. It was compiled by systematically gathering .docx documents from online sources and LaTeX documents
from the arXiv database. This approach involves modifying Oice XML code for Word documents and LaTeX
code to identify table boundaries, resulting in high-quality labeled data across various domains like business
documents, oicial ilings, and research papers. The TableBank dataset comprises 417,234 high-quality labeled
tables and their original documents. Samples from this dataset are illustrated in Figure 6.
4.1.13 DeepFigures. DeepFigures [119], a dataset for igure extraction, was created without human assistance
using scientiic articles from databases like arXiv and PubMed. It comprises around 5.5 million tables and igures-
induced labels, making it 4,000 times larger than its predecessor and achieving an average precision of 96.8%.
This substantial dataset supports the development of modern, data-driven approaches for igure extraction, with
samples shown in Figure 7.
4.1.14 PubTables-1M. PubTables-1M [121] is a dataset comprising nearly onemillion tables from scientiic articles.
It supports multiple input modalities and ofers detailed header and location information for table structures,
suitable for various modeling approaches. The dataset introduces a novel canonicalization procedure to address
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over-segmentation, a common issue in previous datasets, enhancing training performance and providing a more
accurate assessment of model performance for table structure recognition. Additionally, transformer-based object
detection models trained on PubTables-1M have shown excellent results in detection, structure recognition, and
functional analysis without task-speciic customizations. Two examples from this dataset are displayed in Figure
8.

(a) FinTabNet (b) DeepFigures (c) TNCR

Fig. 7. Examples of images in FinTabNet DeepFigures, and TNCR

4.1.15 SciTSR. SciTSR [14] presents a large-scale table structure recognition dataset compiled by systematically
collecting LaTeX source iles from the arXiv repository. that comprise 15,000 tables from PDF iles and their
related structural labels. Figure 8 illustrates two examples of this dataset.

(a) PubTabNet-1M (b) SciTSR

Fig. 8. Examples of images in PubTabNet-1M and SciTSR
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4.1.16 FinTabNet. FinTabNet [144] introduces GTE, a vision-guided framework for table detection and cell-
structured identiication, adaptable to any object detection model. GTE-Table uses a penalty based on cell
containment constraints for training, while GTE-Cell detects cells using table layouts. The authors developed
a method for automatically labeling table and cell structures in texts, creating a large training and testing
corpus cost-efectively. FinTabNet comprises real-world scientiic and inancial datasets with detailed structure
annotations. Collaboration with PubTabNet creators enriched FinTabNet with cell labels from PubMed scientiic
articles. Examples from this dataset are shown in Figure 7.
4.1.17 PubTabNet. PubTabNet [146] is a large open-access table recognition collection with 568k table images
and corresponding HTML representations, automatically constructed by comparing XML and PDF formats of
scientiic publications from the PubMed CentralTM Open Access Subset (PMCOA). The authors introduced an
attention-based encoder-dual-decoder (EDD) architecture for converting table images to HTML code, featuring a
structure decoder for table reconstruction and a cell decoder for cell content recognition. They also proposed a
new Tree-Edit-Distance-based Similarity (TEDS) metric for table recognition, efectively addressing multi-hop
cell misalignments and OCR errors. Examples from this dataset are displayed in Figure 4.
4.1.18 TNCR. TNCR [? ], a new table collection, features images of varied quality sourced from free access
websites, and is designed for recognizing and classifying tables in scanned document images into ive categories.
The dataset includes approximately 6621 images with 9428 captioned tables. Using state-of-the-art deep learning
approaches for table detection, the study established robust baselines. Notably, Deformable DERT with a Resnet-50
Backbone Network achieved the best performance on the TNCR dataset, with an accuracy of 86.7%, recall of
89.6%, and an F1 score of 88.1%. Samples from this dataset are presented in Figure 7.
4.1.19 SynthTabNet. SynthTabNet, proposed by ANassar [88], is a synthetic dataset of 600k samples, developed to
diversify appearance styles and complexity in table datasets. It synthesizes elements from Tablebank, PubTabNet,
and FinTabNet into four distinct styles, ranging from realistic appearances to colorful, high-contrast, and minimal-
content tables. This dataset aims to correct imbalances in existing datasets. Samples are illustrated in Figure
4.
4.1.20 WTW (Wired Table in the Wild). R. Long [76] introduces a solution for parsing table structures from
diverse images, including those with deformations and occlusions, focusing on real-world scenarios with a novel
method called Cycle-CenterNet. Built on the CenterNet architecture, Cycle-CenterNet features a cycle-pairing
module for detecting and grouping tabular cells into structured tables. Additionally, the paper presents the Wired
Table in the Wild (WTW) dataset, a comprehensive collection of well-annotated tables from photos, scanned iles,
and web pages, emphasizing various table styles and scenes.
4.1.21 WikiTableSet. NTLy [77] introducesWSTabNet, a weakly supervisedmodel for table recognition in images
using HTML or LaTeX annotations instead of detailed cell annotations. This end-to-end system, comprising
an encoder, structure decoder, and cell decoder, is trained using images and their HTML/LaTeX codes. The
WikiTableSet dataset, sourced from Wikipedia, supports this approach with millions of table images in English,
Japanese, and French, including their HTML representations.
4.1.22 STDW. M. Haloi [33] introduces a comprehensive dataset for table detection to overcome the limitations
of current benchmarks. This dataset, consisting of over seven thousand diverse table samples, was collected
from scanned documents, Word iles, and searchable PDFs, providing a varied resource for analysis and research.
The paper showcases baseline results using a convolutional neural network-based approach, demonstrating its
superiority over traditional computer vision methods in detecting table structures in documents.
4.1.23 TabRecSet. F. Yang [135] delves into table recognition (TR) in pattern recognition, encompassing table
detection (TD), table structure recognition (TSR), and table content recognition (TCR). The study introduces the
Table Recognition Set (TabRecSet), a comprehensive dataset and the irst to include both English and Chinese
languages, tailored for end-to-end TR research. TabRecSet features 38.1K tables (20.4K English, 17.7K Chinese) in
various formats, including complete and incomplete borders, regular and irregular shapes, and sourced from
diverse scenarios like scanned and camera-taken images, documents, Excel tables, educational papers, and
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inancial invoices. Additionally, the paper presents TableMe, an annotation tool designed for improved eiciency
and quality in annotation through visualization and interactivity.
4.1.24 ICT-TD. B. Xiao [132] improves table detection datasets by enhancing annotations in the "Open-Tables"
dataset and introducing the "ICT-TD" dataset, which contains 175,682 PDF documents across 370 ICT commodities.
These datasets, manually annotated for quality, ofer a reliable resource for cross-domain research, with experi-
ments showing their efectiveness for cross-domain evaluations and their ability to improve model performance
in such settings.
4.1.25 DECO. E Koci [63] introduces the DECO dataset, a collection of 1,165 Enron corpus spreadsheet iles
annotated for both layout and contents, with assigned roles like Header and Data. The dataset includes marked
table borders and categorization for iles without tables. The paper extensively analyzes the dataset and annota-
tions, ofering insights for future research. The detailed annotation methodology, along with the DECO dataset
and tools, is openly accessible to the research community.

Table 1 presents a comparison between some of the popular datasets of table detection and structure recognition.

Table 1. The table illustrates a quantitative comparison between some famous datasets in Table Detection.

Dataset Total pages Total Tables Table detection Table Structure Classiication Document Type
ICDAR2013 462 150 ✓ ✓ ✗ Scanned

ICDAR2017-POD 2,417 - ✓ ✗ ✗ Scanned
TabStructDB 2.4k - ✗ ✓ ✗ Scanned

TABLE2LATEX-450K - 450,000 ✗ ✓ ✗ Scanned
RVL-CDIP (SUBSET) 518 - ✓ ✗ ✗ Scanned

IIIT-AR-13K 13K - ✓ ✗ ✗ Scanned
CamCap 85 - ✓ ✓ ✗ Camera Capture
UNLV 2889 - ✓ ✓ ✗ Scanned

UW-3 dataset 1600 - ✓ ✓ ✗ Scanned
Marmot 2000 - ✓ ✗ ✗ Scanned

TableBank - 417,234 ✓ ✓ ✗ Scanned
ICDAR2019 - 2000 ✓ ✓ ✗ Scanned
DeepFigures - 5.5 million ✓ ✗ ✗ Scanned
PubTables-1M 460,589 1 million ✓ ✓ ✗ Scanned

SciTSR - 15,000 ✗ ✓ ✗ PDF
FinTabNet 89,646 112,887 ✓ ✓ ✗ PDF and HTML
PubTabNet - 568k ✗ ✓ ✗ Scanned
TNCR 6621 9428 ✓ ✗ ✓ Scanned

SynthTabNet 600k - ✓ ✓ ✓ Scanned
WTW 14581 - ✗ ✓ ✗ Scanned

WikiTableSet - 5M ✗ ✓ ✗ HTML or LaTeX
STDW 7K - ✓ ✗ ✗ Scanned

TabRecSet 32.07K 38.17 K ✓ ✓ ✗ Scanned
ICT-TD 5000 3,581,805 ✓ ✗ ✗ PDF
DECO 1, 165 - ✗ ✓ ✗ Spreadsheets

4.2 Dataset Challenges

The spectrum of table data analysis is broad and fraught with intricacies. While the presented datasets ofer a
treasure trove of data for researchers, they also embody an array of challenges, each distinct and demanding.

Starting with foundational datasets like ICDAR2013 and ICDAR2017-POD, one can discern the intricacies tied
to source variety. These datasets, which feature data from diverse sources like books, journals, and magazines,
present challenges linked to varied layouts and structures. Further, the latter’s inclusion of diverse objects elevates
the domain of multi-object detection tasks.

However, as we move to Marmot and UNLV, the complexity deepens. Chinese and English language intricacies
inMarmot, coupledwith the vast array of scanned document challenges in UNLV, like skewing, low-resolution, and
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diverse layout arrangements, highlight the need for robust preprocessing and detection mechanisms. Meanwhile,
DeepFigures and PubTables-1M, due to their volume and igure diversity, require reined segmentation techniques
to ensure accurate data extraction. Over-segmentation, particularly in PubTables-1M, emerges as a primary
concern, necessitating intelligent interpretation of table structures.
SciTSR and FinTabNet, being domain-speciic, carry their unique set of hurdles. SciTSR, centered around

scientiic articles, grapples with elements like footnotes, subscripts, and superscripts, making data extraction an
intricate task. On the other hand, FinTabNet, rooted in the inancial domain, presents challenges like intricate lay-
outs, merged cells, and domain-speciic jargon and structures. Such nuances can easily lead to misinterpretations
if not handled adeptly.

WikiTableSet and TableBank confront linguistic and format diversity. The former’s multilingual array and the
latter’s duality of Word and Excel data sources mandate a versatile extraction and interpretation strategy. ToTTo
and WikiSQL, being centered around natural language interfaces, challenge researchers with ensuring context
retention and semantic understanding.
TabFact and SQA, while seemingly traditional in format, introduce complexities in reasoning and question

answering, requiring models not just to extract but also to infer and deduce. TABMCQ and TURL, being tailored
for educational and URL-centered tasks respectively, present challenges of context sensitivity and accurate source
linking.
Datasets like TabbyQA, WikiTables, and OpenTable emphasize scale and structural diversity. The vastness

of the data combined with variations in table presentations calls for robust and adaptable analysis techniques.
The likes of SemTab, TaPas, and Table-Pretrain introduce semantical, context-driven, and pretraining challenges,
urging researchers to not just perceive tables as data structures but as entities with inherent meanings.
Finally, datasets like ExTab, TableNet, DocBank, and TableSet further widen the challenge spectrum. From

extending to non-tabular elements in ExTab to grappling with annotations in TableNet and diverse OCR challenges
in DocBank, these datasets push the boundaries of table analysis. TableSet, with its focus on adversarial examples,
introduces the need for resilient models capable of withstanding intentionally misleading data.
In essence, the expansive list of datasets, while providing rich opportunities for research, also underscores

the multifaceted challenges in table data analysis. As the ield progresses, it becomes imperative to develop
techniques that are not only accurate but also versatile across varied datasets.
4.3 Metrics

Evaluation in table detection, and more critically, in table structure recognition, requires a careful selection of
metrics to ensure robustness and accuracy. While table detectors utilize metrics such as frames per second (FPS)
for speed evaluation, precision, recall, and mean Average Precision (mAP) is common for performance accuracy.

4.3.1 Table detection. Precision is derived from Intersection over Union (IoU), which is the ratio of the area of
overlap and the area of union between the ground truth and the predicted bounding box. A threshold is set to
determine if the detection is correct. If the IoU is more than the threshold, it is classiied as True Positive, while
an IoU below it is classiied as False Positive. If the model fails to detect an object present in the ground truth, it
is termed a False Negative. Precision measures the percentage of correct predictions, while recall measures the
correct predictions with respect to the ground truth.

Average Precision (AP) =
True Positive (TP)

(True Positive (TP) + False Positive (FP))
=

������������

���������������
(2)

Average Recall (AR) =
True Positive (TP)

(True Positive (TP) + False Negative (FN) )
=

������������

�������������ℎ
(3)

F1-score =
2 ∗ (AP ∗ AR)

(AP + AR)
, IOU =

Area of intersection

area of union
(4)
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Based on the above equation, average precision is computed separately for each class. To compare performance
between the detectors, the mean of average precision of all classes, called mean average precision (mAP) is used,
which acts as a single metric for inal evaluation.

IOU is a metric that inds the diference between ground truth annotations and predicted bounding boxes. This
metric is used in most state-of-the-art object detection algorithms. In object detection, the model predicts multiple
bounding boxes for each object, and based on the conidence scores of each bounding box, it removes unnecessary
boxes based on their threshold value. We need to declare the threshold value based on our requirements.

4.3.2 Table structure recognition. Unlike table detection, table structure recognition delves deeper into under-
standing the components of the table, such as rows, columns, headers, cells, and their inter-relationships.

Directed adjacency relations (DAR) [29, 60]: This metric considers the connectivity of cells in a table, represented
as a directed graph. The DAR score is calculated as the fraction of correctly predicted edges in the graph.

Directed adjacency relations (DAR) =
correctly predicted edges

total number of edges
(5)

Tree edit distance similarity (TEDS) [118]: This metric considers the logical structure of a table represented as a
tree. The TEDS score is calculated as the minimum number of edits required to transform the predicted tree into
the ground truth tree.

TEDS = min
� ′∈�

dist(�,� ′) (6)

where
T represents the set of all possible trees. , T’ is the ground truth tree. , T (without the prime) is the predicted tree.
dist(T, T’) denotes the distance (or the number of edit operations) between the predicted tree T and the ground truth tree
T’. 4-gram BLEU score (BLEU-4) [95, 120]: This metric considers the text content of cells in a table, represented
as a sequence of words. The BLEU-4 score is calculated as the similarity between the predicted and ground truth
sequences.

BLEU-4 = �� · exp

(

4︁

�=1

�� log��

)

(7)

Here, BP is the brevity penalty. �� is the weight assigned to the n-gram precision. �� is the modiied n-gram
precision.

�� =

{

1 if � > �

� (1−
�

�
) if � ≤ �

(8)

c is the length of the candidate sequence. r is the length of the reference sequence.

�� =

∑

ngram∈� min(count� (ngram), count� (ngram))
∑

ngram∈� count� (ngram)
(9)

C is the set of n-grams in the candidate sequence. R is the set of n-grams in the reference sequence. ������ (ngram)
and ������(ngram) are the counts of ngram in the candidate and reference sequences, respectively. TEDS based
IOU similarity (TEDS (IOU)) [65, 100]: This metric combines aspects of TEDS and DAR, considering both the
logical and physical structure of a table. The TEDS (IOU) score is calculated as the weighted average of the TEDS
score and the IOU score between the predicted and ground truth bounding boxes of the cells.

TEDS (IOU) = � · TEDS + (1 − �) · IOU (10)

TEDS (IOU) represents the combined TEDS and IOU similarity metric. � is the weight assigned to the TEDS score.
TEDS is the Tree Edit Distance Similarity score. IOU is the Intersection over Union score. (1 − �) is the weight
assigned to the IOU score. Grid table similarity metric (GriTS) [120]: This metric evaluates the correctness of
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a predicted table directly in its natural form as a matrix. To create a similarity measure between matrices, the
authors generalize the two-dimensional largest common substructure (2D-LCS) problem to the 2D most similar
substructures (2D-MSS) problem and propose a polynomial-time heuristic for solving it.

����� � (�, �) =
2
∑

�, � � (�̃, �̃)

|�| + |� |
(11)

In order to provide a comprehensive understanding of the various metrics utilized in table structure recognition,
a comparison of the most prevalent evaluation metrics is presented. Table 2 shows these metrics, breaking down
their components by cell attributes they target, the data structures they represent, their criteria for matching, and
their respective scoring methods. As illustrated, diferent metrics prioritize diferent aspects of table structure,
from content to topology, and their corresponding scoring methods vary accordingly.

Table 2. Evaluation Metrics for Table Structure Recognition

Evaluation Metric Cell Attributes Structure Representation Matching Criteria Scoring
DAR [60] Content Adjacency Relations Set Exact match F-score
DAR [29] Location Adjacency Relations Set Average (Multiple IoU) F-score
BLEU-4 Topology & Role Token Sequence Exact match BLEU-4
GriTS��� Topology Cell Matrix IoU F-score
GriTS��� Content Cell Matrix Normalized LCS F-score
GriTS��� Location Cell Matrix IoU F-score

Researchers are still actively developing new evaluation metrics for table structure recognition. This is because
the task is challenging, and there is no single metric that can perfectly capture all aspects of table structure.

5 TABLE DETECTION AND STRUCTURE RECOGNITION MODELS

Table detection has been studied for an extended period of time. Researchers used diferent methods that can
be categorized as follows: heuristic-based methods, machine learning-based methods, and deep learning-based
methods. Primarily heuristic-based methods were mainly used in the 1990s, 2000s, and early 2010. They employed
diferent visual cues like lines, keywords, space features, etc. to detect tables.

P Pyreddy [98] proposed an approach to detecting tables using character alignment, holes, and gaps. Y Wangt
[129]. used a statistical approach to detect table lines depending on the distance between consecutive words.
Grouped horizontal consecutive words together with vertical adjacent lines were employed to propose table
entity candidates. MACA Jahan [49] presented a method that uses local thresholds for word spacing and line
height for detecting table regions.

K Itonori [48] proposed a rule-based approach that led to the text-block arrangement and ruled line position to
localize the table in the documents. S Chandran [13] developed another table detection approach based on vertical
and horizontal lines. W Seo [110] used junctions (intersection of the horizontal and vertical line) detection with
further processing.
T Hassan [39] locate and segment tables by analyzing spatial features of text blocks. E Oro [93] introduced

PDF-TREX, a heuristic bottom-up approach for table recognition in single-column PDF documents. It uses the
spatial features of page elements to align and group them into paragraphs and tables. A Nurminen [90] proposed
a set of heuristics to locate subsequent text boxes with common alignments and assign them the probability of
being a table.

J Fang [22] used the table header as a starting point to detect the table region and decompose its elements. G
Harit [36] proposed a technique for table detection based on the identiication of unique table start and trailer
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patterns. S Tupaj [127] proposed an OCR-based table detection technique. The system searches for sequences of
table-like lines based on the keywords
The above methods work relatively well on documents with uniform layouts. However, heuristic rules need

to be tweaked to a wider variety of tables and are not really suited for generic solutions. Therefore, machine
learning approaches started to be employed to solve the table detection problem.

T Kieninger [59] applied an unsupervised learning approach by clustering word segments. F Cesarini [12] used
a modiied XY tree supervised learning approach. M Fan [21] uses both supervised and unsupervised approaches
to table detection in PDF documents. Y Wang [128] applied Decision tree and SVM classiiers to layout, content
type and word group features. T Kasar [53] used the junction detection and then passed the information to
the SVM classiier. AC e Silva [18] applied joint probability distribution over sequential observations of visual
page elements (Hidden Markov Models) to merge potential table lines into tables. S Klampl [61] compare two
unsupervised table recognition methods from digital scientiic articles. L O’Gorman’s Docstrum algorithm [92]
applies KNN to aggregate structures into lines and then uses perpendicular distance and angle between lines
to combine them into text blocks. It must be noted that this algorithm was devised in 1993, earlier than other
methods mentioned in this section.

F Shafait [111] proposes a useful method for table recognition that performs well on documents with a range
of layouts, including business reports, news stories, and magazine pages. The Tesseract OCR engine ofers an
open-source implementation of the algorithm.
As neural networks gained interest, researchers started to apply them to document layout analysis tasks.

Initially, they were used for simpler tasks like table detection. Later on, as more complex architectures were
developed, more work was put into table columns and overall structure recognition.

L Hao[35] employed CNN to detect whether a certain region proposal is a table or not. A Gilani [28] proposed
a Faster R-CNN-based model to make up for the limitations of L Hao [35] and other prior methodologies.

S Schreiber [109] were the irst to perform table detection and structure recognition using Faster RCNN. D He
[40], used FCN for semantic page segmentation. S Arif [7] attempted to improve the accuracy of Faster R-CNN
by using semantic color-coding of text. MM Reza [105] used a combination of GAN-based architecture for table
detection. M Agarwal [5] used a multistage extension of Mask R-CNN with a dual backbone for detecting tables.
Recently transformer-based models were applied to document layout analysis, B Smock[121] applied N

Carion[10] DEtection TRansformer framework, a transformer encoder-decoder architecture, to their table dataset
for both table detection and structure recognition tasks. J Li [69] proposed a self-supervised pre-trained Document
Image Transformer model using large-scale unlabeled text images for document analysis, including table detection

5.1 Table Detection Models

In this section, we examine the deep learning methods used for document image table detection. We have divided
the methods into several deep-learning ideas for the beneit of our readers’ convenience. Tables 3, 4 lists all the
object identiication-based table detection strategies. It also discusses various deep learning-based methods that
have been used in these methods.

CNN Based Models. D Prasad [97] presents an automatic table detection approach for interpreting tabular
data in document pictures, which primarily entails addressing two issues: table detection and table structure
recognition. Using a single Convolution Neural Network (CNN) model, provide an enhanced deep learning-based
end-to-end solution for handling both table detection and structure recognition challenges. CascadeTabNet is a
Cascade mask Region-based CNN High-Resolution Network (Cascade mask R-CNN HRNet)-based model that
simultaneously identiies table areas and recognizes structural body cells from those tables.

L Hao [35] ofers a new method for detecting tables in PDF documents that are based on convolutional neural
networks, one of the most widely used deep learning models. The suggested method begins by selecting some
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table-like areas using some vague constraints, then building and reining convolutional networks to identify
whether the selected areas are tables or not. Furthermore, the convolutional networks immediately extract and
use the visual aspects of table sections, while the non-visual information contained in original PDF documents is
also taken into account to aid in better detection outcomes.

DDNguyen [89] introduces TableSegNet, a fully convolutional networkwith a compact design that concurrently
separates and detects tables. TableSegNet uses a shallower path to discover table locations in high resolution and
a deeper path to detect table areas in low resolution, splitting the found regions into separate tables. TableSegNet
employs convolution blocks with broad kernel sizes throughout the feature extraction process and an additional
table-border class in the main output to increase the detection and separation capabilities.
AA Gurav [32] devised an innovative approach to automate data extraction from diverse digital documents

(DD), including images, scanned iles, emails, and books. Focusing on Document Images (DI), like oice documents
and scans, they employed Convolutional Neural Networks (CNNs) for superior performance. Their unique method,
based on weakly supervised learning, detects and recognizes table locations in DI without the need for bounding
box annotations. This groundbreaking approach promises eicient and accessible automation of tabular data
extraction from varied digital documents.

M Haloi[33] addressed limitations in existing table detection benchmarks by introducing a large-scale, diverse
dataset comprising over seven thousand samples with varied table structures from multiple sources. They
employed convolutional neural network-based methods, demonstrating their superiority over classical computer
vision techniques in detecting table structures within documents. This dataset ofers a valuable resource for
developing eicient deep learning methods for document layout understanding and tabular data processing.

H Dong[17] developed TableSense, an innovative framework for spreadsheet table detection, which is crucial
for spreadsheet data intelligence. They used a Convolutional Neural Network (CNN) model tailored for precise
table boundary detection, leveraging an active learning approach to create a diverse training dataset. TableSense
achieved remarkable performance with 91.3% recall and 86.5% precision, surpassing both existing detection
algorithms in common spreadsheet tools and state-of-the-art CNNs in computer vision.

RPN Models. A Gilani [28] has shown how to recognize tables using deep learning. Document pictures are
pre-processed initially in the suggested technique. These photos are then sent into a Region Proposal Network
for table detection, which is followed by a fully connected neural network. The suggested approach works with
great precision on a variety of document pictures, including documents, research papers, and periodicals, with
various layouts.

Á Casado-García [11] Uses object detection techniques, The authors have shown that ine-tuning from a closer
domain improves the performance of table detection after conducting a thorough examination. The authors have
utilized Mask R-CNN, YOLO, SSD, and Retina Net in conjunction with object detection algorithms. Two basic
datasets are chosen to be used in this investigation, TableBank, and PascalVOC.
N Sun [122] presents a corner-inding approach for faster R-CNN-based table detection. The Faster R-CNN

network is irst used to achieve coarse table identiication and corner location. then, coordinate matching is used
to group those corners that belong to the same table. Untrustworthy edges are iltered at the same time. Finally,
the matching corner group ine-tunes and adjusts the table borders. At the pixel level, the suggested technique
enhances table boundary inding precision.

A Samari [108] developed an innovative approach for detecting tables in digitized historical print, addressing
challenges in varied table characteristics and their visual similarity to other elements. They introduced the
NAS dataset, enhancing evaluation diversity. Their method utilized the Gabor ilter for dataset preparation and
Faster-RCNN for detection, overcoming labeled data limitations with weakly supervised bounding box extraction
and pseudo-labeling, improving model generalization.
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GAN Models . Y Li [72] provides a new network to produce the layout elements for table text and to enhance
the performance of less ruled table identiication. The Generative Adversarial Networks(GAN) and this feature
generator model are comparable. The authors mandate that the feature generator model extract comparable
features for both heavily governed and loosely ruled tables.

Adaptive and Hybrid Models. Y Huang [47] describes a table-detecting algorithm based on the YOLO principle.
The authors ofer various adaptive improvements to YOLOv3, including an anchor optimization technique and
two post-processing methods, to account for the signiicant diferences between document objects and real objects.
also employ k-means clustering for anchor optimization to create anchors that are more suited for tables than
natural objects, making it easier for our model to ind the exact placements of tables. The additional whitespaces
and noisy page objects are deleted from the projected results during the post-processing procedure.

D Zhang [140] suggests a YOLO-table-based table detection methodology. To enhance the network’s capacity
to learn the spatial arrangement aspects of tables, the authors incorporate involution into the network’s core,
and the authors create a simple Feature Pyramid Network to increase model eicacy. This research also suggests
a table-based enhancement technique.
X Zheng [145] provides Global Table Extractor (GTE), a method for jointly detecting tables and recognizing

cell structures that can be implemented on top of any object detection model. To train their table network with
the help of cell placement predictions, the authors develop GTE-Table, which introduces a new penalty based on
the inherent cell coninement limitation of tables. A novel hierarchical cell identiication network called GTE-Cell
makes use of table styles. Additionally, in order to quickly and inexpensively build a sizable corpus of training
and test data, authors develop a method to automatically classify table and cell structures in preexisting texts.

I Kavasidis[56] propose a method for detecting tables and charts using a combination of deep CNNs, graphical
models, and saliency ideas. M Holeček [43] presented the concept of table understanding utilizing graph convolu-
tions in structured documents like bills, extending the applicability of graph neural networks. A PDF document is
used in the planned research as well. The job of line item table detection and information extraction are combined
in this study to tackle the problem of table detection. Any word may be quickly identiied as a line item or not
using the line item technique. Following word classiication, the tabular region may be easily identiied since, in
contrast to other text sections on bills, table lines are able to distinguish themselves rather efectively.

R Liu[75] introduced FewTUD, a benchmark dataset focusing on few-shot table understanding, a challenging
task due to limited annotations. They addressed the scarcity of public Chinese tables by creating a large-scale
corpus. Additionally, they developed FewTPT, a novel pre-trained language model, and extensively evaluated its
performance on the FewTUD benchmark.

P Fischer[24] developedMulti-Type-TD-TSR, an end-to-end solution for table recognition in scanned documents.
This multistage pipeline employs deep learning models and diferentiates between three types of tables based
on their borders. The system addresses challenges such as rotated images and noise artifacts. Their approach
also includes speciic algorithms for non-bordered and bordered tables, achieving comprehensive table structure
recognition.
T Shehzadi[113] propose an innovative semi-supervised table detection method utilizing the deformable

transformer, a deep learning technique. Traditional deep learning methods for table detection demand extensive
labeled data, but this approach signiicantly reduces the need for labeled samples. By leveraging the deformable
transformer, this method achieves outstanding results on various datasets including PubLayNet, DocBank,
ICADR-19, and TableBank. It surpasses both fully supervised methods and previous semi-supervised approaches,
demonstrating superior performance with limited labeled data.
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Table 3. A comparison of the benefits and drawbacks of several deep learning-based Table Detection methods

Literature Method Beneits Drawbacks

A Gilani[28] Faster R-CNN

1) On scanned document pictures, this is the
irst deep learning-based table detection method.
2) The object detection technique is made easier
by converting RGB pixels to distance measures.

There are additional phases
in the pre-processing process.

S Schreiber[109]
transfer learning methods

+ Faster R-CNN

end-to-end strategy for detecting tables and
table structures that is straightforward

and eicient

When compared to other
state-of-the-art techniques,

it is less accurate.

SA Siddiqui [117]
Deformable CNN +

Faster R-CNN

Deformable convolutional neural networks’
dynamic receptive ield aids in the reconiguration

of multiple tabular boundries.

When compared to standard
convolutions, deformable

convolutions are computationally
demanding.

P Riba [106]
OCR-based Graph NN that

makes use of textual
characteristics

The suggested technique makes use of more data
than only spatial attributes.

1) No comparisons to other state-of-
the-art strategies. 2) Additional

annotations are needed using this
strategy in addition to the tabular

data.

N Sun [122]
Faster R-CNN +
Locate corners

1) Better outcomes are obtained using a novel
technique. 2) Faster R-CNN is used to identify not
just tables, but also the corners of tabular borders

1) It is necessary to do postprocessing
operations such as corner reining.

2) Because of the additional detections,
the computation is more involved.

I Kavasidis [56]
combination of deep CNNs,

graphical models, and
saliency

1) Dilated convolutions rather than conventional
convolutions are used. 2) Using this technique,
saliency detection is performed in place of table

detection.

To provide equivalent results, many
processing stages are necessary.

M Holeček [43]
Graph NN + line item
identiication Method

This approach yields encouraging outcomes when
used to layout-intensive documents like invoices

and PDFs.

1) Limited baseline approach without
comparisons to other state-of-the-art
techniques 2) No publicly accessible

table datasets are used for the
evaluation of the approach.

Y Huang [47] YOLO
In comparison, a quicker and more efective

strategy
The suggested methodology relies on
data-driven post-processing methods.

Y Li [72]
Generative Adversarial Networks

(GAN)

For ruling and less ruled tables, the GAN-based
strategy drives the network to extract comparable

characteristics.

In document images with diferent
tabular layouts, the generator-based

model is susceptible.

M Li [70] Faster R-CNN
This method demonstrates how a basic Faster
R-CNN can yield excellent results when used

with a huge dataset like TableBank.

Just a simple Faster-RCNN
implementation

D Prasad [97]
Cascade mask Region-based

CNN High-Resolution
Network-based model

The study shows how iterative transfer learning
may be used to transform pictures, which can

lessen the need on huge datasets.

The same as[28], There are additional
phases in the pre-processing process.

Á Casado-García [11]
Liken ine-tuning +

Mask R-CNN, RetinaNet
, SSD and YOLO

Describe the advantages of using object detection
networks in conjunction with domain-speciic
ine-tuning techniques for table detection.

Closed domain ine-tuning is still
insuicient to get state-of-the-art

solutions.

M Agarwal [5]
multistage extension of
Mask R-CNN with a dual

backbone

1) A comprehensive object detection-based frame-
work utilizing a composite backbone to deliver state-
of-the-art outcomes 2) Extensive tests on benchmark
datasets for table detection that are openly accessible.

The technique is computationally
expensive since it uses a composite
backbone in addition to deformable

convolutions.

X Zheng [145]
Global Table Extractor
(GTE) which is general

method for object detection

1) The problem of table detection is beneited by the
extra piece-wise constraint loss introduced. 2) a

complete method that is compatible with all object
detection frameworks.

Annotations for cellular borders are
necessary since the process of table
detection depends on cell detection.

AA Gurav [32]
CamNet (ResNet 50 +
CAM map prediction)

1) it does not require detailed bounding box anno-
tations. 2) Enables eicient extraction of structur-

ed data

Document layout, fonts, and langua-
ges’ variability require extra prepro-

cessing for accuracy
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Table 4. A comparison of the benefits and drawbacks of several deep learning-based Table Detection methods (continue

Table 3

Literature Method Beneits Drawbacks

A Samari [108] Faster R-CNN

1) The paper addresses the scarcity of comprehen-
sive datasets for table detection, introducing two
new datasets with diverse table structures and cl-
asses. 2) Innovative table detection approach.

The unavailability of public access
to the two datasets prevents the
evaluation of state-of-the-art det-

ection results.

R Liu [75]
FewTPT (Table Pre-

Training)

1) Provides a comprehensive benchmark dataset for
few-shot table understanding. 2) Introduces a com-
prehensive benchmark dataset for few-shot table
understanding, covering ive downstream tasks.

Require substantial time, and com-
putational resources.

M Haloi [33] CNN (RetinaNet)
1) Diverse dataset relecting real-world scenarios.
2) CNN methods outperform classical techniques

They do not compare various state-
of-the-art approaches on the STDW

dataset.

H Dong [17]
TableSense ( CNN
and employs active

learning)

1) efectiveness table detection approach. 2) The in-
troduction of a Precise Bounding Box Regression
(PBR) module contributes to more accurate pred-

ictions of table boundaries

Need More Pre-processing Eforts

P Fischer[24]
CNN Multi-Type-
TD (ResNeXt-152)

1) Utilizes advanced deep learning models, leverag-
ing recent trends in transfer learning, to enhance
accuracy and adaptability. 2) The combination of
two conventional algorithms into a third, uniied
algorithm demonstrates an insightful strategy.

The algorithms are designed for ta-
bles with basic cell structures, lack-
ing a comprehensive solution for m-
ore complex, recursive structures of-
ten found in tables. 2) The proposed
algorithm’s F1-score diminishes at
higher IoU thresholds due to the
inability to detect sharp borders

T Shehzadi[113]
Semi-supervised
Deformable DETR

1) reduces the dependency on large-scale annotat-
ed datasets, making the method more practical a-
nd cost-efective. 2) efective for handling spatial

deformations in document images

1) Require signiicant computati-
onal resources. 2) They does not
provide insights into the potent-
ial limitations or challenges asso-
ciated with varying levels of ann-

otated data.

5.2 Discussion on Table Detection

The intricate landscape of table detection in document images has witnessed a seismic shift with the proliferation
of deep learning methodologies. Within this sphere, several researchers have designed innovative strategies to
navigate the nuances and challenges inherent to detecting tables in varied document formats.

The core tenet of many methodologies, as portrayed by A Gilani[28], revolves around pre-processing document
images followed by leveraging neural architectures like the Region Proposal Network. D Prasad[97]’s CascadeTab-
Net further encapsulates the essence of simultaneous table detection and structure recognition, illustrating the
beneit of end-to-end solutions. These methodologies showcase the power of employing convolutional neural
network models, underscoring their adeptness at handling the intricacies of documents ranging from periodicals
to research papers.
Several methodologies have extended the foundational principles of popular object detection strategies to

suit the table detection landscape. For instance, Y Huang[47]’s YOLO-based approach accentuates the essential
modiications needed, such as anchor optimization, to tailor YOLOv3 for document structures. The emphasis on
pre-processing and post-processing to eliminate noise and reine detections ofers a holistic view of the entire
table detection pipeline.
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The realm of table detection isn’t just conined to structured documents. L Hao[35]’s methodology, focusing
on PDF documents, epitomizes the importance of preliminary selection of table-like areas, reining detection
through convolutional networks. This approach underscores the essence of intertwining visual with non-visual
information for enhanced detection outcomes.

Innovative strategies like SA Siddiqui[117]’s usage of deformable CNN paired with Faster R-CNN/FPN further
delineate the adaptability of deep learning models. By accommodating variable table sizes and orientations,
it tailors its receptive ield, emphasizing the customization and lexibility deep learning ofers in detection
methodologies.

It’s also noteworthy to highlight the dedicated eforts towards reining the precision of table detection, such as
N Sun[122]’s corner-inding approach. By integrating coordinate matching and iltering untrustworthy edges,
this strategy emphasizes the importance of pixel-level precision in delineating table boundaries.
Beyond traditional table detection, approaches like I Kavasidis[56]’s combination of deep CNNs, graphical

models, and saliency ideas, or M Holeček[43]’s exploration of graph convolutions, extend the boundaries of
what’s achievable. These methods indicate the continued blurring of lines between classical computer vision
techniques and deep learning methodologies.

However, the landscape is further enriched by the inclusion of methods that cater to specialized scenarios. AA
Gurav[32]’s approach focuses on automating data extraction from diverse digital documents, leveraging CNNs and
emphasizing the signiicance of weakly supervised learning. This methodology exempliies the potential of deep
learning in handling varied digital document formats without extensive annotations. Similarly, A Samari[108]’s
strategy for detecting tables in historical prints, R Liu[75]’s emphasis on few-shot table understanding, and M
Haloi’s large-scale dataset introduction echo the sentiment of embracing diversity in data and challenges.
Innovative frameworks like H Dong[17]’s TableSense accentuate the need for precision in unique scenarios

such as spreadsheet table detection, exemplifying the adaptability of CNN models. Meanwhile, P Fischer[24]’s
Multi-Type-TD-TSR underscores the importance of end-to-end solutions tailored for varied table types.

T Shehzadi[113]’s semi-supervised approach, capitalizing on the deformable transformer, captures the overar-
ching theme of the current research landscape ś the quest for optimizing performance while minimizing the
need for extensive labeled data.

5.3 Case Study Analysis: Evaluating Methodologies in Table Recognition

This section delves into the practical application of table recognition methodologies through detailed case studies.
By examining speciic implementations and their outcomes, we aim to highlight the real-world challenges and
beneits associated with these methods. The analysis not only sheds light on the eicacy of various approaches
but also underscores the adaptability and limitations of table recognition technologies in addressing diverse data
extraction needs.

5.3.1 Introduction to Case Study Selection. The case studies were carefully selected to cover a wide range of
applications, from academic research papers to business inancial reports and medical records. This diversity
ensures a comprehensive understanding of how table recognition methodologies perform across diferent domains.
The selection criteria focused on the complexity of the table structures, the document formats, and the speciic
challenges each application presented.

5.3.2 Case Study 1: Academic Research Paper Data Extraction. The goal was to automate data extraction from
tables in environmental science academic papers using a CNN-based model, overcoming challenges like diverse
table formats and mixed content types. Implementing multi-step preprocessing for format standardization and
symbol accuracy, along with semantic analysis in post-processing, enhanced data extraction and organization.
This method signiicantly cut down on manual data compilation time despite requiring substantial computational
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efort. Automating this process boosted meta-analysis eiciency, enabling the analysis of larger datasets more
quickly. This advancement not only streamlines research worklows but also sets a precedent for applying similar
technologies in other scientiic domains.

5.3.3 Case Study 2: Financial Report Table Recognition for Business Intelligence. This case involved extracting
inancial data from tables in quarterly and annual reports of publicly traded companies to enhance business
intelligence analyses. An ensemble approach combining OCR technologies with machine learning-based table
recognition algorithms was utilized to cater to both scanned and digitally generated inancial reports. The primary
challenge was dealing with the high variability in report formats and the accuracy of inancial data extraction
critical for analysis. Custom OCR correction algorithms were developed to address common errors in inancial
data recognition. Additionally, a domain-speciic adaptation of the machine learning model was trained on a
dataset of inancial tables to improve accuracy. This approach enabled highly accurate extraction of inancial
data across a wide range of report formats, signiicantly enhancing the business intelligence process. However,
the system required ongoing training and adaptation to new report formats, presenting scalability challenges.
The implementation led to a more eicient and accurate business intelligence process, enabling deeper and faster
inancial analyses of competitor and market trends.

5.3.4 Comparative Analysis and Lessons Learned. The case studies underscore the potential of table recognition
methodologies to streamline data extraction across diverse domains. While each approach has its strengths,
common challenges include the need for domain-speciic adaptations and the balance between accuracy and
computational eiciency. These insights pave the way for future innovations in table recognition technology,
emphasizing the importance of lexible, adaptable solutions capable of handling the complexities of real-world
applications.

5.4 Table Structure Recognition Models

In order to recognize table structures in document images, deep learning approaches are reviewed in this part.
We divided the methods into discrete deep-learning principles for the beneit of our readers. Table 5,6 lists all
methods for recognizing table structures based on object detection, as well as their beneits and drawbacks. It
also discusses various deep learning-based methods that have been used in these methods.

CNN Based Models. SS Paliwal [94] presents TableNet which is a new end-to-end deep learning model for both
table detection and structure recognition. To divide the table and column areas, the model uses the dependency
between the twin objectives of table detection and table structure recognition. Then, from the discovered
tabular sub-regions, semantic rule-based row extraction is performed. SA Siddiqui [116] described the structure
recognition issue as the semantic segmentation issue. To segment the rows and columns, the authors employed
fully convolutional networks. The approach of prediction tiling is introduced, which lessens the complexity of
table structural identiication, assuming consistency in a tabular structure. The author imported pre-trained
models from ImageNet and used the structural models of FCN’s encoder and decoder. The model creates features
of the same size as the original input picture when given an image.

SA Khan [57] presents a robust deep learning-based solution for extracting rows and columns from a recognized
table in document pictures in this work. The table pictures are pre-processed before being sent into a bi-directional
Recurrent Neural Network using Gated Recurrent Units (GRU) and a fully-connected layer with softmax activation
in the suggested solution.
A Nassar [88] provides a fresh identiication model for table structures. The latter enhances the most recent

encoder-dual-decoder from PubTabNet end-to-end deep learning model in two important aspects. First, the
authors provide a brand-new table-cell object detection decoder. This allows them to easily access the content of
the table cells in programmatic PDFs without having to train any proprietary OCR decoders. The authors claim
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that this architectural improvement makes table-content extraction more precise and enables them to work with
non-English tables. Second, transformer-based decoders take the place of LSTM decoders.
C Tensmeyer [124] has presented SPLERGE (Split and Merge), another method using dilated convolutions.

Their strategy entails the use of two distinct deep learning models, the irst of which establishes the grid-like
layout of the table and the second of which determines if further cell spans over many rows or columns are
possible.
Another efort to segment tabular structures is the ReS2TIM paper by W Xue [134] which describes the

reconstruction of syntactic structures from the table. Regressing the coordinates for each cell is this model’s
main objective. A network that can identify the neighbors of each cell in a table is initially built using the new
technique. In the study, a distance-based weighting system is given that will assist the network in overcoming
the training-related class imbalance problem.
To identify rows and columns in tables, KA Hashmi [38] suggested a guided technique for table structure

identiication. The localization of rows and columns may be made better, according to this study, by using an
anchor optimization approach. The boundaries of rows and columns are detected in their proposed work using
Mask R-CNN and optimized anchors.
Another study by Y Zou [147] called for the development of an image-based table structure identiication

technique using fully convolutional networks. the shown work divides a table’s rows, columns, and cells. All
of the table components’ estimated bounds are enhanced using connected component analysis. Based on the
placement of the row and column separators, row and column numbers are then allocated for each cell. In addition,
special algorithms are used to optimize cellular borders. X Shen [114] suggested two modules, referred to as Rows
Aggregated (RA) and Columns Aggregated (CA). First, to produce a rough forecast for the rows and columns and
address the issue of high error tolerance, feature slicing and tiling are applied. Second, the attention maps of
the channels are computed to further obtain the row and column information. In order to complete the rows
segmentation and columns segmentation, the authors employ RA and CA to construct a semantic segmentation
network termed the Rows and Columns Aggregated Network (RCANet).
C Ma[78] present RobusTabNet, a novel method for recognizing the structure of tables and detecting their

borders from a variety of document pictures. The authors suggest using CornerNet as a new region proposal
network to produce higher-quality table proposals for Faster R-CNN, which has greatly increased the localization
accuracy of Faster R-CNN for table identiication. by utilizing only the minimal ResNet-18 backbone network.
Additionally, the authors suggest a brand-new split-and-merge approach for recognizing table structures. In this
method, each detected table is divided into a grid of cells using a novel spatial CNN separation line prediction
module, and then a Grid CNN cell merging module is used to recover the spanning cells. Their table structure
recognizer can accurately identify tables with signiicant blank areas and geometrically deformed (even curved)
tables because the spatial CNN module can eiciently transmit contextual information throughout the whole
table picture.

A Jain [50] suggests training a deep network to recognize the spatial relationships between various word pairs
included in the table picture in order to decipher the table structure. The authors ofer an end-to-end pipeline
called TSR-DSAW: TSR through Deep Spatial Association of Words, which generates a digital representation of
a table picture in a structured format like HTML. The suggested technique starts by utilizing a text-detection
network, such as CRAFT, to identify every word in the input table picture. Next, using dynamic programming,
word pairings are created. These word pairings are underlined in each individual image and then given to a
DenseNet-121 classiier that has been trained to recognize spatial correlations like same-row, same-column,
same-cell, or none. Finally, The authors apply post-processing to the classiier output in order to produce the
HTML table structure.
SX Rao12[103] developed TableParser, a system adept at parsing tables in native PDFs and scanned images

with high precision. They emphasized the signiicance of parsing table structures and extracting bounding
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content from various formats such as PDFs, images, spreadsheets, and CSVs. The study highlighted the eicacy
of domain adaptation techniques in developing TableParser. Additionally, they introduced TableAnnotator and
ExcelAnnotator, enabling weak supervision and facilitating table parsing. These resources were shared with the
research community to encourage further exploration in this area.

NT Ly[77] introduced WSTabNet, a novel weakly supervised model for table recognition, reducing dependency
on detailed and costly annotations. Their approach utilizes only HTML (or LaTeX) code-level annotations
of table images. WSTabNet includes components for feature extraction, table structure generation, and cell
content prediction. The model trained end-to-end using stochastic gradient descent, demonstrated superior or
comparable accuracy to state-of-the-art methods. To support deep learning in table recognition, the authors
curated WikiTableSet, a vast dataset from Wikipedia, containing millions of table images in multiple languages,
enabling extensive experiments and validations.

GAN Models. A Ghosh Chowdhury[27] explores self-supervised learning in document table detection, address-
ing the challenges of extracting tabular information from complex documents. They use a self-supervised image
classiier as a primary backbone for supervised object detection and employ a pix2pix Generative Adversarial
Networks (GAN) approach for table structure recognition. Their proposed methods form a robust machine
learning pipeline for table detection and structure recognition. Evaluation across various datasets, including
domain-speciic ones, demonstrates the efectiveness of these approaches in extracting tabular information from
intricately structured documents.

Adaptive and Hybrid Models. A Zucker [148] presents CluSTi, a Clustering approach for recognizing the
Structure of Tables in invoice scanned images, as an efective way. CluSTi makes three contributions. To begin, it
uses a clustering approach to eliminate high noise from the table pictures. Second, it uses state-of-the-art text
recognition to extract all text boxes. Finally, CluSTi organizes the text boxes into the correct rows and columns
using a horizontal and vertical clustering technique with optimum parameters. Z Zhang [143] present Split,
Embed, and Merge (SEM) is a table structure recognizer that is accurate. M Namysl [86] presents a versatile and
modular table extraction approach in this research.
E Koci [62] ofers a new method for identifying tables in spreadsheets and constructing layout areas after

determining the layout role of each cell. Using a graph model, they express the spatial interrelationships between
these areas. On this foundation, they present Remove and Conquer (RAC), a table recognition algorithm based on
a set of carefully selected criteria.

Using the potential of deformable convolutional networks, SA Siddiqui [115] proposes a unique approach for
analyzing tabular patterns in document pictures. P Riba [106] presents a graph-based technique for recognizing
tables in document pictures in this paper. also employ the location, context, and content type instead of the raw
content (recognized text), thus it’s just a structural perception technique that’s not reliant on the language or
the quality of the text reading. E Koci [64] use genetic-based techniques for graph partitioning, to recognize the
sections of the graph matching to tables in the sheet. SR Qasim [99] presents a graph network-based architecture
for table recognition as a superior alternative to typical neural networks. S Raja [101] describes a method for
recognizing table structure that combines cell detection and interaction modules to locate the cells and forecast
their relationships with other detected cells in terms of row and column. Also, structural limitations to the
loss function for cell identiication as extra diferential components. The existing issues with end-to-end table
identiication were examined by Y Deng [16], who also highlighted the need for a larger dataset in this area.
S Raja [102] suggests a novel object-detection-based deep model that is tailored for quick optimization and
captures the natural alignments of cells inside tables. Dense table recognition may still be problematic even
with precise cell detection because multi-row/column spanning cells make it diicult to capture long-range
row/column relationships. Therefore, the authors also seek to enhance structure recognition by determining a
unique rectilinear graph-based formulation. The author emphasizes the relevance of empty cells in a table from a
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semantics standpoint by introducing a novel loss function designed to capture the natural alignment of cells
within a cell detection network. Additionally, they proposed a graph-based approach to establish connections
between the identiied cells, enabling a more comprehensive understanding of their relationships. The authors
recommend a modiication to a well-liked assessment criterion to take these cells into consideration. To stimulate
fresh perspectives on the issue, then provide a moderately large assessment dataset with annotations that are
modeled after human cognition.

B Xiao [131] postulates that a complex table structure may be represented by a graph, where the vertices and
edges stand in for individual cells and the connections between them. Then, the authors design a conditional
attention network and characterize the table structure identiication issue as a cell association classiication
problem (CATT-Net).

H Li [68] formulate the issue as a cell relation extraction challenge and provide T2, a cutting-edge two-phase
method that successfully extracts table structures from digitally preserved texts. T2 ofers a broad idea known as
a prime connection that accurately represents the direct relationships between cells. To ind complicated table
structures, it also builds an alignment graph and uses a message-passing network.
Z Chi[14] introduced GraphTSR, a novel graph neural network designed for recognizing intricate table

structures within PDF iles. Their approach, GraphTSR, utilizes table cells as input and predicts relationships
among these cells to understand the table layout accurately, even in complex scenarios involving spanning cells
that occupy multiple columns or rows.

M Namysł[87] developed an advanced table extraction system to extract quantitative data from documents with
diverse layouts. Their hybrid approach integrates a deep learning-based table detection module, heuristic-based
structure recognition, and graph-based semantic interpretation. This modular system handles both image format
and PDF iles, outperforming baseline methods and achieving results comparable to state-of-the-art techniques.
Additionally, the system demonstrates high performance, especially when extracting targeted information from
speciic table columns.

NLP models. J Herzig[42] introduced TAPAS, a novel method for answering natural language questions over
tables. Unlike traditional semantic parsing approaches, TAPAS avoids generating complex logical forms, instead
predicting answers directly from weak supervision in the form of denotations. The model operates by selecting
relevant table cells and applying aggregation operators. TAPAS extends BERT’s architecture to encode tables
and is trained from a joint pre-training of text segments and Wikipedia tables. In evaluations across three
semantic parsing datasets, TAPAS outperformed or matched the accuracy of traditional semantic parsing models,
achieving signiicant improvements in question-answering accuracy, particularly on the SQA dataset. Importantly,
it achieved this while utilizing a simpler model architecture.

5.5 Discussion on Table Structure Recognition

Table structure recognition in document images is pivotal for information retrieval and data digitization, particu-
larly in documents that are dense with tabular data. Recent advancements in deep learning have paved the way
for a multitude of models and algorithms designed to tackle this challenge. This discussion ofers an overview
and insight into the key methods and their respective merits and drawbacks.
At the heart of table recognition lies the problem of understanding spatial relationships between various

elements in a document, be they textual or graphical. Most contemporary approaches, such as CluSTi [148] and
SEM [143], focus on efectively segmenting the table, recognizing its structure, and then extracting data from it.
The use of clustering and embedding techniques showcases the shift towards unsupervised and semi-supervised
methodologies, reducing the need for exhaustive manual annotations.
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Models like TableNet [94] and ReS2TIM [134] highlight the interconnected nature of table detection and
structure recognition, arguing that a holistic view of both processes can improve accuracy. Such an integrated
approach also allows these models to be more lexible and adaptable to varied table structures.
A trend noticeable in the recent literature is the drift towards more context-aware models. These models,

such as the ones proposed by SA Siddiqui [116] and SA Khan [57], emphasize understanding the underlying
context and content, moving away from purely structural analysis. This shift provides two signiicant advantages:
language independence and robustness against varying text quality, as highlighted by P Riba [106].
Transformers, originally designed for NLP tasks, have made a notable entrance into the table recognition

domain as well. Nassar’s TableFormer [88] exempliies the adaptability of transformer-based architectures for
spatial tasks. Given their capability to capture long-range dependencies, transformers are particularly suited for
table recognition, especially when dealing with complex structures.

The aspect of granularity in table recognition cannot be overlooked. While some models strive for a macro-level
understanding, identifying tables’ boundaries and general layout, others delve into micro-level details. These
models, such as the one proposed by Raja [102], emphasize detecting individual cells and their inter-relationships,
which is especially crucial for tables with multi-row/column spanning cells.

Datasets play an undeniable role in the advancement of any machine learning task. The need for extensive
and diverse datasets for table recognition has been accentuated by Y Deng [16]. Recent eforts, such as the
WikiTableSet introduced by NT Ly [77], cater to this demand, providing rich training material in multiple
languages.
A noteworthy approach to the challenge of table recognition is self-supervised learning, as advocated by A

Ghosh Chowdhury [27]. This method’s elegance lies in reducing the dependency on labeled data, which is often
a signiicant bottleneck for deep learning projects.

In summary, table structure recognition has witnessed a paradigm shift in the past few years. From heuristic-
based methods to advanced deep learning architectures, the ield has evolved rapidly. Each method has its unique
strengths, catering to diferent challenges within table recognition. Future advancements may well see a fusion
of these techniques, aiming for a universal model adept at handling any table structure in document images.

5.6 Case Study Analysis: Evaluating Methodologies in Table Structure Recognition

5.6.1 Introduction to Case Study Analysis. Concrete case studies provide invaluable insights into the practical
application, challenges, and beneits of table structure recognition methodologies. This analysis aims to bridge
the gap between theoretical research and real-world application, ofering a deeper understanding of how these
methodologies perform under various conditions.

5.6.2 Selection Criteria for Case Studies. The case studies were selected based on several criteria: the complexity
of the table structures, the diversity of the document formats (including scientiic articles, inancial reports, and
medical records), and the unique challenges each case presented. These criteria ensure a broad perspective on the
applicability and performance of table structure recognition methods.

5.6.3 Case Study 1: Financial Report Analysis. The irst case study focused on automating data extraction from
inancial tables in multinational corporation reports to improve the eiciency of quarterly inancial analyses.
Challenges included variable table formats and the precision required for ine-grained numerical data. To overcome
these, the study used a custom version of the TableNet deep learning model, enhanced with specialized OCR
for better numerical recognition and ine-tuned on inancial tables. Despite the high accuracy achieved in data
extraction, the need for detailed ine-tuning and preprocessing underscored the model’s limitations in handling
diverse tables without speciic adjustments. This adaptation of TableNet signiicantly streamlined the data
extraction portion of inancial analysis, marking a substantial step toward automating and enhancing inancial
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Table 5. A comparison of the benefits and drawbacks of several deep learning-based Table Structure Recognition methods

Literature Method Beneits Drawbacks

SF Rashid [104]

Uses the geometric pos-
ition of words + A neu-

ral network model
(autoMLP)

No reliance on complex layout analysis
Mechanism. Can be used on the diverse set

of documents with diferent layouts

limitation is in marking columns
boundaries due to variations in
the number of words in each

column

E Koci [62]

Encoding of spatial inter-
relations between these

regions using a graph rep-
resentation, as well as
rules and heuristics

1) Recognition for single-table and multi-
table spreadsheets. 2) No reliance on any
assumptions with what regards the arran-

gement of tables

Tables with few columns and
empty cells are not handled

well.

SA Siddiqui [115]
deformable CNN
+ Faster R-CNN

1) The use of deformable convolution can
handle various tabular structures. 2) rel-
eased a new dataset that contained table

structure data.

The tables in the proposed
approach won’t operate co-
rrectly if they have a row a-

nd column span.

SA Siddiqui [116] Fully CNNs
The complexity of the task of identifying t-
able structures is reduced by the proposed

prediction tiling approach.

1) Additional post-processing p-
rocesses are necessary when ro-
ws or columns are excessively
fragmented. 2) The technique is
based on the tabular structures’

consistency assumption.

SR Qasim [99] Graph NN + CNN

1) This paper also presents a unique, memory-
eicient training strategy based on Monte Ca-
rlo. 2) The suggested approach makes use of

both textual and spatial characteristics.

The publicly accessible table
datasets are not used to test

the system.

W Xue [134]
Graph NN + weights
depending on distance

For the cell relationship network, the class
imbalance issue is solved using the distance-

based weighting method.

When dealing with sparse tab-
les, the approach is insecure.

C Tensmeyer [124]
Dilated Convolutions

+ Fully CNN
The technique is efective with both scanned

and PDF document images.

The post-processing heuristics
determine how the merging p-
ortion of the method works.

SA Khan [57] RNN
The reduced receptive ield of CNNs is solved

by the bi-directional GRU.

Pre-processing procedures including
binarization, noise reduction, and
morphological modiication are ne-

cessary.

P Riba [106]
Graph Neural Networks

approach

1) It is not constrained to rigid tabular lay-
outs in terms of single rows, columns or pr-
esence of rule lines. 2) The model is langua-

ge independent

1) The method may have problems
when dealing with border cond-
itions. 2) There is a small amount
of training data in the RVL-CDIP
dataset and F1, Precision and Re-
call metrics are lower than other

methods.

Y Deng [16] Encoder decoder net

1) In the work that is given, issues with end-
to-end table recognition are examined. 2) Mad
-e a contribution with yet another sizable data

-set in the area of table comprehension.

The other publicly accessible
table recognition datasets are not
used to assess the suggested base-

line technique.

E Koci [64]
Graph model + Appl-
ication of genetic-based

approaches

Requires little to no involvement of domain
experts

The accuracy of GE depends on
the number of edges. Speciica-
lly, we determined that GE ach-
ieves an accuracy of only 19%

for multi-table graphs

SS Paliwal [94]
Networks with fully

convolutions

1) First attempt at combining a single solution
to handle both the problem of table detection
and structure recognition. 2) A comprehensive
method for structure recognition and detection

in document pictures.

This approach only functions on
column detection when used for

table structure extraction.

D Prasad [97]

Cascade mask Reg-
ionbased CNN High-
Resolution Network-

based model

Direct regression occurs at cellular bound-
aries using an end-to-end method.

Tables with/out ruling lin-
es must undergo further

post-processing.

S Raja [101]
Mask R-CNN +
ResNet-101 based

Net

1) An additional alignment loss is sugges-
ted for precise cell detection. 2) A train-
able top-down for cell identiication and
bottom-up for structure recognition coll-

ection is proposed.

When cells are empty, the
strategy is weak.

report processing. The success of this approach opens avenues for applying similar methodologies across diferent
sectors requiring detailed data extraction. Furthermore, it underscores the potential for AI to transform traditional
business processes, making them more eicient and less reliant on manual labor.

5.6.4 Case Study 2: Medical Records Extraction. The case study aimed at enhancing digitization accuracy of
patient data from scanned medical records into a hospital’s electronic system, utilizing Faster R-CNN for table

ACM Comput. Surv.



28 • Kasem and Abdallah, et al.

Table 6. A comparison of the benefits and drawbacks of several deep learning-based Table Structure Recognition methods

(continue Table 5)

Literature Method Beneits Drawbacks

B Xiao [131]
cells’ bounding boxes
+ conditional attention

network

Only utilizes visual features without any meta-
data

1) Assumes that the coordinates
of cells in the table are known.
2) Diiculties with tables with-

out borders

Y Zou [147] Fully CNNs
1) Using linked component analysis enhances
the outcomes. 2) In a table, cells are segmen-
ted in addition to the rows and columns.

To provide comparison indings,
a small number of post-process-
ing procedures utilizing speciic

algorithms are necessary.

X Zhong [146]
Dual decoder with
attention-based enc-

oding

1) To assess table recognition techniques, the
methodology ofers a unique evaluation metric
called TEDS. 2) released a huge table dataset.

The technique cannot be readily
compared to other state-of-the-

art techniques.

KA Hashmi [38]

Utilizing an optimi-
zation technique for
anchors+ Mask R-

CNN

Networks of region proposals converge mo-
re quickly and efectively thanks to optim-

ized anchoring.

This study relies on the pre
liminary pre-processing phase
of clustering the ground truth
to ind appropriate anchors.

A Zucker [148]

Character Region Awareness
for Text Detection (CRAFT)
and Density-Based Spatial
Clustering of Applications
with Noise (DBSCAN)

A bottom-up method, which emphasizes that
the table structure is formed by relative pos-
itions of text cells, and not by inherent bou-

ndaries

Cannot handle spreading rows
or columns well

X Zheng [145]
Method for object
detecting generally

An additional innovative cluster-based tech
nique combined with a hierarchical network

to detect tabular forms.

Accurately classifying a table
is a prerequisite for inal cell

structure identiication.

Z Zhang [143]

A combination of fully convo-
lutional network (FCN)+ RoI-
Align + the pretrained BERT
model + Gated Recurrent Unit

(GRU) decoder

Directly operates on table images with no
dependency on meta-information, can pro-

cess simple and complex tables

Oversegments tables when space
between cells is large, doesn’t

handle merged cells well

M Namysl [86]
Rule-based algorithms +
graph-based table inter-

pretation method

1) Approach allows processing images and
digital documents. 2) Processing steps can

be adapted separately

1) Support the most frequent ta-
ble formats only. Reliance on the
presence of predeined keywords.
2) Prone to the errors propagated
from the upstream components
of system. 3) Focus on the ta-

bles with rulings

A Nassar [88]
End-to-end neural network
+ CNN Backbone + tran-
sformer based layers

1) Handles diferent languages without being
trained on them. 2) Predicts tables structure
and bounding boxes for the table content

Work with PDF documents

A Jain [50]
spatial associations + dyna-
mic programming techniques

Recognizing complex table structures having
multi-span rows/columns and missing cells

Uses OCR to read words from
images Not language agnostic

S Raja [102] object detection Better detection of empty cells
Fails for very sparse tables wh-
ere most of the cells are empty

J Herzig[42]
Tabular Pre-trained Lang-

uage Model

Simpliies question-answering by directly
predicting denotations from tables, outper-
forming traditional methods in accuracy,
and showcasing eicient transfer learning

capabilities.

Limited scope beyond table-rel-
ated tasks, requires substantial
computational resources, and
depends heavily on the quality

of pre-training data

SX Rao12[103]
Weak Supervision +

Mask R-CNN

1) Handles both native PDFs and scanned im-
ages. 2) Provides TableAnnotator and Excel-
Annotator, fostering collaborative research.

1) Computationally demanding.
2) Accuracy hinges on the qua-
lity of training data, impacting
performance if data is noisy or

limited

M Namysł[87]
heuristic-based structure re-
cognition, and graph-based
semantic interpretation

1) Flexible and adaptable to various document
layouts. 2)Handles both image and PDF form-
ats 3) Efective when extracting speciic data

from chosen table columns

May require adjustments for
unconventional layouts or for-

mats

NT Ly[77]
WSTabNet(a weakly sup-
ervised table recognition

model )

1) Achieves top-tier accuracy on benchmark
datasets 2) Simpliies training, enhancing

model eiciency

Relies heavily on speciic HT-
ML annotations, limiting applic-
ability to datasets without such

annotations

A Ghosh Chowdhury[27]
self-supervised image class-
iier + pix2pix Generative

Adversarial Network (GAN)

1)Accurately detects tables and recognizes
structures, demonstrated through evaluations
on multiple datasets. 2)Reduces dependency

on manual annotations

Requires signiicant computat-
ional resources

detection and an LSTM-based model for recognizing structures despite poor scan quality and varied layouts.
Key challenges were low-quality scans, handwritten notes, and maintaining data privacy and security. Solutions
included advanced denoising, handwriting recognition, and training on a secure, anonymized medical dataset.
This approach improved digitization accuracy and reduced manual errors, though its scalability was limited by
the need for extensive preprocessing and a secure training setup. The hybrid deep learning technique signiicantly
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enhanced the eiciency and accuracy of converting medical records into digital form, aiding better patient data
management and care.

5.6.5 Comparative Analysis and Lessons Learned. The case studies illustrate the potential of deep learning
methodologies to transform table structure recognition across diferent domains. However, they also underscore
the importance of domain-speciic adaptations, the challenges posed by diverse document formats, and the critical
role of preprocessing steps. Lessons learned include the need for targeted dataset preparation, the potential for
hybrid models to address complex recognition tasks, and the importance of privacy considerations in medical
applications. These insights contribute to advancing the ield of table structure recognition, ofering guidance for
future research and application.

6 EXPERIMENTS RESULTS

6.1 Table Detection Results

Table detection is crucial for analyzing the structure of documents by identifying tables and their boundaries
within images. We conduct a comparative study on diferent table detection techniques using benchmarks like
ICDAR and UNLV, assessing them with the Intersection Over Union (IOU) metric detailed in Tables 7 and 8. The
evolution from basic strategies like Tesseract’s tab-stop detection to advanced convolutional neural networks
(CNNs) like the Faster R-CNN by A Gilani[28] shows signiicant improvements in accuracy. Recent methods
have improved precision and recall across various IOU thresholds, though challenges remain at higher thresholds
indicating the need for further reinement. The comparison suggests that newer methods, particularly those
leveraging CNNs, ofer promising advancements in detecting complex table structures across diverse datasets.
Tables 7 and 8 delve into the speciics of various table detection methodologies across diferent datasets. A

notable observation is the employment of Generative Adversarial Networks (GAN) by Y Li[72] and the impressive
performance of Faster R-CNN by N Sun[122] on the ICDAR2017 dataset. On the ICDAR2017 dataset, Y Li[72]
used GAN and reported an F1-Score of 90.3% at an IoU of 80% in 2019. On the same dataset, N Sun[122] employed
the Faster R-CNN method, achieving an F1-Score of 94.9% at an IoU of 80% in 2019. Á Casado-García[11] utilized
RetinaNet and attained an F1-Score of 86.0% at an IoU of 80% in 2020. M Agarwal[5], using the Cascade mask
R-CNN approach on the ICDAR2017 dataset, reported a 93.4% F1-Score at 60% IoU in 2021. On the ICDAR2019
dataset, D Prasad[97] employed the Cascade mask R-CNN HRNet and achieved a 94.3% F1-Score at 60% IoU in
2020. Again, M Agarwal[5] on the ICDAR2019 dataset with the Cascade mask R-CNN reported an F1-Score of
95.0% at 80% IoU in 2021. X Zheng[145] proposed the use of object detection networks for the ICDAR2019 dataset
and reached a 94.0% F1-Score at 80% and 90% IoU in 2021. DD Nguyen[89] adopted a fully convolutional network
for the ICDAR2019 dataset and reported an F1-Score of 91.0% at 80% IoU in 2022. Meanwhile, J Li[69] implemented
the Vanilla Transformer architecture on the same dataset and achieved a remarkable F1-Score of 97.00% at 80% IoU
in 2022. SA Siddiqui[117] proposed the use of a Deformable CNN on the Mormot dataset, achieving an F1-Score
of 89.5% at 50% IoU in 2018. On the TableBank dataset, M Agarwal[5] employed the Cascade mask R-CNN and
reported a 98.6% F1-Score at 55% IoU in 2021. On the RVL-CDIP dataset, P Riba[106, 107] utilized a Graph NN in
2019 and 2022, achieving F1-Scores of 21.5% and 39.60%, respectively. He also implemented the Graph Attention
Neural Networks (GAT) in 2022 for the same dataset, reporting a consistent F1-Score of 39.60%.

On the TNCR dataset, The Faster R-CNN model has achieved good performance in table detection compared
with Cascade-RCNN and Cascade Mask-RCNN in most of the backbones. We have trained the Faster R-CNN
model with L1 Loss [130] with Resnet-50 for bounding box regression. As shown in Table 7 and 8, it achieves
an f1-score of 0.921. Resnet-101 backbone achieves the highest F1 score over 50% to 65%, ResNeXt-101-64x4d
achieves the highest F1 score over 70% to 95%, and ResNeXt-101-64x4d achieves the highest F1 score over 50%:95%
of 0.786. Resnet-50 backbone with 1× Lr schedule achieves the lowest performance over 50% to 60% IoUs. Also,
the Resnet-50 backbone with L1 Los achieves the lowest performance from 65% to 95% IoUs and also achieves
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Table 7. Table Detection

Approach Dataset Method
IoU

Year
50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 50%:95%

Tesseract [111] UNLV Tab-stop Detection
Precision - - - - - - - - 86.00 - -

2010Recall - - - - - - - - 79.00 - -
F1-Score - - - - - - - - 82.35 - -

A Gilani[28] UNLV Faster R-CNN
Precision - - - - - - - - 82.30 - -

2017Recall - - - - - - - - 90.67 - -
F1-Score - - - - - - - - 86.29 - -

SA Siddiqui[117] UNLV
Deformable CNN
+ Faster R-CNN

Precision 78.6 - - - - - - - - - -
2018Recall 74.9 - - - - - - - - - -

F1-Score 76.7 - - - - - - - - - -

Á Casado-García[11] UNLV YOLO
Precision - - 93.0 - 92.0 - 83.0 - 48.0 - -

2020Recall - - 95.0 - 94.0 - 85.0 - 49.0 - -
F1-Score - - 94.0 - 93.0 - 84.0 - 49.0 - -

M Agarwal [5] UNLV
Cascade mask

R-CNN

Precision 96.0 - 94.4 - 91.5 - 82.6 - 61.8 - -
2018Recall 77.0 - 75.8 - 73.4 - 66.3 - 49.6 - -

F1-Score 86.5 - 85.1 - 82.5 - 74.4 - 55.7 - -

S Schreiber[109] ICDAR2013 Mask R-CNN
Precision 97.40 - - - - - - - - - -

2017Recall 96.15 - - - - - - - - - -
F1-Score 96.77 - - - - - - - - - -

SA Siddiqui[115] ICDAR2013 Deformable CNN
Precision 99.6 - - - - - - - - - -

2018Recall 99.6 - - - - - - - - - -
F1-Score 99.6 - - - - - - - - - -

I Kavasidis[56] ICDAR2013
Semantic Image
Segmentation

Precision 97.5 - - - - - - - - - -
2019Recall 98.1 - - - - - - - - - -

F1-Score 97.8 - - - - - - - - - -

Y Huang[47] ICDAR2013 YOLO
Precision 100 - 98.6 - - - 89.2 - - - -

2019Recall 94.9 - 93.6 - - - 84.6 - - - -
F1-Score 97.3 - 96.1 - - - 86.8 - - - -

SS Paliwal[94] ICDAR2013 fully convolutions
Precision 96.97 - - - - - - - - - -

2019Recall 96.28 - - - - - - - - - -
F1-Score 96.62 - - - - - - - - - -

Á Casado-García[11] ICDAR2013 Mask R-CNN
Precision - - 70.0 - 70.0 - 70.0 - 47.0 - -

2020Recall - - 97.0 - 97.0 - 97.0 - 65.0 - -
F1-Score - - 81.0 - 81.0 - 81.0 - 54.0 - -

D Prasad[97] ICDAR2013
Cascade mask
R-CNN HRNet

Precision 100 - - - - - - - - - -
2020Recall 100 - - - - - - - - - -

F1-Score 100 - - - - - - - - - -

M Li[70] ICDAR2013 Faster R-CNN
Precision 96.58 - - - - - - - - - -

2020Recall 95.94 - - - - - - - - - -
F1-Score 96.25 - - - - - - - - - -

M Agarwal [5] ICDAR2013
Cascade mask

R-CNN

Precision 100.0 - 100.0 - 98.7 - 94.2 - 66.0 - -
2021Recall 100.0 - 100.0 - 98.7 - 94.2 - 66.0 - -

F1-Score 100.0 - 100.0 - 98.7 - 94.2 - 66.0 - -

X Zheng[145] ICDAR2013
object detection

networks

Precision 98.97 - - - - - - - - - -
2021Recall 99.77 - - - - - - - - - -

F1-Score 99.31 - - - - - - - - - -

SA Siddiqui[115] ICDAR2017 Deformable CNN
Precision - - 96.5 - - - 96.7 - - - -

2018Recall - - 97.1 - - - 93.7 - - - -
F1-Score - - 96.8 - - - 95.2 - - - -

Y Huang[47] ICDAR2017 YOLO
Precision - - 97.8 - - - 97.5 - - - -

2019Recall - - 97.2 - - - 96.8 - - - -
F1-Score - - 97.5 - - - 97.1 - - - -

Abdallah [1] TNCR HRNets Cascade Mask R-CNN
Precision 0.888 0.887 0.887 0.886 0.885 0.884 0.872 0.858 0.828 0.732 0.810

2022Recall 0.970 0.970 0.970 0.967 0.967 0.965 0.955 0.942 0.918 0.836 0.903
F1-Score 0.927 0.926 0.926 0.924 0.924 0.922 0.911 0.898 0.870 0.780 0.903

Abdallah [1] TNCR HRNets - Mask R-CNN
Precision 0.859 0.857 0.857 0.857 0.852 0.848 0.833 0.816 0.764 0.585 0.816

2022Recall 0.971 0.969 0.969 0.969 0.965 0.960 0.947 0.934 0.889 0.744 0.934
F1-Score 0.911 0.909 0.909 0.909 0.904 0.900 0.886 0.871 0.821 0.654 0.871

Abdallah [1] TNCR HRNets - HTC
Precision 0.885 0.885 0.883 0.882 0.881 0.875 0.862 0.849 0.808 0.691 0.788

2022Recall 0.987 0.987 0.984 0.984 0.982 0.976 0.966 0.954 0.915 0.816 0.901
F1-Score 0.933 0.933 0.930 0.930 0.928 0.922 0.911 0.898 0.858 0.748 0.840

Abdallah [1] TNCR HRNets - Faster R-CNN
Precision 0.867 0.865 0.863 0.859 0.853 0.845 0.827 0.806 0.750 0.556 0.711

2022Recall 0.972 0.970 0.968 0.964 0.959 0.952 0.940 0.915 0.869 0.711 0.842
F1-Score 0.916 0.914 0.912 0.908 0.902 0.895* 0.879 0.857* 0.805* 0.624 0.770

Abdallah [1] TNCR HRNets - Cascade R-CNN
Precision 0.893 0.891 0.891 0.891 0.888 0.880 0.871 0.854 0.831 0.705 0.799

2022Recall 0.967 0.965 0.965 0.964 0.961 0.956 0.948 0.935 0.914 0.811 0.889
F1-Score 0.928 0.926 0.926 0.926 0.923 0.916 0.907 0.892 0.870 0.754 0.841

Abdallah [1] TNCR Mask R-CNN - ResNeXt-101
Precision 0.778 0.777 0.774 0.769 0.759 0.749 0.713 0.651 0.477 0.407 0.434

2022Recall 0.975 0.974 0.968 0.964 0.952 0.941 0.913 0.856 0.725 0.695 0.626
F1-Score 0.865 0.864 0.860 0.855 0.844 0.834 0.800 0.739* 0.575 0.513 0.512

Abdallah [1] TNCR Faster R-CNN - ResNeXt-101
Precision 0.884 0.884 0.880 0.879 0.876 0.871 0.856 0.833 0.780 0.581 0.733

2022Recall 0.972 0.970 0.969 0.967 0.965 0.961 0.950 .931 0.884 0.724 0.848
F1-Score 0.925 0.925 0.922 0.920 0.918 0.913 0.900 0.879 0.828 0.644 0.786

the lowest performance over 50%:95%. HRNets Faster R-CNN detector with various backbone structures with
combinations of Lr Schedule. The HRNetV2p-W18 with 1× Lr Schedule backbone shows a low performance
compared with other backbones. it achieves an f1 score of 0.770. It achieves 3.2% less than HRNetV2p-W18 with
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Table 8. Table Detection (Continue Table 7)

Approach Dataset Method
IoU

Year
50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 50%:95%

Y Li[72] ICDAR2017
Generative Adversarial

Networks(GAN)

Precision - - 94.4 - - - 90.3 - - - -
2019Recall - - 94.4 - - - 90.3 - - - -

F1-Score - - 94.4 - - - 90.3 - - - -

N Sun [122] ICDAR2017 Faster R-CNN
Precision - - - - - - 94.3 - - - -

2019Recall - - - - - - 95.6 - - - -
F1-Score - - - - - - 94.9 - - - -

Á Casado-García[11] ICDAR2017 RetinaNet
Precision - - 92.0 - 92.0 - 89.0 - 79.0 - -

2020Recall - - 87.0 - 87.0 - 84.0 - 75.0 - -
F1-Score - - 89.0 - 89.0 - 86.0 - 77.0 - -

M Agarwal [5] ICDAR2017
Cascade mask

R-CNN

Precision - - 96.9 - - - - - - - -
2021Recall - - 89.9 - - - - - - - -

F1-Score - - 93.4 - - - - - - - -

D Prasad[97] ICDAR2019
Cascade mask
R-CNN HRNet

Precision - - - - - - - - - - -
2020Recall - - - - - - - - - - -

F1-Score - - 94.3 - 93.4 - 92.5 - 90.1 - -

M Agarwal [5] ICDAR2019
Cascade mask

R-CNN

Precision 98.7 - 98.0 - 97.7 - 97.1 - 93.4 - -
2021Recall 94.6 - 93.9 - 93.6 - 93.0 - 89.5 - -

F1-Score 96.6 - 95.9 - 95.6 - 95.0 - 91.5 - -

X Zheng
[145]

ICDAR2019
object detection

networks

Precision - - - - - - 96.0 - 90.0 - -
2021Recall - - - - - - 95.0 - 89.0 - -

F1-Score - - - - - - 94.0 - 94.0 - -

DD Nguyen[89] ICDAR2019
fully convolutional

network

Precision - - - - - - - - - - -
2022Recall - - - - - - - - - - -

F1-Score - - 92.8 - 91.7 - 91.0 - 87.4 - -

J Li [69] ICDAR2019
Vanilla Transformer

architecture

Precision - - - - - - - - - - -
2022Recall - - - - - - - - - - -

F1-Score - - 97.89 - 97.22 - 97.00 - 93.88 - -

SA Siddiqui[117] Mormot Deformable CNN
Precision 84.9 - - - - - - - - - -

2018Recall 94.6 - - - - - - - - - -
F1-Score 89.5 - - - - - - - - - -

M Agarwal [5] TableBank
Cascade mask

R-CNN

Precision 93.4 - 99.5 - - - - - - - -
2021Recall 92.4 - 97.8 - - - - - - - -

F1-Score 92.9 - 98.6 - - - - - - - -

P Riba [106] RVL-CDIP Graph NN
Precision 15.2 - - - - - - - - - -

2019Recall 36.5 - - - - - - - - - -
F1-Score 21.5 - - - - - - - - - -

P Riba [107] RVL-CDIP Graph NN
Precision 30.80 - - - - - - - - - -

2022Recall 25.20 - - - - - - - - - -
F1-Score 39.60 - - - - - - - - - -

P Riba [107] RVL-CDIP
Graph Attention

Neural Networks (GAT)

Precision 30.80 - - - - - - - - - -
2022Recall 25.20 - - - - - - - - - -

F1-Score 39.60 - - - - - - - - - -

P Riba [107] RVL-CDIP
Graph Attention

Neural Networks (GAT)

Precision 30.80 - - - - - - - - - -
2022Recall 25.20 - - - - - - - - - -

F1-Score 39.60 - - - - - - - - - -

C Ma [78] ICDAR2019 Faster R-CNN
Precision - - 98.4 - 98.2 - 97.7 - 95.0 - -

2022Recall - - 94.0 - 93.9 - 93.3 - 90.8 - -
F1-Score - - 96.1 - 96.0 - 95.4 - 92.9 - -

C Ma [78] IIIT-AR-13K Faster R-CNN
Precision - - - - - - - - 99.0 - -

2022Recall - - - - - - - - 97.8 - -
F1-Score - - - - - - - - 98.4 - -

Abdallah [1] TNCR Dynamic R-CNN
Precision 0.855 0.854 0.853 0.849 0.839 0.823 0.802 0.764 0.646 0.267 0.561

2022Recall 0.978 0.977 0.975 0.971 0.963 0.943 0.925 0.888 0.793 0.451 0.714
F1-Score 0.912 0.911 0.909 0.905 0.896 0.878 0.859 0.821 0.711 0.335 0.628

Abdallah [1] TNCR Faster R-CNN
Precision 0.893 0.893 0.890 0.888 0.879 0.876 0.862 0.823 0.747 0.495 0.694

2022Recall 0.981 0.979 0.977 0.975 0.967 0.963 0.950 0.921 0.861 0.645 0.813
F1-Score 0.934 0.934 0.931 0.929 0.920 0.917 0.903 0.869 0.799 0.560 0.748

Abdallah [1] TNCR Cascade R-CNN
Precision 0.905 0.903 0.902 0.899 0.893 0.891 0.884 0.876 0.826 0.693 0.799

2022Recall 0.985 0.984 0.983 0.979 0.976 0.972 0.965 0.958 0.917 0.811 0.898
F1-Score 0.943 0.941 0.940 0.937 0.932 0.929 0.922 0.915 0.869 0.747 0.845

Abdallah [1] TNCR HRNets - FCOS
Precision 0.790 0.788 0.782 0.779 0.770 0.759 0.729 0.691 0.596 0.335 0.563

2022Recall 0.983 0.978 0.972 0.969 0.959 0.947 0.917 0.878 0.786 0.545 0.764
F1-Score 0.875 0.872 0.866 0.863 0.854 0.842 0.812 0.773 0.677 0.414 0.648

2× Lr Schedule. HRNetV2p-W40 with 1× Lr Schedule backbone achieves better performance over 50% to 85%
IoUs and HRNetV2p-W40 with 2× Lr Schedule backbone achieves better performance over 90% and 95% IoUs.
HRNetV2p-W18 with 2× Lr Schedule backbone achieves an f1 score of 0.802 over 50%:95%. HRNetV2p-W32 with
1× Lr Schedule backbone share same performance over 50% to 60%.
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Table 9. Table Structure Recognition

Approach Dataset Method
IoU

Year
50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 50%:95%

S Schreiber[109] ICDAR2013 Fully CNN
Precision 95.93 - - - - - - - - - -

2017Recall 87.36 - - - - - - - - - -
F1-Score 91.44 - - - - - - - - - -

SA Siddiqui[115] ICDAR2013 Deformable CNN
Precision 93.19 - - - - - - - - - -

2019Recall 93.08 - - - - - - - - - -
F1-Score 92.98 - - - - - - - - - -

W Xue[134] ICDAR2013
Graph NN + weights
depending on distance

Precision 92.6 - - - - - - - - - -
2019Recall 44.7 - - - - - - - - - -

F1-Score 60.3 - - - - - - - - - -

SS Paliwal[94] ICDAR2013 fully CNN
Precision 92.15 - - - - - - - - - -

2019Recall 89.87 - - - - - - - - - -
F1-Score 90.98 - - - - - - - - - -

SA Khan[57] ICDAR2013 Bi-directional RNN
Precision 96.92 - - - - - - - - - -

2019Recall 90.12 - - - - - - - - - -
F1-Score 93.39 - - - - - - - - - -

C Tensmeyer[124] ICDAR2013
Dilated Convolutions

+ Fully CNN

Precision 95.8 - - - - - - - - - -
2019Recall 94.6 - - - - - - - - - -

F1-Score 95.2 - - - - - - - - - -

Z Chi[14] ICDAR2013 Fully CNN
Precision 88.5 - - - - - - - - - -

2019Recall 86.0 - - - - - - - - - -
F1-Score 87.2 - - - - - - - - - -

Á Casado-García[11] ICDAR2013 Mask R-CNN
Precision - - 70.0 - 70.0 - 70.0 - 47.0 - -

2020Recall - - 97.0 - 97.0 - 97.0 - 65.0 - -
F1-Score - - 81.0 - 81.0 - 81.0 - 54.0 - -

S Raja[101] ICDAR2013 Object Detection Methods
Precision 92.7 - - - - - - - - - -

2020Recall 91.1 - - - - - - - - - -
F1-Score 91.9 - - - - - - - - - -

KA Hashmi[38] ICDAR2013 Object Detection Methods
Precision 95.37 - - - - - - - - - -

2021Recall 95.56 - - - - - - - - - -
F1-Score 95.46 - - - - - - - - - -

S Raja[102] ICDAR2013 Object Detection Methods
Precision 93.3 - 93.0 - 80.0 - 63.8 - 29.1 - -

2022Recall 91.5 - 90.8 - 79.1 - 62.4 - 28.4 - -
F1-Score 92.4 - 91.9 - 79.5 - 63.1 - 28.7 - -

D Prasad[97] ICDAR2019 Object Detection Methods
Precision - - - - - - - - - - -

2020Recall - - - - - - - - - - -
F1-Score - - 43.8 - 35.4 - 19.0 - 3.6 - -

Y Zou[147] ICDAR2019 Fully CNN
Precision - - 18.79 - - - 1.71 - - - -

2021Recall - - 10.07 - - - 0.92 - - - -
F1-Score - - 13.11 - - - 1.19 - - - -

X Zheng[145] ICDAR2019 Object Detection Methods
Precision - - - - - - - - - - -

2021Recall - - - - - - - - - - -
F1-Score 54.8 - 38.5 - - - - - - - -

S Raja[102] ICDAR2019 Object Detection Methods
Precision 86.4 - 82.2 - 64.1 - 40.4 - 17.5 - -

2022Recall 84.2 - 78.7 - 62.5 - 37.6 - 13.8 - -
F1-Score 85.3 - 80.4 - 63.3 - 38.9 - 15.4 - -

S Raja[102] UNLV Object Detection Methods
Precision 86.4 - 84.9 - 73.5 - 55.8 - 17.3 - -

2022Recall 84.2 - 82.8 - 71.1 - 53.2 - 14.8 - -
F1-Score 85.3 - 83.9 - 72.3 - 54.5 - 16.0 - -

C Ma [78] SciTSR Spatial CNN
Precision - - - - - - - - 99.4 - -

2022Recall - - - - - - - - 99.1 - -
F1-Score - - - - - - - - 99.3 - -

Table 10. Open source code for most of the studies articles in Table Detection and Table Structure Recognition

Article Model Year Framework Link
Z Chi [14] SciTSR 2019 Pytorch https://github.com/Academic-Hammer/SciTSR

D Prasad [97] CascadeTabNet 2020 Pytorch https://github.com/DevashishPrasad/CascadeTabNet
Á Casado-García [11] - 2020 mxnet https://github.com/holms-ur/ine-tuning

M Li [70] TableBank 2020 Pytorch, Detectron2 https://github.com/doc-analysis/TableBank
S Raja [101] TabStructNet 2020 tensorlow https://github.com/sachinraja13/TabStructNet.git

X Zhong [146] PubTabNet 2020 - https://github.com/ibm-aur-nlp/PubTabNet
M Agarwal [5] CDeC-Net 2021 PyTorch https://github.com/mdv3101/CDeCNet

Also, on the TNCR dataset, We implemented Mask R-CNN [41] to use R-CNN for table objects in an image and
also for performing object segmentation for each ROI. As seen in Table 7, Mask R-CNN shows good performance
in our dataset in precision, recall, and F1 score for all backbones. Resnet-101 backbone has achieved the highest F1
score of 0.774 over 50%:95% and maintains the highest F1 score at various IoUs. ResNeXt-101-32x4d achieves the
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lowest performance over 50% to 95% IoUs and also achieves an f1 score of 0.512 over 50%:95%. ResNeXt-101-64x4d
also achieves the lowest performance at various IoUs except for 95% IoU.

This comparative analysis underscores the dynamic nature of table detection research. From basic methods to
sophisticated CNN frameworks, the trajectory has been marked by innovation and integration. With continual
advancements, the quest for the ideal table detection algorithm, one that marries precision with robustness across
diverse challenges, continues.
6.2 Table Recognition Results

Recognizing structured data from tables in images and documents involves accurately identifying components
like rows and headers across diverse formats. Various methods have been developed to enhance this recognition,
with evaluations often conducted on the widely-used ICDAR dataset, which includes table images and XML-based
ground truth data. These methods are assessed based on precision, recall, F1-scores, and the Intersection over
Union (IoU) metric, which measures the accuracy of area predictions compared to the actual data. The research
on table recognition has progressed from Fully Convolutional Networks (CNN) to more advanced techniques
involving Deformable CNNs, Graph Neural Networks, Bi-directional RNNs, and Object Detection Methods. As
shown in Table 9 for instance, methods proposed by S Schreiber[109] (2017) and SS Paliwal[94] (2019) relied
heavily on Fully CNN. In contrast, SA Siddiqui[115] (2019) introduced deformable structures into CNN, and
W Xue[134] (2019) combined Graph Neural Networks with weight dependencies based on distances. Precision,
recall, and F1-score are the primary metrics to evaluate performance. For instance, SA Khan[57] (2019) achieved
an impressive precision of 96.92% on the ICDAR2013 dataset using Bi-directional RNNs. However, achieving high
precision and recall simultaneously can be challenging. As seen by W Xue[134] (2019), while the precision was
high at 92.6%, the recall was considerably low at 44.7%, relecting the method’s diiculty in detecting all relevant
table regions.
Intersection over Union (IoU) ofers a multi-threshold evaluation. As seen in Table 9, while many studies

reported metrics at the IoU of 50%, Á Casado-García[11] (2020) provided insights into performance across a
wide range of IoU thresholds, from 60% to 90%. While most studies utilized the ICDAR2013 dataset, recent
works like D Prasad[97] (2020) and Y Zou[147] (2021) have started using the ICDAR2019 dataset, potentially
due to its updated and more challenging set of table images. It’s intriguing to note the diversity in methods. For
instance, Á Casado-García[11] (2020) used Mask R-CNN, a method predominantly known for its application
in general object detection. On the other hand, C Tensmeyer[124] (2019) introduced dilated convolutions into
Fully CNN, indicating continuous innovations in network architectures for the task. Table recognition is a
dynamic ield, facing challenges in achieving both high precision and recall, particularly at strict IoU thresholds.
The diversity and complexity of tables in digital documents highlight the need for models that can adapt to
various structures. Despite these challenges, the progress shown in evaluations using the ICDAR dataset suggests
promising directions for future research in this area.
6.3 Open source code

Several open-source frameworks for creating generic deep learning models, most of which are written in Python,
are available online, including TensorFlow, Keras, PyTorch, and MXNet.The open-source projects for table
detection and structure recognition are summarized in Table 10. Many of the authors have also made open-
source implementations of their proposed models available. TensorFlow and PyTorch are the most often utilized
frameworks in these open-source projects.
7 CONCLUSION AND FUTURE WORKS

In the ield of document analysis, table analysis is a signiicant and extensively researched problem. The challenge
of interpreting tables has been dramatically transformed, and new standards have been set thanks to the use
of deep learning ideas. As we said in the paper’s main contribution paragraph in the Introduction section, we
have addressed several current processes that have advanced the process of information extraction from tables in
document pictures by implementing deep learning concepts. We have discussed methods that use deep learning

ACM Comput. Surv.



34 • Kasem and Abdallah, et al.

to detect, identify, and classify tables. We have also shown the most and least well-known techniques that have
been used to detect and identify tables, respectively. all of the datasets that are publicly accessible and their access
details have been compiled. On numerous datasets, we have presented a thorough performance comparison of
the methodologies that have been addressed. On well-known datasets that are freely accessible to the public,
state-of-the-art algorithms for table detection have produced almost lawless results. Once the tabular region has
been identiied, the work of structurally segmenting tables and then recognizing them follows.
One potential area for future work in the ield of table detection using deep learning is the integration of

additional document structure information into the models. Currently, many deep learning methods for table
detection primarily rely on the visual cues of tables within documents. However, incorporating supplementary
details about the document’s structure, such as identifying header rows and columns, could signiicantly enhance
the model’s performance.

Another promising direction for future research involves the exploration of more sophisticated deep learning
architectures tailored for table detection tasks. For instance, investigating the application of advanced techniques
such as Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs) holds promise in further
enhancing the model’s accuracy and robustness.

Furthermore, addressing the challenges posed by variations in table formatting and layout is a crucial area for
future investigation. Tables exhibit diverse formats, making it essential to develop methods that can robustly
detect tables in various layouts. Overcoming these challenges will undoubtedly lead to substantial improvements
in the overall performance of table detection models.
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