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Abstract

We study the connection between cores and strategy-proofness in environments

with externalities. With this objective in mind, we present a new concept of the core

that relies on agents’ expectations about their peers’ reactions to group deviations.

It encompasses several core consistent solutions previously proposed in the literature

for environments with externalities. It allows us to prove that essentially single-

valued cores are necessary and sufficient for the existence of strategy-proof, efficient,

and individually rational mechanisms.
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1 Introduction

Externalities play a crucial role in real-world allocation problems. Notable instances

include labor markets, where workers are concerned about their colleagues, and school

choice problems, where families consider the impact of their children’s classmates. In

team sports competitions, the composition of other teams is a crucial concern for each

player, as it directly influences their own team’s outcomes and rankings. Similarly, in

cartel formation problems, the profits of cartel members are affected by the activities of

other cartels and independent firms. Likewise, in international trade, the benefits of fiscal

coordination depend on the behavior of countries outside the alliance.

The contribution of the paper is twofold. Firstly, we introduce a general model of expecta-

tions to address externalities. Secondly, we employ this model to analyze the connection

between cores and strategy-proofness in environments with externalities.

The seminal contribution by Sönmez (1999) proves that the existence of a strategy-proof,

efficient, and individually rational mechanism constrains the core to be essentially single-

valued. That is, all allocations in the core are indifferent to all agents. On the other

hand, an essentially single-valued core guarantees that all its selections are strategy-

proof, efficient, and individually rational mechanisms. While these results also apply in

environments with externalities, they have no grip if the core is empty, which is often the

case when externalities are relevant (Chander and Tulkens (1997), Roth and Sotomayor

(1992), Sasaki and Toda (1996), Mumcu and Saglam (2007), Ehlers (2018)).

The literature has dealt with the existence problem by relaxing the core’s requirements.1

Ehlers (2018) extends the analysis of Sönmez (1999) by considering the individually ra-

tional core, introduced in Hart and Kurz (1983) as the γ-core (see also Chander and

Tulkens (1997)). It assumes that if a coalition deviates, all other agents will receive

their individual endowments back. Hart and Kurz (1983), Sasaki and Toda (1996), and
1An alternative approach is to consider restrictions on preferences that guarantee the nonemptyness of

the core. See Echenique and Yenmez (2007) and Dutta and Masso (1997) in college admission problems,
Alcalde and Revilla (2004) in the formation of research teams, Klaus and Klijn (2005) and Bando (2012)
in labor markets, Mumcu and Saglam (2010) in marriage markets, Hong and Park (2022) and Salgado-
Torres (2011) in housing markets, Pycia and Yenmez (2023) in matching with contracts. Bando et al.
(2016) surveyed the literature about two-sided matching markets with externalities.
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Mumcu and Saglam (2010) introduce alternative solutions. These works make ad-hoc

assumptions about how the agents outside of a deviation coalition react to the deviation.

It is crucial because, under externalities, this reaction will affect the agents’ payoff within

the deviating coalition. Thus, it will influence the decision to deviate.

To better understand this decision, we explicitly introduce expectations about the behav-

ior of the agents not belonging to a deviating coalition. Consider a situation where the

agents receive allocation a. Assume the agents in coalition T redistribute their respective

endowments and attempt to implement allocation b. We define expectations as the set

of allocations that the agents in T believe can be achieved by trying to implement allo-

cation b.2 We then define a core based on the agents’ expectations. We assume that a

coalition of agents deviates from a given allocation if any of the expected outcomes of the

deviation makes no coalition member worse off and makes at least one coalition member

strictly better off. The model encompasses several core consistent solutions previously

introduced to deal with externalities.

Larger expectations, in the set inclusion order, generate larger cores. Thus, the model al-

lows for determining the minimal and maximal cores. The smallest core is the “optimistic

core”. It is consistent with optimistic expectations: the agents expect that, following the

deviation of coalition T , the agents outside of the coalition will follow the proposal of

coalition T . It coincides with the usual definition of core employed in Sönmez (1999).

Considering expectations such that all coalitions can modify any allocation, the largest

core is the “prudent core”. It is consistent with prudent expectations: the agents ex-

pect that, following the deviation of coalition T , the agents outside the coalition can

redistribute the endowments in all conceivable manners.3 Both the optimistic and the

prudent core subsets of the set of efficient and individually rational allocations, which

can be modeled as a core as well.
2Bloch and van den Nouweland (2014) consider expectations in coalition formation games in partition

function form. Differently from us, they consider single-valued expectations only. See also Bloch and
van den Nouweland (2020).

3In the literature, prudent agents have been also labeled as “pessimists”. Prudent expectations are
related to the α-effectiveness introduced by Aumann and Peleg (1960). They are also consistent with
Sasaki and Toda’s (1996) bilateral stability concept for marriage markets. See also Hafalir (2007),
Contreras and Torres-Martínez (2021), and Fonseca-Mairena and Triossi (2019, 2022, 2023).

3



Then, we study the relationship between cores and strategy-proof, individually rational,

and efficient mechanisms (SIEM for short) under externalities.

We extend and connect the work of Sönmez (1999) and Ehlers (2018) (see also Takamiya

(2003)) and prove that if an SIEM exists, the correspondence of efficient and individually

rational allocations is essentially single-valued (Theorem 1). In particular, all cores are

essentially single-valued. Differently from Sönmez (1999) and Ehlers (2018), who limit

the externalities related to the endowment, our assumptions enable us to deal with strict

preferences under externalities.

Furthermore, we prove that if any of the cores is externally stable, non-empty, and es-

sentially single-valued in a given preference domain, any core selection is strategy-proof,

efficient, and individually rational (Theorem 2). The result thus generalizes Sönmez

(1999) and Ehlers (2018) (see also Demange (1987) and Takamiya (2003)).

We present applications of the results to coalition formation problems and marriage mar-

kets. In coalition formation problems, we identify a preference domain with externalities

in which an SIEM exists, the domain of block preferences in which agents first care about

the bundle goods they receive. In marriage markets, we first prove an impossibility result

for agents on one side of the market having common preferences over matchings. In ad-

dition, we demonstrate that under block preferences, an SIEM exists if the preferences

of the agents on one side of the market are acyclic.

Finally, we discuss the implication of relaxing the individual rationality constraint for our

results.

The paper proceeds as follows. Section 2 presents the model. Section 3 studies the rela-

tionship between cores and SIEM . Section 4 presents applications to coalition formation

problems and marriage markets. Section 5 presents and discusses relaxing the individual

rationality constraint. Finally, Section 6 concludes. Appendix A includes additional ex-

amples of expectations and cores. The other appendices include the proofs omitted from

the main text.
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2 The Model

There is a finite set of agents, N , |N | ≥ 3.4 Agent i ∈ N owns an individual endowment

ei, which is a set of indivisible goods. An allocation is a correspondence a : N ⇒
⋃

i∈N ei

such that
⋃

i∈N a (i) =
⋃

i∈N ei and |a−1 (x) | = 1 for all x ∈
⋃

i∈N ei. Allocation e, defined

by e (i) = ei for all i ∈ N , is called the endowment. Set A is the set of all allocations,

and Af ⊆ A is the set of feasible allocations. We assume e ∈ Af .

Every agent i ∈ N has preferences Ri, a complete and transitive binary relation over Af .

Let R = (Ri)i∈N be a preference profile. For every i, we denote by Pi and Ii, the strict and

the indifference relations associated with Ri, respectively. Let L (a,Ri) = {b ∈ Af : aRib}

be the lower contour set of a at Ri, and let L∗ (a,Ri) = {b ∈ Af : aPib} be the strict

lower contour set of a at Ri. Let R be the set of preferences over Af . Let D ⊆ R|N | be

the set of admissible preference profiles. Let P be the set of strict preferences on Af .

Remark 1. The model is able to describe several allocation problems, including:

(i) Coalition formation. For each i ∈ N , let ei = {ωij : j ∈ N \ {i}}, in which ωij

represents the permission for agent j to join a coalition to which agent i belongs. Let

Af ⊆ AC = {a ∈ A : ωij ∈ a (j) ⇒ ωji ∈ a (i) , and ∀i, j, k ∈ N,ωij ∈ a (j) , ωjk ∈

a (k)⇒ ωik ∈ a (k)}.

(ii) Housing market: |ei| = 1 for all i ∈ N and Af ⊆ AH = {a ∈ A : |a (i)| = 1,∀i ∈

N}.

(iii) Roommate problem: ei = {i} for all i ∈ N and Af ⊆ AR = {a ∈ AH : a (i) =

{j} ⇔ a (j) = {i},∀i, j ∈ N}.

(iv) Marriage market: W∪M = N in whichW andM are two disjoint sets, ei = {i} for

all i ∈ N , and Af ⊆ AMR = {a ∈ AR : ∀m ∈M,∀w ∈ W,a (w) ∈M∪{w}, a (m) ∈

W ∪ {m}, a (w) = {m} ⇔ a (m) = {w}}.

Allocation a is individually rational if aRie for all i ∈ N . Let I (R) denote the set of

individually rational allocations. A feasible allocation a is efficient under R when there
4Denote by |X|, the cardinality of set X.
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is no b ∈ Af such that bRia for all i ∈ N and bPja for some j ∈ N . Let E (R) denote

the set of efficient allocations and let E I (R) = E (R)∩I (R) be the set of efficient and

individually rational allocations.

Let Di ⊆ R for all i ∈ N . Let D =
∏

i∈N Di. A mechanism Γ : D → Af is strategy-

proof if being truthful is a weakly dominant strategy for all agents, formally if, for all

i ∈ N , R ∈ D, and for all R′i ∈ Di, Γ(R)Ri Γ(R′i, R−i). A mechanism Γ is weakly

coalitionally strategy-proof if for all R ∈ D, for all T ⊆ N , and for all R′T ∈ DT =∏
i∈T Di there exists i ∈ T such that Γ(R)Ri Γ(R′T , R−T ).

A mechanism Γ is individually rational if Γ(R) ∈ I (R) for all R ∈ D. A mechanism

Γ is efficient if Γ(R) ∈ E (R) for all R ∈ D. A strategy-proof, individually rational, and

efficient mechanism is called SIEM .

A correspondence Ω : D ⇒ Af is essentially single-valued if, for all preference profiles

R, two allocations in Ω (R) are indifferent for all agents. Formally, Ω is essentially

single-valued if, for each R ∈ D, a, b ∈ Ω (R)⇒ aIib for all i ∈ N .

2.1 Expectations

We define expectations as the set of allocations that the agents in a deviating coalition

believe can be achieved by trying to implement allocation b (the “announcement” from now

on) from an initial allocation a. Formally, the expectations of agent i is a correspondence

Θi : Af × Af × 2N (i) × D ⇒ Af . Here, 2N (i) is the set of coalition to which agent i

belongs, 2N (i) = {T ⊆ N : i ∈ T}.5 6

An allocation problem is a tuple A =
(
N, e,Af , R, (Θi)i∈N

)
. It has externalities if

there exists i ∈ N , a, b ∈ Af such that a (i) = b (i) and aPib.

If coalition T deviates from allocation a and tries to move to allocation b, the agents

outside T may react. We assume that the members of T deviate if and only if no agent in
5The estimations/conjectural valuations in Sasaki and Toda (1996), the expectation in Bloch and

van de Noweland (2014, 2020), and the beliefs in Braitt and Torres-Martínez (2021) and Piazza and
Torres-Martínez (2024) are examples of expectations.

6Agents can assign probabilities to the allocations that may be reached as a result of the reactions
of the agents outside the deviating coalition T . In this case, expectations can be interpreted as (sets of)
probability distributions. We do not explicitly consider this environment, whose study is left for future
research.
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T is made worse off in any of the allocations that they expect can be attained and at least

one agent in T is strictly better off in all allocations that she expects can be attained.

Definition 1. Let R = (Ri)i∈N . Coalition T blocks allocation a ∈ Af announcing

b ∈ Af if:

(i) for all i ∈ T , cRia for all c ∈ Θi(a, b, T, R);

(ii) there exists i ∈ T such that cPia for all c ∈ Θi(a, b, T, R).

We say that coalition T blocks allocation a ∈ Af if there exists b ∈ Af such that coalition

T blocks allocation a ∈ Af announcing b.

The core of an allocation problem A is the set of unblocked and individually ratio-

nal allocations and is denoted by C (A ). When there are not ambiguities about A =(
N, e,Af , R, (Θi)i∈N

)
, we will simply write C (R) instead of C (A ). Given, (N, e,Af , (Θi)i∈N),

the core correspondence C : D ⇒ Af assigns to each preference profile R ∈ D the core

C (R). Notice that different expectations may generate the same core correspondence.

The core correspondence is efficient if C (R) ⊆ E (R) for all R ∈ R. 7

We impose a minimal consistency requirement on expectations that we call admissibility.

We assume the agents expect that the deviation of a coalition, T , produces an effect only

if the agents of T do not attempt to take (part of) the endowment of agents outside the

coalition and that the agreement within coalition T is not modified.

Formally, expectation Θi is admissible if Θi(a, b, T, R) 6= {a} implies:

(i)
⋃

j∈T b(j) =
⋃

j∈T ej;

(ii) for all c ∈ Θi(a, b, T, R), c (j) = b (j) for all j ∈ T .

Throughout the paper, we consider only admissible expectations generating efficient core

correspondences.

The literature has often dealt with blocking concepts in which every coalition can modify

the current allocation. Not all admissible expectations have this characteristic. Let

T ⊆ N , expectation Θi is T -effective if
⋃

j∈T b(j) =
⋃

j∈T ej implies Θi(a, b, T, R) 6= ∅
7If Θi (a, b,N.R) = {b} for all b ∈ Af and all i ∈ N , the core is efficient.
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and Θi(a, b, T, R) ⊆ {c : c (i) = b (i) , for all i ∈ T}, for all a, b ∈ Af . Expectations are

proper if they are T -effective for all T ⊆ N .

Next, we present admissible expectations that model concepts of cores previously con-

sidered in the literature and will be employed in the paper. Let a, b ∈ Af , T ⊆ N , i ∈ T ,

and R ∈ D.

(i) Efficient expectations : ΘE
i (a, b, T, R) = {b} if T = N , ΘE

i (a, b, T, R) = {a}, other-

wise. Expectations ΘE
i are N -effective but not T -effective for all T ( N . Then,

efficient expectations are not proper. If all agents have efficient expectations, the

core is E I (R).

(ii) Prudent expectations : ΘP
i (a, b, T, R) =

{
c ∈ Af : c(k) = b(k),∀k ∈ T

}
if
⋃

k∈T b(k) =⋃
k∈T ek, ΘP

i (a, b, T, R) = {a}, otherwise.

Prudent agents belonging to a coalition, say T , do not know how the agents outside

T will react to a deviation. Thus, they deviate if and only if all members of T are

weakly better off and at least one member of T is strictly better off as a result of

the deviation, independently of the behavior of the agents outside T . This behavior

is consistent with an extreme form of uncertainty aversion (see Ellsberg (1961)

and Gilboa and Schmeidler (1989)). It is also consistent with an extreme form

of pessimism, according to which each agent in a deviating coalition, T , believes

that the agents outside T act to minimize her welfare.8 If all agents have prudent

expectations, the core is called “prudent” and denoted by C P (R). The prudent

core coincides with the α-core (see Aumann (1961) and Hart and Kurz (1983)).9

Prudent expectations are proper.

(iii) Individually rational expectations : ΘIR
i (a, b, T, R) = {cIR (b, T )} if

⋃
i∈T b (i) =⋃

i∈T ei and c
IR (b, T ) ∈ Af , ΘIR

i (a, b, T, R) = {a}, otherwise. In which cIR (b, T ) (k) =

b (k) for all k ∈ T , c (b, T ) (k) = e(k) for all k /∈ T .
8In the coalition formation games analyzed in Bloch and van den Nouweland (2014), prudent expec-

tations are generated by what they call the “pessimistic rule”.
9Fonseca-Mairena and Triossi (2022) study the implementability of the α-core in Nash equilibrium.

Sasaki and Toda (1996) define pairwise stable allocations in matching market with externalities and
prudent agents. See also Contreras and Torres-Martínez (2021) and Hong and Park (2022).
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If coalition T forms and proposes b, each agent outside T receives her individual

endowment. Individually rational expectations are proper if and only if cIR (a, b) ∈

Af for all a, b ∈ Af . If all agents have individually rational expectations, the core

is called “individually rational” and denoted by C IR (R). The individually rational

core coincides with the IR-core studied by Ehlers (2018) (see also Hart and Kurz

(1983)).

(iv) Optimistic expectations : ΘO
i (a, b, T, R) = {b} if

⋃
i∈T b (i) =

⋃
i∈T ei, ΘO

i (a, b, T, R) =

{a}, otherwise.

Optimistic agents expect that the agents in a deviating coalition, T , can achieve

any allocation consistent with redistributing their endowments. If at least one of

such allocations makes all members of T weakly better off and a member of T

strictly better off, coalition T deviates. Optimistic expectations are proper. This

behavior is consistent with an extreme form of optimism according to which each

agent in a deviating coalition, T , believes that the agents outside T act to maximize

her welfare.10 An alternative interpretation is that, if the agents have optimistic

expectations they believe deviating coalitions can also determine the objects the

agents outside the coalition will receive. If all agents have optimist expectations,

the core is called “optimistic” and denoted by C O (R). The optimistic core coincides

with the usual core employed in Sönmez (1999) and with the ω-core studied in Kóczy

(2007). Optimistic expectations are proper.

Appendix A discusses other expectations that have been considered in the literature.

3 Results

3.1 The biggest and the smallest core

We start studying the relationship between the cores generated by different expectations.
10In the coalition formation games analyzed in Bloch and van den Nouweland (2014), optimistic

expectations are generated by what they call the “optimistic rule”.
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Optimistic expectations always yield the smallest core. Also, if expectations are proper,

prudent expectations yield the largest core.

Proposition 1. Given
(
N, e,Af , (Θi)i∈N

)
, let R ∈ R.

(i) C O (R) ⊆ C (R) ⊆ E I (R);

(ii) if (Θi)i∈N are proper, C (R) ⊆ C P (R).

Item (i) follows from the definition of optimistic expectations. The proof of item (ii) fol-

lows from the fact that larger expectations yield larger cores (Lemma 7 in the Appendix)

and that Θi ⊆ ΘP
i for all i ∈ N if expectations (Θi)i∈N are proper (Lemma 8 in the

Appendix).

The following diagram illustrates the relationships underlined in Proposition 1.

E (R) I (R)

E I (R)

C P (R)

C IR(R)

C O(R)

Figure 1.
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If the expectations are not proper, the inclusion C (R) ⊆ C P (R) does not necessarily

hold.

Example 1. Let N = {1, 2, 3, 4}. Let e = (e1, e2, e3, e4), a = (e2, e1, e4, e3) and Af =

{a, e}. Let the preferences be:

R1 : aP1e; R2 : aP2e; R3 : eP3a; R4 : aP4e.

We have C P (R) = (R) = ∅ but C IR (R) = {e}.

In Example 1, claim (b) of Proposition 7 fails because Af does not contain an allocation

different from e in which agent 3 keeps her endowment, in particular does not contain

c (a, {1, 2}) = (e2, e1, e3, e4), which implies ΘIR
i (e, a, {1, 2}, R) = {e}. Here, individually

rational expectations are not proper because they are not {1, 2}-effective.

3.2 From SIEM to essentially single-valued cores

Now we study the conditions that the existence of an SIEM imposes over cores. We

start introducing a richness assumption over D.

Assumption 1. For each i ∈ N , Ri ∈ Di, and a ∈ Af such that aRie, there exists

R̃i ∈ Di such that

(i) for each b ∈ Af , bRia ⇔ bR̃ia and aRib ⇔ aR̃ib;

(ii) for each b ∈ Af , aPib ⇔ aP̃ib and aR̃ieP̃ib.

If Assumption 1 holds, for every preference Ri and every individually rational allocation

a, there exists a preference relation R̃i which lifts e just below a, maintaining the relative

ranking of all other allocations with respect to a, and leaving e strictly above all other

elements of the strict lower contour set of a. For example, the domain of strict preference

profiles satisfies Assumption 1. We start considering the correspondence of efficient and

individually rational allocations, E I . We prove that under Assumption 1, the existence

of an SIEM implies that this correspondence is essentially single-valued.
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Theorem 1. If an SIEM exists and Assumption 1 holds, then E I is essentially single-

valued.

Proof. Let R = (Ri)i∈N ∈ D and let a ∈ E I (R). For all i ∈ N , consider preferences

R̃i ∈ Di satisfying (i) and (ii) of Assumption 1, with respect to Ri. Thus a ∈ E I
(
R̃
)
.

Let Γ be an SIEM . We prove Γ
(
R̃
)
Ĩia for all i ∈ N . Let b ∈ E I

(
R̃
)
. From the

definition of R̃, it follows that bR̃ia for all i ∈ N . We next prove by contradiction bĨia

for all i ∈ N . Assume there exists j ∈ N such that bP̃ja. Thus, a is not efficient under

R̃ which contradicts a ∈ E I
(
R̃
)
. Thus aR̃ib for all i ∈ N . The efficiency of b implies

aĨib for all i ∈ N . Since Γ
(
R̃
)
∈ E I

(
R̃
)
, Γ
(
R̃
)
Ĩia for all i ∈ N .

Next we prove Γ (R) Iia for all i ∈ N . Let T ⊆ N be a set of maximal cardinality such that

for all i ∈ N \ T , Γ
(
R̃−T , RT

)
Ĩia and, for all i ∈ T , Γ

(
R̃−T , RT

)
Iia. In order to prove

the claim, we will prove, by contradiction, that T = N . Assume T ( N and let k /∈ T . Set

S = T ∪ {k}. By strategy-proofness, for all j ∈ S, Γ
(
R̃(N\S)∪{j}, RS\{j}

)
R̃jΓ

(
R̃−S, RS

)
and Γ

(
R̃−S, RS

)
RjΓ

(
R̃(N\S)∪{j}, RS\{j}

)
. From the previous part of the proof and the

definition of R̃, we have Γ
(
R̃−S, RS

)
IjΓ
(
R̃(N\S)∪{j}, RS\{j}

)
Ija for all j ∈ N \ S.

Let b ∈ E I
(
R̃−S, RS

)
with bIja for all j ∈ S. From the first part of the proof and the

definition of R̃, bĨja for all j ∈ N \ S. Thus, for all i ∈ N \ S, Γ
(
R̃−S, RS

)
Ĩia and,

for all i ∈ S, Γ
(
R̃−S, RS

)
Iia which contradicts the maximality of T . Then Γ(R)Iia for

all i ∈ N . Since a is an arbitrary element of E I (R), the transitivity of the preferences

implies all allocations in E I (R) are indifferent to all agents. It follows that Γ (R) Iia for

all i ∈ N and all R ∈ D such that E I (R) 6= ∅.

The claim of Theorem 1 extends to all cores.

Corollary 1. Assume there exists an SIEM and Assumption 1 holds, then all core

correspondences are essentially single-valued on D.

The result does not imply that every SIEM is a selection of the core.11 Even if an

SIEM exists, it can pick allocations that are vulnerable to coalitional manipulation.

11A selection of a correspondence C : D ⇒ Af , is a function Γ : D → Af such that Γ (R) ∈ C (R) for
all R ∈ D.
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Example 2. Let N = {1, 2, 3, 4} and e = (e1, e2, e3, e4). Let a = (e1, e2, e4, e3), b =

(e2, e1, e3, e4), c = (e2, e1, e4, e3), and Af = {a, b, c, e}. Consider the following preferences:

M : bPiaIiePic; Q : bPiePiaPic; S : aIiePicPib.

Let D1 = D2 = {M,Q}, let D3 = D4 = {S}. Let D =
∏4

i=1Di. Assumption 1 is satisfied.

Consider the SIEM Γ defined by Γ (R) = e for all R ∈ D. From Theorem 1, the core

correspondence is essentially single-valued on D.

For all x, y ∈ Af , T ⊆ N , let cM (x, y, T ) defined as follows: cM (y, T ) (k) = y (k) for

all k ∈ T and cM (y, T ) (k) = (x (k) \ e(T )) ∪ (x(T ) ∩ e(k)) for all k /∈ T . Consider the

following expectations that we call myopic (Mumcu and Saglam, 2010): ΘM
i (x, y, T,R) ={

cM (y, T )
}

if
⋃

i∈T y(i) =
⋃

i∈T ei and c
M (y, T ) ∈ Af ; ΘM

i (x, y, T,R) = {x} otherwise,

for all i ∈ T . Let R∗ = (M,M,S, S). We have C M (R∗) = {a} then Γ (R∗) /∈ C M (R∗).12

In Example 2, under preference profile R∗ = (M,M,S, S) allocations a and e are indif-

ferent for all agents. However, ΘM
i (a, b, {1, 2}, R∗) = {c}, but ΘM

i (e, b, {1, 2}, R∗) = {b}.

Thus a belongs to the myopic core bout e doesn’t. The following assumption rules out

this case.

Assumption 2. Let a, b, c ∈ Af , R ∈ D and T ⊆ N . Then, aIib for all i ∈ N

=⇒ Θi(a, c, T, R) = Θi(b, c, T, R).

Assume coalition T tries to modify two allocations, a and b, that are equivalent for all

members of T , into a third allocation, c. If Assumption 2 holds, the coalition members

expect the same allocations regardless of the initial allocation. Assumption 2 is not

satisfied by myopic expectations, but it is satisfied, for example, by all expectations

independent of the initial allocation, such as the optimistic, the individually rational, the

prudent, and the efficient expectations.

Proposition 2. Assume there exists an SIEM . If Assumptions 1 and 2 hold, Γ(R) ∈

C (R) for all R ∈ D such that C (R) 6= ∅.
12Notice that CO (R) = C IR (R) = ∅ for all R ∈ D, while the prudent core correspondence is nonempty

and essentially single-valued: C P (R∗) = {a, e} and C P (R) = {e} for all R ∈ D \R∗.
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Proof. Let Γ : D → Af be an SIEM . Assume Assumption 1 and 2 hold and C (R) 6=

∅. We prove by contradiction Γ (R) ∈ C (R). Assume coalition T blocks Γ (R) under

preference profile R. Let a ∈ C (R). From Theorem 1, aIiΓ (R) for all i ∈ N , because

Γ (R) ∈ E I (R). From Assumption 2, Θi(Γ(R), b, T, R) = Θi(a, b, T, R) for all b ∈ Af .

Thus, T blocks a as well, which yields a contradiction.

Similarly to our Theorem 1, Corollary 1, and Proposition 2, Sönmez (1999) and Ehlers

(2018) prove that if an SIEM , Γ, exists then the optimistic core and the individually

rational core are essentially single-valued and that Γ is a selection of the optimistic core

and the individually rational core, respectively. Our results concern a larger family of

cores but do not imply Sönmez (1999) and Ehlers (2018) results. Indeed, they employ

a different set of assumptions, assumptions A and B. Assumption A requires that, for

each i ∈ N , R ∈ D, and a ∈ Af , aIie ⇐⇒ a(i) = ei. It states that an agent who

keeps her endowment is not affected by any externality. Thus, it is not compatible with

environments with externalities and strict preferences. Assumption B replaces condition

(ii) in Assumption 1 with the weaker (ii)′: for each b ∈ Af , aPib ⇔ aP̃ib and aR̃ieR̃ib.

Together, A and B are not implied nor imply Assumption 1. Also, under A and B,

Theorem 1, Corollary 1, and Proposition 2, do not hold.

Example 3. Let N = {1, 2, 3, 4} and e = (e1, e2, e3, e4). Let a = (e3, e4, e1, e2), b =

(e2, e1, e3, e4), c = (e2, e1, e4, e3), and Af = {a, b, c, e}. Consider the following preferences:

M : bPiaPicPie; Q : bPiaPiePic; S : bPiePiaPic; U : aPibIiePic.

Let D1 = D2 = {M,Q, S}, let D3 = D4 = {U}. Let D =
∏4

i=1Di. Assumptions A and

B hold. The function which assigns b to all preference profiles in D is an SIEM . The

prudent core is {a, b} if agent 1 and agent 2 have preferences different from S. Thus, it

is not essentially single-valued.
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3.3 From essentially single-valued cores to SIEM

Before introducing the main results, we define a richness condition about the preference

domain (see Takamiya (2003)).

Assumption 3. Let D =
∏

i∈N Di. Let i ∈ N , Ri ∈ Di, and a, b ∈ Af be such that aPib.

Then for all R′i ∈ Di, there exist R̃i ∈ Di such that

(i) L∗(b, Ri) ⊆ L∗(b, R̃i), and L(b, Ri) ⊆ L(b, R̃i); and

(ii) L∗(a,R′i) ⊆ L∗(a, R̃i), and L(a,R′i) ⊆ L(a, R̃i).

Assumption 3 requires that, if i prefers allocation a to allocation b, then, for each R′i,

domain Di contains another preference profile R̃i which is a mixture of Ri and R′i: (i) b

improves in i’s ranking (and no allocation below b reaches it) moving from Ri to R̃i;(ii)

a improves in i’s ranking (and no allocation below a reaches it) moving from R′i to R̃i.

We say that expectations are monotonic if, for all R,R′ ∈ D, for all a ∈ Af such

that L (a,Ri) ⊆ L (a,R′i) and L∗(a,Ri) ⊆ L∗(a,R′i) for all i ∈ N , then Θi (a, b, T, R) ∩

L (a,Ri) ⊆ Θi (a, b, T, R′) ∩ L (a,R′i) and Θi (a, b, T, R) ∩ L∗ (a,Ri) ⊆ Θi (a, b, T, R′) ∩

L∗ (a,R′i) for all i ∈ N , b ∈ Af , and T ⊆ N .

If expectations are monotonic and a improves in everybody’s ranking and does not (even

weakly) fall in anybody’s ranking when preferences change from R to R′, it is less likely

that any coalition blocks a under R′ than under R.

Lemma 1. Let expectations be monotonic and let R,R′ ∈ D. If a ∈ C (R) and L (a,Ri) ⊆

L (a,R′i) and L∗(a,Ri) ⊆ L∗(a,R′i) for all i ∈ N , then a ∈ C (R′).

The proof of the result follows directly from the definitions of monotonic expectations

and of a core. It thus omitted. Thus, under monotonic expectations, the cores are

“almost monotonic” (see Sanver (2006)). All expectations that do not depend on agents’

preference profiles, such as the efficient, the prudent, the individually rational, and the

optimistic expectations, are monotonic (see also the examples in Appendix A).
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Definition 2. A correspondence S : D ⇒ Af is externally stable if, for all a ∈

I (R) \S (R), there exists T ⊆ N which blocks a announcing some b ∈ Af such that

S (R) ∩Θi(a, b, T, R) 6= ∅ for all i ∈ T for all R ∈ D.

If S is externally stable, every individually rational allocation outside S (R) is blocked

by a coalition in which everyone expects that an allocation within S (R) can be attained.

Next, we show that if the core correspondence is non-empty and essentially singled valued,

all its selections are SIEM if the core is externally stable or the preference domain satisfies

Assumption 3.

Theorem 2. Let C be nonempty and essentially single-valued on D =
∏

i∈N Di.

(i) If C is externally stable, any selection of C is an efficient, individually rational,

and weakly coalitional strategy-proof mechanism;

(ii) if expectations are monotonic and D satisfies Assumption 3 any selection of C is

an efficient, individually rational, and weakly coalitional strategy-proof mechanism.

Proof. Let C be nonempty and essentially single-valued. Let Γ : D → Af be a selection

of the core correspondence. By definition, Γ is individually rational and efficient.

We prove by contradiction that Γ is weakly coalitionally strategy-proof. Assume there

exists R ∈ D, T ⊆ N , and R′T ∈
∏

i∈T Di such that Γ(R′T , R−T )Pi Γ(R) for all i ∈ T .

Since C is essentially single-valued, we have Γ(R′T , R−T ) /∈ C (R). Notice Γ (R′T , R−T ) ∈

I (R).

(i) Let C be externally stable. There exists a coalition U ⊆ N which blocks Γ(R′T , R−T )

announcing b ∈ Af such that, for each i ∈ U , C (R) ∩Θi(Γ(R′T , R−T ), b, U,R) 6= ∅.

Thus, for all i ∈ U and there exists c ∈ C (R) ∩ Θi(Γ(R′T , R−T ), b, U,R), cIiΓ (R),

because C is essentially single-valued. In particular, Γ(R)Ri Γ(R′T , R−T ) for all

i ∈ U . Since Γ (R′T , R−T ) Pi Γ(R) for all i ∈ T , it follows that T ∩ U = ∅. This

implies that U blocks Γ(R′T , R−T ) when preferences are (R′T , R−T ), which yields a

contradiction since Γ(R′T , R−T ) belongs to C (R′T , R−T ).
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(ii) Assume expectations are monotonic and Assumption 3 holds. For each i ∈ T , let

R̃i ∈ Di as defined in Assumption 3, given a = Γ (R′T , R−T ) and b = Γ (R).

Next, we prove by contradiction that Γ(R) ∈ C (R̃T , R−T ). Assume coalition

S ⊆ N blocks Γ(R) when the preference profile is (R̃T , R−T ). Monotonicity implies

Θi (Γ (R) , c, S, R)∩Li (Γ (R) , R) ⊆ Θi

(
Γ (R) , c, S,

(
R̃T , R−T

))
∩Li

(
Γ (R) ,

(
R̃T , R−T

))
for all c ∈ Af and all i ∈ S. Then S blocks Γ (R) when the preference profile is R

which contradicts that Γ (R) ∈ C (R).

Since C is essentially single-valued, Γ(R̃T , R−T )ĨiΓ(R) for all i ∈ T , and Γ(R̃T , R−T )IiΓ(R)

for all i ∈ N \ T . Similarly, from Assumption 3, Γ(R̃T , R−T )ĨiΓ(R′T , R−T ) for all

i ∈ T , and Γ(R̃T , R−T )IiΓ(R′T , R−T ) for all i ∈ N \ T . Then, Γ(R)ĨiΓ(R′T , R−T ) for

all i ∈ T , and Γ(R)IiΓ(R′T , R−T ) for all i ∈ N \ T . Since Γ(R′T , R−T )PiΓ(R) for all

i ∈ T , N blocks Γ(R) announcing Γ(R′T , R−T ), which contradicts Γ(R) ∈ C (R).

Theorem 2 extends Proposition 1 in Sönmez (1999), Theorem 1 in Takamiya (2003), and

Proposition 2 in Ehlers (2018), who focus on optimistic expectations, and individually

rational expectation.

If Assumption 1 holds and an SIEM exists, the correspondence of efficient and individu-

ally rational allocations is essentially single-valued. Moreover, in finite environments, the

efficient and individually rational correspondence is externally stable and never empty.

Lemma 2. If Af is finite

(i) E I (R) 6= ∅ for all R ∈ D.

(ii) E I is externally stable.

Thus, E I completely characterizes the set of SIEM under Assumption 1.

Proposition 3. Let D =
∏

i∈N Di and let Af be finite. If Assumption 1 holds, an SIEM

exists if and only if E I is essentially single-valued on D. Further, if E I is essentially

single-valued, the set of SIEM coincides with the set of selections from E I .
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The correspondence of efficient and individually rational allocations also satisfies As-

sumption 2. Therefore, the result follows directly from Theorems 1 and 2. Additionally,

Assumptions A and B imply Assumption 1 if the unique allocation in which somebody

keeps their endowment is e. Thus, Proposition 3 implies Corollary 1 in Ehlers (2018)

about global trades.

The statement of Theorem 2 stands on two assumptions about the core C : the non-

emptiness and the essentially single-valuedness. Indeed, the first condition is more likely

to be satisfied by larger cores, such as the prudent core or the efficient and individually

rational correspondence. The second condition, instead, is more likely to be satisfied by

smaller cores, such as the optimistic core. Thus, satisfying both requirements generates

a trade-off for the application of Theorem 2. The next example applies Theorem 2 to the

correspondence of efficient and individually rational allocations, which is single-valued.

Instead, smaller cores, such as the optimistic and the individually rational cores, are

empty.13

Example 4. Let N = {1, 2, 3, 4} and e = (e1, e2, e3, e4). Let a = (e2, e3, e4, e1), b =

(e2, e1, e3, e4), c = (e2, e1, e4, e3), and d = (e1, e2, e4, e3). The set of feasible allocations is

Af = {a, b, c, d, e}. The preferences are:

M : bPiaPiePicPid; Q : bPiePiaPicPid; S : aPiePidPicPib.

Let D1 = D2 = {M,Q}, let D3 = D4 = {S}. D =
∏

i∈N Di. Assumptions 3 is satisfied.

We have C O (R) = C IR (R) = ∅ for all R ∈ D. However, E I (M,M,S, S) = {a} and

E I (R) = {e} for all R ∈ D\ (M,M,S, S). Proposition 3 applies. Thus, the mechanism

that selects the unique element of E I (R) for all R ∈ D is the unique SIEM with domain

D.

In Example 4, Assumption 1 holds. If this condition is not satisfied, Theorem 1 no

longer applies. Thus, having an essentially single-valued efficient and individually rational

correspondence is no longer necessary for an SIEM to exist. The next example presents a
13Thus, also Proposition 2 in Ehlers (2018), Proposition 1 in Sönmez (1999), or Theorem 1 in Takamiya

(2003) do not apply.
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finite environment in which we can apply Theorem 2 to the optimistic and the individually

rational core since they are singletons. However, the prudent is not essentially single-

valued.

Example 5. Consider the environment of Example 3. Assumption 1 is not satisfied,

and Assumption 3 is satisfied. The optimistic and the individually rational cores coincide

with {b} for all preference profiles in D. This, fact, via Theorem 2 provides an alternative

proof of the fact that the constant function which equals b for all preference profiles in D

is an SIEM . However, the prudent core is not essentially single-valued.

4 Applications

4.1 Coalition Formation Problems

We employ the notation of Remark 1, (i). We consider problems in which agents care

first about the coalition they belong to and then about the other coalitions. We prove

that, under this condition, if Af is single-lapping, the core is a singleton, and Assumption

3 holds; thus, we can apply Theorem 2 and prove that the social choice function picking

the unique core allocation is strategy-proof.

We now introduce some additional notation. Given a coalition formation problem and

a ∈ AC , let A (a, i) = {j ∈ N : ωji ∈ a (i)} ∪ {i}, the coalition to which agent i is

assigned by a. Let Af ⊆ AC . We say that agent i has block preferences if she cares

primarily about the coalition she belongs to. Formally, if for all a, a′, a′′ ∈ Af such

that A (a, i) = A (a′, i) and A (a, i) 6= A (a′′, i), we have a��Iia′′ and aPia
′′ ⇒ a′Pia

′′, and

a′′Pia ⇒ a′′Pia
′. Let DB

i be the set of block preferences for agent i. A block preference

profile R = (R)i∈N is a profile of preferences in which each agent has block preferences.

Let DB =
∏

i∈N DB
i . Let Di = {R ∈ DB

i : aRie ∀a such that a (i) = ei}, be the set of

block preferences in which e is the least preferred allocation in which agent i keeps her

individual endowment. Finally, let D =
∏

i∈N Di.

Lemma 3. Domains D and DB satisfy Assumption 3.
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It follows from Theorem 2, that an essentially single-valued core is a sufficient condition

for the existence of an SIEM . We now introduce a restriction on the set of feasible

allocations (see Pápai (2004) and Fonseca-Mairena and Triossi (2023)). Let Ξf = {T ⊆

N : ∃a ∈ Af , i ∈ N such that T = A (a, i)} be the set of feasible coalitions. The set of

feasible allocations Af is single-lapping if

(i) for all T, T ′ ∈ Ξf such that T 6= T ′, |T ∩ T ′| ≤ 1, and

(ii) for all {T1, . . . , Tm} ⊆ Ξf such that m ≥ 3 and for all l = 1, . . . ,m, |Tl ∩ Tl+1| ≥

1, where we let Tm+1 := T1, there exists i ∈ N such that for all l = 1, . . . ,m,

Tl ∩ Tl+1 = {i}.

If Af is single-lapping, two coalitions share at most one agent, and any sequence of

overlapping coalitions shares exactly the same agent. In this case, the set of unblocked

allocations is a singleton.

Lemma 4. Let R ∈ DB. If Af is single-lapping, the set of unblocked allocations under

prudent expectations is a singleton.

The result follows from Lemmata 9 and 10 in the Appendix. In Lemma 9, we prove that

the stable set and the core coincide under block preferences and prudent expectations.

It amounts to prove that we can restrict our attention to blocking where the deviating

members form a unique coalition. In Lemma 10, we prove that, under block preferences

and a single-lapping Af , the stable set is a singleton, employing the characterization of

singleton stable sets by Pápai (2004) for environments in which the agents only care about

the coalition they belong to. If the preference profile belongs to DB, the set of unblocked

allocations under prudent expectations may fail to satisfy individual rationality. Thus,

we restrict our attention to D ⊆ DB. From Theorem 2 and Lemma 4, we have:

Proposition 4. If Af is single-lapping, the unique nonempty selection of the prudent

core correspondence, C P : D ⇒ Af is strategy-proof, and thus it is an SIEM .

The result does not follow from either Proposition 1 in Sönmez (1999) nor Proposition

2 in Ehlers (2018). Indeed, the optimistic core and the individually rational core can be

empty under the hypothesis of Proposition 4 as proven in the following example.
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Example 6. Let N = {1, 2, 3, 4}. Let Af = {a, b, c, d, e} where ω31 ∈ a (1), ω42 ∈ a (2),

ω31 ∈ b (1), b (2) = e2, b (4) = e4, ω41 ∈ c (1), c (2) = e2, c (3) = e3, d (1) = e1,

ω42 ∈ d (2), d (3) = e3. Af is single-lapping. The preference profile R ∈ D is

R1 : bP1aP1cP1dP1e; R2 : bP2aP2cP2dP2e;

R3 : aP3dP3bP3cP3e; R4 : aP4dP4bP4cP4e.

We have C P (R) = {a} while C O (R) = C IR (R) = ∅.

4.2 Marriage markets

We employ the notation of Remark 1, (iv). Let D̃ = {P ∈ P |N | : Pw = Pw′ ∀w,w′ ∈ W}.

Domain D̃ includes strict preference profiles in which all women have the same preferences.

This domain satisfies Assumption 1 but not Assumption A. Consequently, Theorem 1 in

Sönmez (1999) and Theorem 1 in Ehlers (2018) do not apply.

Proposition 5. In a marriage market in which |W | ≥ 2 and |M | ≥ 2, there is no SIEM ,

Γ :
∏

i∈N Si → Af , in which D̃ ⊆
∏

i∈N Si and
∏

i∈N Si satisfies Assumption 1.

Next, employing Theorem 2 we prove the existence of an SIEM in a restricted domain

of preferences with externalities. Similarly to the previous section, we say that agent

i has block preferences, if she cares primarily about her pair. Formally, if for all

a, a′, a′′ ∈ Af such that a (i) = a′ (i) and a (i) 6= a′′ (i), we have a��Iia′′ and aPia
′′ ⇒ a′Pia

′′

and a′′Pia ⇒ a′′Pia
′. Let D̂B

i be the set of block preference profiles for agent i and let

D̂B =
∏

i∈N D̂B
i .

Let w ∈ W and Rw ∈ D̂B
w , and define the following order over M ∪ {w}. For all

x, y ∈M ∪ {w}, let xPwy if there exist a, b ∈ Af such that a (w) = x and b (w) = y such

that aPwb. For all m ∈M and Rm ∈ D̂B
m, define Pm similarly.

Given a profile QW = (Qw)w∈W in which Qw is a linear order over M ∪ {w}, we say that

QW has a cycle if there is a list of men and women “in a circle” in which every listed woman

prefers the man on his clockwise side to the man on his counterclockwise side and finds
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both acceptable. Formally, a cycle (of length T + 1) in the preferences of the women is

given by w0, w1, ..., wT such that wt 6= wt+1 for t = 0, ..., T and distinctm0,m1, ...,mT such

that (i) mTQwT
mT−1...m1Qw1m0Qw0mT ; (ii) for every t ≥ 1, mtQwtwt and mt−1Qwtwt.14

We say that QW is acyclic if it has not any cycle.

Given RW ∈
(
D̂B

w

)
w∈W

, RW = (Rw)w∈W , we say that it is acyclic if
(
Pw

)
w∈W is acyclic.

Let R′W ∈
(
D̂B

w

)
w∈W

be acyclic and such that, for all w ∈ W , a (w) = w, ⇒ aR′we. Let

D̂ = {P ∈ D̂B : Rw = R′w ∀w ∈ W, for all m ∈M,a (m) = m⇒ aRme}.

Lemma 5. Domain D̂ satisfies Assumption 3.

Lemma 6. If R ∈ D̂,
∣∣C P (R)

∣∣ = 1.

Applying Lemmata 5, 6, and Theorem 2 yields:

Proposition 6. The unique selection of the prudent core correspondence C P : D̂ ⇒ Af

is an SIEM .

The result does not follow from either Proposition 1 in Sönmez (1999) nor Proposition

2 in Ehlers (2018). Indeed, the optimistic core and the individually rational core can be

empty under the hypothesis of Proposition 6 as proven in the following example.

Example 7. Let N = {w1, w2,m1,m2}. Let Af = {a, b, c, d, e} where a (w1) = {m1},

a (w2) = {m2}, b (w1) = {m1}, b (w2) = ew2, c (w1) = {m2}, c (w2) = ew2, d (w1) = ew1,

d (w2) = {m2}. Let R ∈ D̂ be

Rw1 : bPw1aPw1cPw1dPw1e; Rw2 : bPw2aPw2cPw2dPw2e;

Rm1 : aPm1dPm1bPm1cPm1e; Rm2 : aPm2dPm2bPm2cPm2e.

We have C P (R) = {a} while C O (R) = C IR (R) = ∅.
14From this point forward, indices are considered modulo T + 1.
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5 Comments and extensions

In models without externalities, individual rationality is also an individual participation

constraint. In environments with externalities, the individual rationality condition is a

welfare condition and/or a normative prescription, which ensures that the final allocation

will make nobody worse off with respect to her initial situation. Relaxing the individ-

ual rationality constraint, any unblocked allocation satisfies, in particular, an individual

participation constraint: no agent wants to opt-out. This constraint guarantees that

each agent weakly prefers an unblocked allocation to an allocation she expects can be

attained if she keeps her individual endowment. We call an allocation with this prop-

erty participative, a concept that depends on expectations. In the case of optimistic

expectations, this amounts to individual rationality. In the case of prudent expectations,

the constraint only requires that each agent weakly prefers the allocation to at least one

feasible allocation in which she keeps her individual endowment.

We relax the individual rationality requirement and consider strategy-proof and efficient

mechanisms that only satisfy the individual participation constraint (under Assumption A

in Sönmez, 1999 and Ehlers, 2018, the participation constraint and individual rationality

are equivalent). We call these mechanisms strategy-proof, participative, and efficient

mechanisms or SPEM . Instead of the core analyzed previously, we consider the set of

allocations that are not blocked by any coalition. We call this set the participative core,

denoted by C ∗ (R). The core is always a subset of the participative core. The findings of

Theorem 1 do not extend to SPEM .

Example 8. Consider the set of allocations and preferences of Example 3. In addition,

consider the following preferences

V : aPiePibPic.

Let D1 = D2 = {M,Q, S}, let D3 = D4 = {U, V }. Let D =
∏4

i=1Di. Assumption

1 is satisfied. The constant mechanism equal to b is an SPEM but not an SIEM

under prudent expectations. However, the prudent participative core is {a, b} if R =
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(M,M,U, U). Then, the prudent core is not essentially single-valued.

On the other hand, Theorem 2 extends to participative cores. The next condition slightly

strengthens the definition of an externally stable correspondence.

Definition 3. A correspondence S : D ⇒ Af is strongly externally stable if, for all

a ∈ Af \S (R), there exists T ⊆ N which blocks a announcing some b ∈ Af such that

S (R) ∩Θi(a, b, T, R) 6= ∅ for all i ∈ T for all R ∈ D.

If S is strongly externally stable, every allocation outside S (R) is blocked by a coalition

in which everyone expects that an allocation within S (R) can be attained.15

Proposition 7. Let C ∗ be nonempty and essentially single-valued on D =
∏

i∈N Di.

(i) If C ∗ is strongly externally stable, any selection of C ∗ is an efficient, participative,

and weakly coalitional strategy-proof mechanism;

(ii) if expectations are monotonic and D satisfies Assumption 3 any selection of C ∗ is

an efficient, participative, and weakly coalitional strategy-proof mechanism.

The proof of the Proposition 7 follows the same argument as the proof of Theorem 2 and

is thus omitted. The application of Theorem 2 to coalition formation problems proves

the existence of an SIEM in the case of a single-lapping Af , if the preference domain

of consists of all block preferences in which each agent ranks the initial endowment at

the end of its block, which is if the preference profiles belong to D. In this domain, C P

coincides with the prudent participative core. However, the prudent participative core is

not, in general, individually rational if the initial endowment is not at the end of its block

for some agents, which on DB \ D. If we relax the assumption of individual rationality,

Proposition 7 allows us to prove the existence of the result of Proposition 4 to the set of

all block preferences.

Corollary 2. If Af is single-lapping, the unique nonempty selection of the prudent core

correspondence, C ∗P : DB ⇒ Af is strategy-proof, and it is thus an SPEM .

The result follows from Lemmata 3 and 4, and Proposition 7. A similar extension can

be developed for the case of marriage markets following Subsection 4.2.
15External stability imposes conditions only on individually rational allocations outside S .
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6 Conclusions

We have introduced a model of cores based on the expectations of the agents belonging

to a deviating coalition about the behavior of the agents outside the coalition. Explicitly

modeling expectations provide a framework encompassing several previously introduced

models that deal with coalitional stability under externalities. Within this framework, if

the preference domain is rich enough, the existence of an SIEM implies that the cor-

respondence of efficient and individually rational allocations is essentially single-valued,

thus providing a strong necessary condition. On the other hand, if any of the cores

are essentially single-valued, any selection of that core is an SIEM . Thus, in finite en-

vironments with a rich enough preference domain, the correspondence of efficient and

individually rational allocations completely characterizes all SIEM . We also present ap-

plications to coalition formation problems and marriage markets and discuss the effects of

relaxing the individually rational constraint in favor of a weaker individual participation

constraint.
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Appendix A: Others specifications of expectations

Let a, b ∈ Af , T ⊆ N , and R ∈ D. We next present examples of expectations.

(i) Consider the following expectations, that we call weakly optimistic:

ΘWO
i (a, b, T, R) =


{b} if

⋃
i∈T b(i) =

⋃
i∈T ei, and a (i) 6= b (i) for some i ∈ T ;

{a} , otherwise

for all i ∈ T . Under weakly optimistic expectations, a coalition blocks an allocation

a only if it blocks a under optimistic expectations employing an allocation in which

at least one of its agents receives objects different from the ones she has in a. We

call weakly optimistic core, denoted by C WO (R), the core resulting from weakly

optimistic expectations. The weakly optimistic core coincides with the ω-core stud-

ied in Hong and Park (2022). Weakly optimistic expectations are monotonic but

not proper.

(ii) Consider the following expectations, that we call complementary efficient.

ΘPE
i (a, b, T, R) = {c ∈ ΘP

i (a, b, T, R) : d ∈ ΘP
i (a, b, T, R), dPjc for some j ∈ T c ⇒

cPkd for some k ∈ T c} for all i ∈ T .16 If expectations are complementary efficient

and coalition T announces b, each agent in T expects that the agents outside T will

not choose an inefficient allocation once (b (i))i∈T is taken as given. We call com-

plementary efficient core, denoted by C PE, the core resulting from complementary

efficient expectations.

Complementary efficient expectations are proper, monotonic, and vary with R.

(iii) Consider an allocation problem, A = (N, e,Af , (Ri,Θi)i∈N) in which (Ri)i∈N ∈ D.

Let ∅ * T ⊆ N . For all b ∈ Af , let Af (T c, b) = {
(

(b (j))j∈T , (x (i))i∈T c

)
:(

(b (j))j∈T , (x (i))i∈T c

)
∈ Af}. Let Ω ∈ {O,P}. Expectations are defined recur-

sively based on the cardinality of N . Let a, b ∈ Af

– for |N | = 1, let ΘRΩ
i (a, b, T, R) = ΘΩ

i (a, b, T, R) for all T .
16We denote by Xc the complement of set X.
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– Assume ΘRΩ
i (a, b, T, R) has been defined for all allocations problems such that

1 ≤ |N | ≤ n. Let T ( N , T 6= ∅.

Let A (T c, b) =
(
T c, (ei)i∈T c ,Af (T c, b) ,

(
Ri,Θ

RΩ
i

)
i∈T c

)
.

ΘRΩ
i (a, b, T, R) =


C Ω (A (T c, b)) if

⋃
i∈T b(i) =

⋃
i∈T ei and C Ω (A (T c, b)) 6= ∅;

{a} , otherwise.

Finally, let ΘRΩ
i (a, b,N,R) = {b}.

We call expectations ΘRO
i and ΘRP

i , recursively prudent and recursively optimistic,

respectively. The cores generated by these expectations are called recursively pru-

dent core and recursively optimistic core, respectively, and are denoted by C RP and

C RO. They correspond to the recursive cores defined in Kóczy (2007) for partition

function games.

The next example shows that recursive expectations are not monotonic.

Example 9. Let N = {1, 2, 3, 4, 5} and let

a = (e1, e2, e4, e5, e3) ; b = (e2, e1, e3, e4, e5) ; c = (e2, e1, e3, e5, e4) ;

d = (e2, e1, e4, e5, e3) ; e = (e1, e2, e3, e4, e5) ; f = (e2, e1, e5, e3, e4) .

Let Af = {a, b, c, d, e, f}. Let the preferences of the agents be such that

R1 : bP1cI1dP1aI1eP1f ; R2 : bP2cP2dP2fP2aI2e;

R3 : cP3dP3fP3 . . . ; R4 =: dP4cP4fP4bP4 . . . ; R5 =: dP4cP4fP4bP4 . . . .

Let R = (R1, R2, R3, R4, R5). Allocations a, b, e, and f are blocked by {3, 4, 5} an-

nouncing c. Therefore, any core is a subset of {c, d}. We have ΘRO
i (c, b, {1, 2}, R) =

ΘRO
i (d, b, {1, 2}, R) = {c}. If agents 1 and 2 have recursive optimistic expectations, they

block d announcing b but do not block the allocation c. We have C RO (R) = {c}. If agents
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have recursively prudent expectations ΘRP
i (c, b, {1, 2}, R) = ΘRP

i (d, b, {1, 2}, R) = {c, d}.

We have C RP (R) = {c, d}.

Next, let the preferences of agents 4 and 5 be such that

R′4 =: dP ′4bP
′
4cP

′
4fP

′
4 . . . ; R′5 =: dP ′5bP

′
5cP

′
5fP

′
5 . . . .

Let R′ = (R1, R2, R3, R
′
4, R

′
5). We have L (d,Ri) ⊆ L (d,R′i) and L∗(d,Ri) ⊆ L∗(d,R′i)

for all i ∈ N . However ΘRO
i (d, c, {1, 2, 3}, R)∩L (d,Ri) = {c} * ΘRO

i (c, d, {1, 2, 3}, R′)∩

L (d,R′i) = {b} and ΘRP
i (d, c, {1, 2, 3}, R) ∩ L (d,Ri) = {c} * ΘRP

i (c, d, {1, 2, 3}, R′) ∩

L (d,R′i) = {b}. Then, recursive expectations are not monotonic.

Appendix B: Proof of the Results in Subsection 3.1

Lemma 7. Let A = (N, e,Af , R, (Θi)i∈N) and A ′ = (N, e,Af , R, (Θ′i)i∈N). If Θi (a, b, T, R) 6=

∅ and Θi (a, b, T, R) ⊆ Θ′i (a, b, T, R) for all a, b ∈ Af , for all T ⊆ N , and for all i ∈ N ,

then C (A ) ⊆ C ′ (A ′).

Proof. Assume coalition T blocks a ∈ Af under expectations (Θ′i)i∈N announcing b ∈ Af .

Since Θi (a, b, T, R) ⊆ Θ′i (a, b, T, R) for all i ∈ N , coalition T blocks a under (Θi)i∈N

announcing b. Thus, C (A ) ⊆ C ′ (A ′).

Lemma 8. If the expectations (Θi)i∈N are proper then Θi ⊆ ΘP
i for all i ∈ N .

Proof. Let (Θi)i∈N be a proper expectation. Then (Θi)i∈N is T -effective for all T ⊆ N .

Let a, b ∈ Af , T ⊆ N , i ∈ N , and R ∈ D such that
⋃

j∈T b(j) =
⋃

j∈T ej, then

Θi(a, b, T, R) 6= ∅ and Θi(a, b, T, R) ⊆ {c : c (i) = b (i) , for all i ∈ T} = ΘP
i (a, b, T, R).

Appendix C: Proof of the Results in Subsection 3.3

Proof of Lemma 2. Define the following order on Af : a � b if aRib for all i ∈ N and

there exists j ∈ N such that aPjb. Observe that allocation a is efficient if there exists no

b such that b � a. Notice that � is transitive.

We prove that for every a ∈ I (R) \ E I (R), there exists b ∈ E I (R) such that b � a.
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Let {ai}i∈N defined as follows. Since a ∈ I (R). a1 such that a1 � a. Notice that a1

is individually rational. For all i ≥ 1, let ai+1 � ai if ai ∈ I (R) and let ai+1 = ai,

otherwise. Since Af is finite, there exists n such that an+i = an for all i. Let b = an. We

have b ∈ E I (R) and b � a, which proves (ii).

Let a = e. If e /∈ E (R), there exists b ∈ E I (R) such that b � e, which proves (i).

Appendix D: Proof of the Results in Subsection 4.1

Proof of Lemma 3. We prove the claim for D. The proof for DB is identical. Let

i ∈ N . Let Ri be a block preference and let b, c ∈ Af such that cPib. We prove that for

all R′i ∈ Di there exists R∗i ∈ Di such that Assumption 3 holds. Consider the following

cases:

(i) Let cP ′i b. Let R∗i be any block preference such that L (b, R∗i ) = L (b, Ri)∪L (b, R′i),

L∗ (b, R∗i ) = L∗ (b, Ri) ∪ L∗ (b, R′i), L (c, R∗i ) = L (c, Ri) ∪ L (c, R′i), and L∗ (c, R∗i ) =

L∗ (c, Ri) ∪ L∗ (c, R′i). Such a R∗i exists because Ri and R′i are block preferences.

Then L (b, Ri) ⊆ L (b, R∗i ), L∗ (b, Ri) ⊆ L∗ (b, R∗i ), L (c, R′i) ⊆ L (c, R∗i ), and L∗ (c, R′i) ⊆

L∗ (c, R∗i ). Thus, R∗i ∈ Di satisfies Assumption 3.

(ii) Let bP ′i c. Let R∗i be any block preference such that L (b, R∗i ) = L (b, Ri)∪L (b, R′i),

L∗ (b, R∗i ) = L∗ (b, Ri)∪L∗ (b, R′i), L (c, R∗i ) = L (c, R′i), and L∗ (c, R∗i ) = L∗ (c, R′i).17

Such aR∗i exists becauseRi and R′i are block preferences. Then L (b, Ri) ⊆ L (b, R∗i ),

L∗ (b, Ri) ⊆ L∗ (b, R∗i ), L (c, R′i) = L (c, R∗i ), and L∗ (c, R′i) = L∗ (c, R∗i ). Thus,

R∗i ∈ Di satisfies Assumption 3.

Next, we define stable allocations. For each T ⊆ N let Af (T ) = {a ∈ Af : A (a, i) =

T for all i ∈ T}. Af (T ) is the set of allocations in which the members of T form a

coalition. An allocation a is stable if there is no coalition T ∈ Ξf and b ∈ Af (T ) such

that cRia for all c ∈ ΘP
i (a, b, T, R) for all i ∈ T and cPja for all c ∈ ΘP

j (a, b, T, R)

for some j ∈ T . The stable set is the set of stable allocations and it is denoted by
17Notice that, if bI ′ic, then bI∗i c and, if bP ′i c, then bP ∗i c.

29



S (R).18 In general, a stable allocation can fail to be in the prudent core because the

agents in blocking coalition T block can split in several disjoint sub-coalitions T1, T2, ..., Tk,

T1 ∪ T2 ∪ ... ∪ Tk = T . Let C ∗P (R) be the set of unblocked allocations under prudent

expectations when the preference profile is R.

Lemma 9. If R ∈ DB then S (R) = C ∗P (R).

Proof. Let R ∈ DB. The proof of the claim is divided in two parts.

(i) We prove by contradiction C ∗P (R) ⊆ S (R). Let a ∈ C ∗P (R). Assume that

a /∈ S (R). Then there exists T ∈ Ξf and b ∈ Af (T ) such that cRia for all

c ∈ ΘP
i (a, b, T, R) for all i ∈ T and cPja for all c ∈ ΘP

j (a, b, T, R) for some j ∈ T .

From the definition of core, a /∈ C ∗P (R), which yields a contradiction.

(ii) We prove by contradiction S (R) ⊆ C ∗P (R). Let a ∈ S (R). By the definition of

DB, it follows a ∈ I (R). Assume that a /∈ C ∗P (R). Then T ⊆ Ξf and b ∈ Af such

that cRia for all c ∈ ΘP
i (a, b, T, R) for all i ∈ T and cPja for all c ∈ ΘP

j (a, b, T, R)

for some j ∈ T . If b ∈ Af (T ), then, from the definition of stable set, a /∈ S (R)

which yields a contradiction. If b /∈ Af (T ), let T ′ = A (b, j). Then, there exists

b ∈ Af (T ′), j ∈ T ′. Since b ∈ ΘP
i (a, b, T ′, R)∩ΘP

i (a, b, T, R) for all i ∈ T ′, bRia for

all i ∈ T ′ and cPja. Since R ∈ DB, cRia for all c ∈ ΘP
i (a, b, T ′, R) for all i ∈ T ′ and

cPja for all c ∈ ΘP
j (a, b, T ′, R). Thus, from the definition of stable set a /∈ S (R),

which yields a contradiction.

Lemma 10. Let R ∈ DB. If Af is single-lapping |S (R)| = 1.

Proof. First, we modify R into a preference profile without externalities, R̃. For all

a ∈ Af , let aw,Ri ∈ Af be on of the worst allocation, according to Ri, in which agent

i keeps the same coalition as in a, that is A
(
aw,Ri , i

)
= A (a, i) and a′Ria

w,Ri for all a′

such that A (a′, i) = A (a, i). Let R̃ ∈ D̂B be such that:

(a) for all a, a′ ∈ Af such that A (a′, i) = A (a, i), aĨia′ ;
18Notice that if b ∈ Af (T ), then ΘP

i (a, b, T,R) ⊆ Af (T ).
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(b) for all a, a′ ∈ Af such that A (a′, i) 6= A (a, i), aP̃ia
′ if aw,RiPia

′w,Ri .

Prefence profile R̃ is well defined because R ∈ D̂. From Theorem 1 in Pápai (2004),∣∣∣S (R̃)
∣∣∣ = 1. Next we prove that S

(
R̃
)

= S (R).

(i) We prove by contradiction S
(
R̃
)
⊆ S (R). Assume there exists a ∈ S

(
R̃
)
\

S (R). Then, there exists T ∈ Ξf and b ∈ Af (T ) such that cRia for all c ∈

ΘP
i (a, b, T, R) for all i ∈ T and cPja for all c ∈ ΘP

j (a, b, T, R) for some j ∈ T .

From the definition of R̃, cR̃ia for all c ∈ ΘP
i

(
a, b, T, R̃

)
for all i ∈ T and cP̃ja

for all c ∈ ΘP
j

(
a, b, T, R̃

)
for some j ∈ T . Thus a /∈ S

(
R̃
)

which yields a

contradiction.

(ii) We prove by contradiction S (R) ⊆ S
(
R̃
)
. Assume there exists a ∈ S (R) \

S
(
R̃
)
. Then, there exists T ∈ Ξf and b ∈ Af (T ) such that cRia for all c ∈

ΘP
i

(
a, b, T, R̃

)
for all i ∈ T and cP̃ja for all c ∈ ΘP

j

(
a, b, T, R̃

)
for some j ∈

T . From the definition of R̃and since cw,Ri ∈ ΘP
i

(
a, b, T, R̃

)
, cRia for all c ∈

ΘP
i (a, b, T, R) for all i ∈ T and cPja for all c ∈ ΘP

j (a, b, T, R). Thus a /∈ S (R)

which yields a contradiction.

Appendix E: Proof of the Results in Subsection 4.2

Proof of Proposition 5. Let M̃ = {m1,m2} ⊆ M and let W̃ = {w1, w2} ⊆ W . Let

a, b, c, d, f, g ∈ Af be such that: a (wi) = mi for i ∈ {1, 2}; b (w1) = m1, b (w2) = w2,

and b (m2) = m2; c (wi) = mj for i, j ∈ {1, 2}, i 6= j; d (w1) = w1, d (w2) = m1, and

d (m2) = m2; f (w1) = w1, f (w2) = m2, and f (m1) = m1; g (w1) = m2, g (w2) = w2, and

g (m1) = m1.

Let P ∗ ∈ D̃ be such that

bP ∗aP ∗cP ∗dP ∗fP ∗gP ∗ . . . P ∗e;

let Pm1 and Pm2 satisfy

bPm1aPm1cPm1fPm1dPm1gPm1 . . . Pm1e;
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cPm2aPm2bPm2dPm2fPm2gPm2 . . . Pm2e.

For each m ∈ M let Pm be such that xPme for all x ∈ Af \ {e}. Let Pw = P ∗ for all

w ∈ W and let P = (Pw, Pm)w∈W,m∈M ∈ D̃. We have C P (P ) = {a, b}. Thus, the prudent

core is not essentially single-valued. Then, the claim follows from Theorem 1.

Proof of Lemma 5. Let i ∈ N . Let Ri be a block preference and let b, c ∈ Af such

that cPib. We prove that for all R′i ∈ D̂i there exists R∗i ∈ D̂i such that Assumption 3

holds. Consider the following cases:

(i) Let cP ′i b. Let R∗i be any block preference such that L (b, R∗i ) = L (b, Ri)∪L (b, R′i),

L∗ (b, R∗i ) = L∗ (b, Ri) ∪ L∗ (b, R′i), L (c, R∗i ) = L (c, Ri) ∪ L (c, R′i), and L∗ (c, R∗i ) =

L∗ (c, Ri) ∪ L∗ (c, R′i). Such a R∗i exists because Ri and R′i are block preferences.

Then L (b, Ri) ⊆ L (b, R∗i ), L∗ (b, Ri) ⊆ L∗ (b, R∗i ), L (c, R′i) ⊆ L (c, R∗i ), and L∗ (c, R′i) ⊆

L∗ (c, R∗i ). Thus, R∗i ∈ D̂i satisfies Assumption 3.

(ii) Let bP ′i c. Let R∗i be any block preference such that L (b, R∗i ) = L (b, Ri)∪L (b, R′i),

L∗ (b, R∗i ) = L∗ (b, Ri)∪L∗ (b, R′i), L (c, R∗i ) = L (c, R′i), and L∗ (c, R∗i ) = L∗ (c, R′i).19

Such aR∗i exists becauseRi and R′i are block preferences. Then L (b, Ri) ⊆ L (b, R∗i ),

L∗ (b, Ri) ⊆ L∗ (b, R∗i ), L (c, R′i) = L (c, R∗i ), and L∗ (c, R′i) = L∗ (c, R∗i ). Thus,

R∗i ∈ D̂i satisfies Assumption 3.

Next, we define pairwise stable allocations. Allocation a is pairwise stable if it is not

blocked by a coalition T with |T | ≤ 2 under prudent expectations.

Lemma 11. If R ∈ D̂B then S (R) = C P (R).

Proof. Let R ∈ D̂B. The fact that C P (R) ⊆ S (R), follows from the definition of

pairwise stable allocations.

Now, we prove by contradiction S (R) ⊆ C P (R). Let a ∈ S (R). By the definition

of D̂B, it follows a ∈ I (R). Assume that a /∈ C P (R). Then, there exists a coalition
19Notice that, if bI ′ic, then bI∗i c and, if bP ′i c, then bP ∗i c.
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T and b ∈ Af such that cRia for all c ∈ ΘP
i (a, b, T, R) for all i ∈ T and cPja for all

c ∈ ΘP
j (a, b, T, R) for some j ∈ T . Let T ′ = {i ∈ T : b (i) 6= a (i)}. Let i ∈ N ∩ T ′.

Without loss of generality, assume there exists w ∈ W ∩ T ′. If b (w) = w, then, by the

definition of block preferences, it follows that a /∈ E I (R), which yields a contradiction.

Otherwise b (w) = m ∈M ∩ T ′. Thus, the definition of block preferences implies {m,w}

blocks a under prudent expectations, which yields a contradiction.

Lemma 12. Let P ∈
(
D̂B
)|N |

such that PW is acyclic. Then,
∣∣C P (R)

∣∣ = 1.

Proof. From Fonseca-Mairena and Triossi (2019), |S (P )| coincides with the set of

pairwise stable allocations of P . Since PW is acyclic, from Romero-Medina and Triossi

(2023),
∣∣S (

P
)∣∣ = 1. Then the claim follows from Lemma 11.
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