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Abstract: A wide range of platinum(0)-η2-(E)-1,2-ditosylethene complexes bearing isocyanide, phos-
phine and N-heterocyclic carbene ancillary ligands have been prepared with high yields and selec-
tivity. All the novel products underwent thorough characterization using spectroscopic techniques,
including NMR and FT-IR analyses. Additionally, for some compounds, the solid-state structures
were elucidated through X-ray diffractometry. The synthesized complexes were successively evalu-
ated for their potential as anticancer agents against two ovarian cancer cell lines (A2780 and A2780cis)
and one breast cancer cell line (MDA-MB-231). The majority of the compounds displayed promising
cytotoxicity within the micromolar range against A2780 and MDA-MB-231 cells, with IC50 values
comparable to or even surpassing those of cisplatin. However, only a subset of compounds was
cytotoxic against cisplatin-resistant cancer cells (A2780cis). Furthermore, the assessment of antipro-
liferative activity on MRC-5 normal cells revealed certain compounds to exhibit in vitro selectivity.
Notably, complexes 3d, 6a and 6b showed low cytotoxicity towards normal cells (IC50 > 100 µM)
while concurrently displaying potent cytotoxicity against cancer cells.

Keywords: platinum(0) complexes; alkene ligands; phosphine and isocyanide ligands; metallodrugs;
N-heterocyclic carbenes; ovarian and breast cancer

1. Introduction

Platinum(II) anticancer agents have been at the forefront of cancer treatment since the
introduction of cisplatin in the 1970s [1]. These compounds usually exert their anticancer
action by forming covalent DNA adducts, disrupting DNA replication and transcription
and inducing apoptosis in rapidly dividing cancer cells [2]. The success of cisplatin has
paved the way for the development of several platinum(II) derivatives (e.g., carboplatin
and oxaliplatin), each with unique properties and therapeutic profiles [3].

Beyond conventional chemotherapy, platinum(II) complexes are being explored for
their potential in combination therapies and immunotherapy [4]. The immunomodulatory
effects of platinum drugs, including their impact on the tumor microenvironment, have
prompted investigations into their role in enhancing the immune response against cancer
cells [5]. This intersection of platinum-based chemotherapy with emerging immunothera-
peutic strategies represents a promising avenue for improving overall treatment outcomes.
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The clinical success of platinum(II) anticancer drugs, particularly cisplatin, has been
accompanied by unavoidable challenges concerning the dose-limiting side effects, acquired
resistance and limitations in their spectrum of activity [6]. For these reasons, researchers
are actively engaged in developing strategies to overcome these issues. Among them, the
design of novel platinum complexes with modified ligands to enhance selectivity and
reduce toxicity represents a natural development [7].

A very interesting option is constituted by the study of platinum complexes in an
oxidation state other than +2. In this context, numerous studies have been carried out on
platinum complexes in a high oxidation state (IV).

Platinum(IV) anticancer agents represent a promising and evolving class of com-
pounds that have garnered attention for their distinct properties and potential advantages
over traditional platinum(II) drugs [8]. In fact, some Pt(IV) complexes exhibit enhanced
stability, reduced side effects and the ability to release active platinum(II) species prefer-
entially within cancer cells. These features contribute to making them candidates for the
development of more effective and targeted anticancer therapies.

One notable characteristic of Pt(IV) complexes is their ability to undergo reduction
within the cellular environment. Inside cancer cells, Pt(IV) compounds are reduced to
their active Pt(II) form, which then forms DNA adducts, leading to DNA damage and
ultimately triggering cell death [9,10]. This reduction process is believed to be at the basis
of the preference for Pt(IV) complexes for cancer cells with the consequent lowering of the
systemic toxicity.

A very limited number of works have instead concerned the evaluation of the anti-
tumor activity of platinum complexes in low oxidation states.

In particular, only a couple of works on this topic have been reported in the last years by
our group [11] and by Ruffo and colleagues [12]. In these contributions, the cytotoxicity of
platinum(0) complexes bearing 1,3,5-triaza-7-phosphaadamantane (PTA) or N-heterocyclic
carbenes (NHCs) as ancillary ligands and commercially available alkenes such as dimethyl
fumarate, maleic anhydride and fumaronitrile was investigated. A promising antiprolifera-
tive activity towards ovarian cancer and myelogenous leukemia cell lines was observed for
these compounds [11].

It should be pointed out that platinum(0) alkene complexes represent a fascinating
class of coordination compounds that have gained significant attention in the field of
organometallic chemistry. These compounds feature a platinum center bearing one or more
alkene ligands, forming stable and well-defined structures with diverse applications in
catalysis and materials science [13,14].

The binding of alkene ligands to platinum centers typically involves the formation of
π-bonding interactions between the metal and the unsaturated carbon–carbon double bond
of the alkene [13]. This interaction is enforced by the back-donation of electron density from
the platinum d orbitals to the π* molecular orbital of the alkene, resulting in a synergistic
relationship that stabilizes the complex.

One of the key features of platinum alkene complexes is their versatility in catalyzing
different organic reactions, including hydrogenation, hydroamination and polymerization
reactions [15–17]. The ability of platinum to engage in oxidative addition and reduc-
tive elimination processes allows these complexes to participate in catalytic cycles with
high efficiency.

In addition to their catalytic applications, platinum alkene complexes have found
use in the design of novel materials. For instance, the incorporation of these complexes
into polymers can impart unique properties such as enhanced conductivity, making them
valuable in the development of advanced electronic devices and sensors [18].

In this work, we report the synthesis, characterization and in vitro anticancer activity
of novel platinum(0) complexes bearing different ancillary ligands (phosphines, isocyanides
and N-heterocyclic carbenes (NHCs)) and (E)-1,2-ditosylethene as the model olefin. The
choice of this olefin ligand is based on the fact that only olefins featuring strong electron-
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withdrawing substituents can ensure adequate stability for zero-valent platinum complexes,
thus averting their rapid hydrolysis in a biological medium [19,20].

2. Results

2.1. Synthesis and Characterization of Pt(0)-η2-(E)-1,2-Ditosylethene Complexes

The platinum(0)–alkene complexes were obtained through a two-step synthetic ap-
proach, which involves the isolation of [(6-methyl-2-(methylthiomethyl)pyridine)Pt(η2-
(E)-1,2-ditosylethene)] (1) as an intermediate species. From this derivative, it is possible
to easily remove the chelating pyridyl–thioether ligand and introduce the two ancillary
ligands of interest. The ease with which this process occurs has already been highlighted
by our research group in previous works, describing ligand substitution reactions on pal-
ladium(0) complexes [21]. In these studies, it was demonstrated that the lability of the
6-methyl-2-(methylthiomethyl)pyridine ligand is ascribable to the distortion of the chelated
ring with respect to the planarity, due to the steric interference of the methyl group in
position 6 of the pyridine.

More in detail, the [(6-methyl-2-(methylthiomethyl)pyridine)Pt(η2-(E)-1,2-ditosylethene)]
(1) intermediate was prepared by reacting the pyridyl–thioether ligand, (E)-1,2-ditosylethene
and Pt(dba)2 in dichloromethane at room temperature for ca. 6 h (Scheme 1).
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Scheme 1. Synthesis of Pt(0) intermediate 1.

The product is stable in the solid state for months, and in chlorinated solvents, it
is sufficiently stable to allow for an exhaustive characterization by NMR spectroscopy.
In particular, in the 1H-NMR spectrum recorded at 298 K, the signals of the coordinated
pyridyl–thioether ligand are present at lower chemical shifts than those of the free ligand.
Furthermore, the methylene protons originate an AB system after the bidentate binding of
the ligand on the platinum(0) center.

Notably, all signals present in the 1H-NMR spectrum recorded at 298 K are significantly
broadened, thus indicating a fluxional nature of the system. By lowering the temperature
to 233 K, it is possible to observe the doubling of many signals, giving rise to two distinct
groups of signals that can be ascribed to two different species.

The two species are two atropoisomers that differ from each other due to the dif-
ferent mutual positioning of the olefin tosyl substituents and the phenyl group bound
to the thioether sulfur atom. At room temperature, the rapid inversion of the config-
uration of sulfur makes the two isomers indistinguishable. Conversely, at 233 K, this
movement is impeded.

Starting from intermediate 1, the addition of two equivalents of an aryl phosphine or
two equivalents of an isocyanide led to the formation of bisphosphino and bisisocyanide
complexes 2a–c and 3a–d, respectively (Scheme 2). The reactions were carried out at room
temperature in anhydrous dichloromethane for 10 min. The target products were isolated
in high yields by precipitation from diethyl ether–n-pentane mixtures.

Importantly, most complexes can also be obtained directly by addition of the phos-
phine or isocyanide ligand, (E)-1,2-ditosylethene and Pt(dba)2 under similar operating
conditions. However, the presence of traces of impurities in some complexes, as well as
the need to develop a protocol valid also for platinum(0)–bisNHC complexes and mixed
phosphine–isocyanide platinum(0) complexes convinced us to adopt the passage through
intermediate 1 in all cases examined in this work.
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As far as concerned the bisphosphino complexes 2a–c, the 31P NMR spectra are all
characterized by the presence of a single signal, accompanied by the two satellites due to
the 195Pt-31P coupling (J ≈ 3700 Hz), which unequivocally testifies to the coordination of
the phosphines occurring towards the platinum center. It should be noted that although
the coordination of PPh3 and P(4-F-Ph)3 results in an increase in the chemical shift of the
signal compared to that observed in the free phosphine (∆δ ≈ 30ppm), the coordination of
tri(2-furyl)-phosphine entails a significant high-field shifting (∆δ ≈ −19 ppm). In the 1H
and 13C NMR spectra, in addition to the expected signals attributable to the phosphine,
even those characteristic of (E)-1,2-ditosylethene are all well identifiable. In particular,
olefinic protons and carbons generate a characteristic AA’BB’ system due to the coupling
with phosphorus nuclei.

Even in the case of bisisocyanide complexes 3a–d, the 1H and 13C NMR spectra are
rather simple considering the high symmetry of the compounds. In particular, all the signals
related to isocyanide ligands can be identified, among which the coordinated isocyanide
carbon, located at 130–140 ppm, is particularly diagnostic.

Moreover, the coordination of (E)-1,2-ditosylethene is confirmed by the presence of
singlets ascribable to olefinic protons and carbons, which are localized at lower chemical
shifts with respect to those observed in the free olefin because of metal-olefin backdonation.

With the aim of combining the peculiar characteristics of phosphine and isocyanide
ligands, we have also successfully carried out the synthesis of Pt-η2-(E)-1,2-ditosylethene
complexes bearing one phosphine and one isocyanide. In fact, the addition of one equiv-
alent of each ligand to a dichloromethane solution of the pyridyl–thioether complex (1)
selectively provides mixed phosphine–isocyanide complexes 4a–h (Scheme 3).

The only exception is represented by the complexes with tri(2-furyl)-phosphine, where
the presence of the bisphosphino and bisisocyanide complexes was also observed.

To confirm this evidence, DFT calculations were carried out using [(PPh3)(DIC)Pt(η2-
(E)-1,2-ditosylethene)] and [(P(2-furyl)3)(DIC)Pt(η2-(E)-1,2-ditosylethene)] as model com-
plexes (Scheme 4A,B).

The equilibrium of these species with their bisphosphino and bisisocyanide con-
geners is completely shifted towards the mixed phosphine–isocyanide complex in the
case of triphenylphosphine (∆G = +4.0 kcal·mol−1). Conversely, in the case of tri(2-furyl)-
phosphine, the similar energy between the three complexes represented in Scheme 4B
(∆G = −0.8 kcal·mol−1) justifies the impossibility of selectively isolating the complex
[(P(2-furyl)3)(DIC)Pt(η2-(E)-1,2-ditosylethene)].
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Complexes 4a–h were successfully characterized by NMR and IR analyses. In par-
ticular, in the 31P NMR spectra, a single signal at 23–26 ppm (ca. 30 ppm higher than
that of the free phosphine) is detected. This fact, in conjunction with the presence of two
satellites due to the coupling between the phosphorus and platinum nuclei, attests to the
successful coordination of the phosphine ligand on the metal center. Moreover, in the 31P
NMR spectra of platinum complexes bearing P(p-F-Ph)3, the signal appears as a quartet,
due to the long-range coupling between the phosphorus and fluorine nuclei.

The coordination of the isocyanide ligand is generally confirmed by the presence in
the 13C NMR spectra of a weak signal of the isocyanide carbon at ca. 150 ppm in the case
of aryl isocyanides (DIC and TosMIC) and at ca. 135 ppm for alkyl isocyanides (TIC and
CyIC). As usual, the coordination of (E)-1,2-ditosylethene is unequivocally attested by the
presence, both in the 1H and 13C NMR spectra, of two distinct signals attributable to olefin
protons and carbons. This differentiation of the signals, which is due to the two different
ancillary ligands, gives rise to a system of a rather complex multiplicity, especially in the
1H NMR spectra, due to the simultaneous presence of H-H, H-P and H-Pt couplings.

Finally, the IR spectra of all the synthesized complexes exhibit three characteristic
signals: (i) CN stretching at 2100–2200 cm−1, (ii) SO stretching at 1300–1500 cm−1 and (iii)
bending of the sulfonic group at 670 cm−1.

The last category of complexes that was examined in this work presents two N-heterocyclic
carbene ligands (NHC) coordinated to the metal center.

N-heterocyclic carbene (NHC) ligands have emerged as pivotal components in modern
organometallic chemistry, revolutionizing catalytic processes and enhancing the versatility
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of transition metal complexes. Since their discovery in the 1980s, NHC ligands have
garnered significant attention owing to their unique electronic and steric properties, which
make them ideal candidates for a wide range of applications [22].

From some preliminary tests, it emerged that the most favorable synthetic protocol for
the synthesis of [(NHC)2Pt(0)(η2-(E)-1,2-ditosylethene)] complexes is the transmetallation
route. Given the well-known inertia of Pt(0) in ligand substitution reactions compared to
Pd(0), we opted for two moderately bulky carbene ligands (see Scheme 5). In particular, two
equivalents of the silver–NHC complexes 5a,b were added to complex 1 in dichloromethane
at room temperature. The transmetallation proceeds very slowly, requiring 3–4 days to
complete the process.
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Scheme 5. General procedure for the synthesis of Pt(0)-(E)-1,2-ditosylethene complexes bearing
N-heterocyclic carbene ligands.

After the filtration of AgBr, complexes 6a,b were obtained in good yields by precipita-
tion from a diethyl ether–n-pentane mixture.

The identity of the products was verified by 1H and 13C NMR analyses. In particular,
the coordination of N-heterocyclic carbene ligands is proven by the presence in the 13C
NMR spectra of the characteristic peak of the coordinated carbene carbon at ca. 180 ppm.
In this case, the interaction with the metal center is further confirmed by the two satellites
of the main signal, from which a JPt-C of ca. 1360 Hz can be inferred.

Both in the 1H and 13C NMR spectra, the other signals of the carbene ligands can
be easily identified and are located at different chemical shifts compared to those of the
corresponding Ag-NHC precursors.

Notably, the olefinic carbons fall at very low chemical shifts (ca. 48 ppm), thus
experimentally demonstrating the superior σ-donor character of N-heterocyclic carbene
ligands with respect to aryl phosphines or isocyanides.

To complete the characterization of the complexes covered by this work, the structures
of complexes 2a, 3a, 3b, 4b and 6b have been resolved by single-crystal X-ray diffraction
(Figure 1).

Complexes 2a, 3a, 3b, 4b and 6b molecules have been crystallized, characterized
through XRD and show square planar platinum coordination spheres (Tables S1–S7). All
the 3a, 3b and 6b crystalline forms bear one crystallographically independent neutral plat-
inum complex each, whereas 2a and 4b show two molecules in the asymmetric unit. The
complex 3a is isomorphic with the homologous palladium variant previously published
(CCDC 1940848) [19]. A small coordination geometry adjustment reflects the change in the
metallic center with a slight contraction of the metal–CN bond upon replacement of Pd with
Pt, as previously reported [23]. Complexes bearing the same ligands are well overlapped
with minor adjustment of phenyl sidechains of phosphine and tosyl ligands. Superim-
position of crystallographically independent molecules bearing a (Z)-1,2-ditosylethene
ligand shows equivalent conformations with an overall R.M.S.D. among common atoms
less than ~1.7 Å. Sulfonic groups are involved in polar intermolecular contacts, but crystal
packings are mainly stabilized by multiple weak hydrophobic intermolecular π···π and
CH···π interactions among neighbor aromatic rings.
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2.2. Antiproliferative Activity of Pt(0)-η2-(E)-1,2-Ditosylethene Complexes towards Cancer Cells

With the aim of exploring the potential anticancer effects of platinum(0)-η2-1,2-
(E)ditosylethene complexes, we exposed a set of three distinct human tumor cell lines (ovar-
ian cancer A2780 and its cisplatin-resistant clone A2780cis, and triple-negative breast cancer
MDA-MB-231) to the synthesized compounds and cisplatin (positive control) for a duration of
96 h. Importantly, the antiproliferative activity was also assessed using MRC-5 normal human
lung fibroblast cells in order to establish whether our complexes exhibit in vitro selectivity
towards cancer cells.

Before proceeding with biological assays, we initially assessed the stability of the
platinum(0)-η2-1,2-(E)ditosylethene complexes in a 1:1 D2O/DMSO-d6 solution using 1H
and 31P NMR as standard techniques. Over a 24 h period, negligible changes were observed
in the spectra, indicating that the complexes retain their original structure.

However, in the case of complexes 3a, 4e and 4g, a low solubility in DMSO and
DMSO/H2O solutions was observed. Therefore, these three platinum derivatives were
consequently excluded from biological analyses.

The results of the antiproliferative activity assays, presented as half-inhibitory concen-
trations (IC50) values, are summarized in Table 1.

In the A2780 cell line (cisplatin-sensitive ovarian cancer), complexes 2a, 3b–d and 6a,b
exhibited the greatest cytotoxicity, although with higher IC50 values compared to cisplatin.
Interestingly, in the case of complexes containing isocyanide and phosphine ligands, the
best results were obtained with triphenylphosphine and alkyl isocyanides (TIC and CyIC).

In the A2780cis cell line (cisplatin-resistant ovarian cancer), the only active compounds
are 3b–d and 6a,b. In particular, in the case of bisisocyanide complexes 3b–d, the IC50
values are comparable to those obtained on the cisplatin-sensitive cell line, whereas the
bisNHC complexes 6a–b present IC50 values one order of magnitude lower.

Notably, the cytotoxicity of complexes 3b–d and 6a,b is comparable, or even better,
than that of cisplatin.

In the MDA-MB-231 cell line (triple-negative breast cancer), many of the complexes
tested exhibited better antiproliferative activity, up to an order of magnitude greater than
cisplatin (2a, 3b–d, 4a, 4c, 4d and 6b).

The evaluation of the cytotoxicity of the synthesized complexes on MRC-5 normal
cells allows us to establish which complexes present a certain selectivity towards cancer
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cells. In particular, complexes 3d, 6a and 6b showed a poor cytotoxicity towards normal
cells (IC50 > 100 µM) and, at the same time, a good cytotoxicity towards ovarian and breast
cancer cells, thus suggesting a significant in vitro selectivity.

Table 1. Antiproliferative activity on A2780, A2780cis, MDA-MB-231 and MRC-5 cell lines.

Compound
IC50 (µM)

A2780 A2780cis MDA-MB-231 MRC-5

Cisplatin 0.19 ± 0.08 5.4 ± 0.1 6.4 ± 0.5 2.9 ± 0.1

2a 5.5 ± 0.6 >100 2.6 ± 0.4 >100

2b >100 >100 36 ± 6 >100

2c 17.2 ± 0.8 >100 >100 >100

3b 5.4 ± 0.7 11 ± 6 5.52 ± 0.03 22 ± 6

3c 2.6 ± 0.3 3.1 ± 0.9 3.4 ± 0.4 3.5 ± 0.1

3d 1.18 ± 0.09 1.4 ± 0.2 1.2 ± 0.3 9 ± 1

4a 35 ± 3 >100 1.8 ± 0.6 59 ± 8

4b 85 ± 23 >100 30 ± 13 >100

4c 55 ± 17 >100 1.0 ± 0.8 15 ± 3

4d >100 >100 0.4 ± 0.1 14 ± 1

4f >100 >100 21 ± 2 >100

4h 41 ± 10 >100 37 ± 13 >100

6a 1.6 ± 0.1 10 ± 3 36 ± 11 >100

6b 1.9 ± 0.3 12.91 ± 0.06 5.4 ± 0.9 61 ± 13
Data after 96 h of incubation. Stock solutions in DMSO for all complexes; stock solutions in H2O/NaCl for cisplatin.
A2780 (cisplatin-sensitive ovarian cancer cells), A2780cis (cisplatin-resistant ovarian cancer cells), MDA-MB-231
(triple-negative breast cancer cells), MRC-5 (normal lung fibroblasts).

3. Materials and Methods
3.1. Solvents and Reagents

All syntheses were conducted in an inert atmosphere (Ar) employing standard Schlenk
techniques. Diethyl ether and dichloromethane were dried using molecular sieves (4 Å,
10%) and stored under an argon atmosphere. All other solvents were commercially sourced
and utilized without further purification.

2-methyl-6-((phenylthio)methyl)pyridine, Pt(dba)2 (E)-1,2-ditosylethene and silver-
NHC complexes 5a,b were synthetized according to the published procedures [21–25].

Isocyanides and phosphines were employed as supplied.

3.2. Instruments

One-dimensional NMR and two-dimensional NMR spectra were acquired using
Bruker 300 and 400 MHz Advance spectrometers (Billerica, MA, USA). Chemical shift
values (ppm) were referenced to TMS for 1H and 13C and H3PO4 for 31P. IR spectra were
obtained using a PerkinElmer Spectrum One spectrophotometer (Waltham, MA, USA).

3.3. Synthesis of Complex 1

A total of 0.0448 g (0.2081 mmol) 2-methyl-6-((phenylthio)methyl)pyridine, 0.1353 g
(0.200 mmol) of Pt(dba)2 and 0.0542 g (0.1611 mmol) of 1,2-(E)ditosylethene were suspended
in 30 mL of anhydrous dichloromethane under inert atmosphere (Ar) in a 100 mL two-
necked flask. The resulting mixture was stirred at room temperature for 6 h and then
treated with activated carbon and filtered on a Celite filter. The volume of the resulting
clear solution was reduced under vacuum, and finally, diethyl ether was added to promote
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the precipitation of the final product. The white precipitate was filtered off on a Gooch and
dried under vacuum. A total of 0.0866 g (yield 72%) of complex 1 was obtained.

1H NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 2.37 (bs, 3H, tol-CH3), 2.41 (s, 3H,
tol-CH3), 3.28 (bs, 3H, Py-CH3), 4.13 (bs, 2H, JPtH = 69.9 Hz, CH=CH), 4.50–4.69 (bs, 2H,
CH2N), 6.93 (bd, 2H, tol-H), 7.04 (bd, 2H, tol-H), 7.43 (bd, 4H, tol-H).

13C {1H} NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 21.7 (CH3, tol-CH3), 31.9
(CH3, Py-CH3), 44.5 (CH2, CH2-S), 49.9 (CH, CH=CH), 120.4 (CH, C5-Py), 124.1 (CH, C3-
Py), 126.8 (CH, tol-H), 129.2 (CH, S-Ph), 129.4 (CH, tol-H), 132.2 (CH, S-Ph), 138.1 (CH,
S-Ph), 138.8 (C, p-tol-C), 139.6 (C, i-tol-C), 142.2 (CH, C4Py), 158.2 (C, C6Py), 163.0 (C, C2Py)

IR (KBr, cm−1) νSO = 1295 cm−1, 1154 cm−1; δSO = 676 cm−1.

3.4. Synthesis of Pt(0) Complexes Bearing Isocyanide and/or Phosphine Ligands

[(PPh3)2Pt(η2-(E)-1,2-ditosylethene)] (2a). A total of 0.0868 g (0.1162 mmol) of the
precursor 1 was dissolved in ca. 7 mL of anhydrous dichloromethane into a 50 mL two-
necked flask under inert atmosphere (Ar). The resulting mixture was treated with 0.0611 g
(0.2324 mmol) of PPh3, previously dissolved in ca. 3 mL of anhydrous dichloromethane,
and stirred at room temperature for 10 min. The addition of a 1:1 mixture of diethylether
and n-pentane to the concentrated solution yielded the complex 2a as a white precipitate,
which was filtered off on a Gooch and washed with n-pentane. A total of 0.0984 g (yield
80%) of complex 2a was obtained.

1H NMR (CDCl3, T = 298 K, ppm) δ: 2.34 (s, 6H, tol-CH3), 3.61 (m, AA’BB’ system,
JPtH = 50.7 Hz, 2H, CH=CH), 6.85 (d, J = 8.0 Hz, 4H, tol-H), 7.12 (d, J = 8.0 Hz, 4H, tol-H),
7.20–7.50 (m, 30H, PPh3).

13C {1H} NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 21.5 (CH3, tol-CH3),
62.3 (CH, d, JCP = 61.7 Hz, JPtC = 366 Hz, CH=CH), 126.4 (CH, tol-m-CH), 128.9 (CH,
tol-o-C).

31P {1H} NMR (CDCl3, T = 298 K, ppm) δ: 24.4 (s, JPtP = 3720 Hz).

IR (KBr, cm−1) νSO = 1297 cm−1, 1141 cm−1; δSO = 674 cm−1. [(P(p-F-Ph)3)2Pt(η2-(E)-

1,2-ditosylethene)] (2b). Compound 2b was obtained employing 0.0500 g (0.0670 mmol) of
complex 1 and 0.0424 g (0.1340 mmol) of P(p-F-Ph)3. A total of 0.0687 g (yield 88%) of
complex 2b was obtained as a white powder.

1H NMR (CDCl3, T = 298 K, ppm) δ: 2.36 (s, 6H, tol-CH3), 3.56 (m, AA’BB’ system,
JPtH = 51.0 Hz, 2H, CH=CH), 6.89 (d, J = 8.1 Hz, 4H, tol-H), 6.96–7.01 (m, 12H, o,m-Ph),
7.13 (d, J = 8.1 Hz, 4H, tol-H), 7.41–7.49 (m, 12H, o,m-Ph).

13C {1H} NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 21.5 (CH3, tol-CH3),
62.8 (CH, AA’BB’ system, CH=CH), 126.3 (CH, tol-m-CH), 129.2 (CH, tol-o-C). 31P {1H}

NMR (CDCl3, T = 298 K, ppm) δ: 22.7 (s, JPtP = 3741 Hz).

IR (KBr, cm−1) νSO = 1296 cm−1, 1161 cm−1; δSO = 671 cm−1. [(P(2-furyl)3)2Pt(η2-(E)-

1,2-ditosylethene)] (2c). Compound 2c was obtained employing 0.0500 g (0.0670 mmol) of
complex 1 and 0.0354 g (0.1524 mmol) of P(2-furyl)3. A total of 0.0496 g (yield 75%) of
complex 2c was obtained as a white powder.

1H NMR (CDCl3, T = 298 K, ppm) δ: 2.39 (s, 6H, tol-CH3), 4.17 (m, AA’BB’ system,
JPtH = 54.2 Hz, 2H, CH=CH), 6.38–6.40 (m, 6H, 3-furyl-H), 6.95 (d, J = 8.0 Hz, 4H, tol-H),
6.98–7.00 (m, 6H, 4-furyl-H), 7.37 (d, J = 8.0 Hz, 4H, tol-H), 7.53–7.55 (m, 6H, 5-furyl-H).

13C {1H} NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 21.6 (CH3, tol-CH3),
60.7 (CH, AA’BB’ system, JPtC = 366 Hz, CH=CH), 110.9 (CH, 4-furyl-CH), 123.1 (m, CH,
3-furyl-CH) 126.7 (CH, tol-m-CH), 129.1 (CH, tol-o-CH), 142.0 (C, 2-furyl-C), 147.5 (CH,
5-furyl-CH).
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31P {1H} NMR (CDCl3, T = 298 K, ppm) δ: −29.9 (s, JPtP = 3786 Hz).

IR (KBr, cm−1) νSO = 1299 cm−1, 1155 cm−1; δSO = 671 cm−1. [(DIC)2Pt(η2-(E)-1,2-

ditosylethene)] (3a). Compound 3a was obtained employing
0.0500 g (0.0670 mmol) of complex 1 and 0.0180 g (0.1360 mmol) of DIC. A total of 0.0491 g
(yield 93%) of complex 3a was obtained as a brownish powder.

1H NMR (CDCl3, T = 298 K, ppm) δ: 2.32 (s, 6H, tol-CH3), 2.47 (s, 12H, DIC-CH3),
3.98 (s, 2H, JPtH = 55.4 Hz, CH=CH), 7.09 (d, J = 8.5 Hz, 4H, tol-H), 7.15 (d, J = 7.8 Hz 4H,
DIC-m-H), 7.27 (t, J = 7.8 Hz, 2H, DIC-p-H), 7.81 (d, J = 8.5 Hz, 4H, tol-H).

13C {1H} NMR (CDCl3, T = 298 K, ppm) δ: 18.9 (CH3, DIC-CH3), 21.4 (CH3, tol-CH3),
56.6 (CH, JPtC = 326 Hz, CH=CH), 126.8 (C, DIC-i-C), 127.1 (CH, DIC-m-CH), 128.0 (CH,
tol-m-CH), 128.0 (CH, tol-o-C), 129.2 (CH, DIC-p-CH), 135.7 (C, DIC-o-C), 139.4 (C, tol-i-C),
142.4 (C, tol-p-C), 147.1 (C, NC). IR (KBr, cm−1) νCN = 2179 cm−1, 2149 cm−1, νSO = 1306

cm−1, 1146 cm−1; δSO = 692 cm−1. [(TosMIC)2Pt(η2-(E)-1,2-ditosylethene)] (3b). Compound

3b was obtained employing 0.0500 g (0.0670 mmol) of complex 1 and 0.0264 g (0.1360 mmol)
of TosMIC. A total of 0.0555 g (yield 90%) of complex 3b was obtained as a white powder.

1H NMR (CDCl3, T = 298 K, ppm) δ: 2.41 (s, 6H, tol-CH3), 2.51 (s, 6H, TosMIC-CH3),
3.89 (s, 2H, JPtH = 58.6 Hz, CH=CH), 4.93 (s, 4H, JPtH = 16.0 Hz, CH2S), 7.00 (d, J = 8.5 Hz,
4H, tol-H), 7.37 (d, J = 8.5 Hz, 4H, tol-H), 7.53 (d, J = 8.4 Hz, 4H, TosMIC-H), 8.01 (d, J = 8.4
Hz, 4H, TosMIC-H).

13C {1H} NMR (CDCl3, T = 298 K, ppm) δ: 21.6 (CH3, tol-CH3), 21.9 (CH3, TosMIC-
CH3), 57.6 (CH, JPtC = 327 Hz, CH=CH), 63.0 (CH2, JPtC = 20 Hz, CH2S), 126.7 (CH,
tol-m-CH), 128.3 (CH, tol-o-CH), 129.5 (CH, TosMIC-CH), 130.9 (CH, TosMIC-CH), 132.1
(C, TosMIC-C), 138.8 (C, TosMIC-C), 142.6 (C, tol-i-C), 146.1 (C, NC), 147.2 (C, tol-p-C).
IR (KBr, cm−1) νCN = 2164 cm−1, 2202 cm−1 νSO = 1299 cm−1, 1155 cm−1; δSO = 674 cm−1.

[(TIC)2Pt(η2-(E)-1,2-ditosylethene)] (3c). Compound 3c was obtained employing 0.0485 g

(0.0650 mmol) of complex 1 and 0.0108 g (0.1300 mmol) of TIC. A total of 0.0409 g (yield
87%) of complex 3c was obtained as a white powder. 1H NMR (CDCl3, T = 298 K, ppm) δ:

1.60 (s, 18H, C(CH3)), 2.39 (s, 6H, tol-CH3), 3.83 (s, 2H, JPtH = 57.2 Hz, CH=CH), 6.97 (d, J =
8.2 Hz, 4H, tol-H), 7.43 (d, J = 8.2 Hz, 4H, tol-H).

13C {1H} NMR (CDCl3, T = 298 K, ppm) δ: 21.5 (CH3, tol-CH3), 30.3 (CH3, C(CH3)),
54.9 (CH, JPtC = 337 Hz, CH=CH), 57.2 (C, C(CH3)), 126.6 (CH, tol-m-CH), 129.1 (CH,
tol-o-C), 134.4 (C, NC), 139.7 (C, tol-i-C), 142.0 (C, tol-p-C).

IR (KBr, cm−1) νCN = 2159 cm−1, 2196 cm−1 νSO = 1299 cm−1, 1158 cm−1; δSO = 675 cm−1.
[(CyIC)2Pt(η2-(E)-1,2-ditosylethene)] (3d). Compound 3d was obtained employing 0.0500 g

(0.0670 mmol) of complex 1 and 0.0181 g (0.1658 mmol) of CyIC. A total of 0.0444 g (yield
88%) of complex 3d was obtained as a white powder.

1H NMR (CDCl3, T = 298 K, ppm) δ: 1.45–1.53 (m, 8H, Cy-CH2), 1.77–2.07 (m, 12H,
Cy-CH2), 2.39 (s, 6H, tol-CH3), 3.84 (s, 2H, JPtH = 57.3 Hz, CH=CH), 3.91–4.00 (m, 2H,
Cy-CH), 6.98 (d, J = 8.0 Hz, 4H, tol-H), 7.43 (d, J = 8.0 Hz, 4H, tol-H).

13C {1H} NMR (CDCl3, T = 298 K, ppm) δ: 21.6 (CH3, tol-CH3), 22.8 (CH2, Cy-CH2),
24.9 (CH2, Cy-CH2), 32.2 (CH2, Cy-CH2), 54.6 (CH, Cy-CH), 54.9 (CH, JPtC = 338 Hz,
CH=CH), 126.7 (CH, tol-m-CH), 129.2 (CH, tol-o-C), 138.6 (C, NC), 140.0 (C, tol-i-C), 142.0
(C, tol-p-C).

IR (KBr, cm−1) νCN = 2110 cm−1, 2185 cm−1 νSO = 1297 cm−1, 1142 cm−1; δSO = 671 cm−1.
[(PPh3)(DIC)Pt(η2-(E)-1,2-ditosylethene)] (4a). Compound 4a was obtained employing 0.0500
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g (0.0670 mmol) of complex 1, 0.0088 g (0.0670 mmol) of DIC and 0.0176 g (0.0670 mmol) of
PPh3. A total of 0.0592 g (yield 95%) of complex 4a was obtained as a white powder.

1H NMR (CDCl3, T = 298 K, ppm) δ: 2.14 (s, 6H, DIC-CH3), 2.36 (s, 3H, tol-CH3), 2.37
(s, 3H, tol-CH3), 3.94 (dd, JHH = 8.2, JHP = 2.2, JPtH = 56.0 Hz, 1H, CH=CH trans-C), 4.13 (dd,
JHH = 8.2, JHP = 9.5, JPtH = 53.0 Hz, 1H, CH=CH trans-P), 6.93 (d, J = 8.5 Hz, 2H, tol-H), 6.96
(d, J = 8.5 Hz, 2H, tol-H), 7.02 (d, J = 7.7 Hz, 2H, DIC-m-H), 7.16 (t, J = 7.7 Hz, 1H, DIC-p-H),
7.35 (d, J = 8.5 Hz, 2H, tol-H), 7.36–7.45 (m, 11H, tol-H, PPh3), 7.63–7.73 (m, 6H, PPh3).

13C {1H} NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 18.5 (CH3, DIC-CH3),
21.5 (CH3, tol-CH3), 56.9 (CH, d, JCP = 4.8, JPtC = 366 Hz, CH=CH trans-C), 58.8 (CH, d,
JCP = 48.7, JPtC = 285 Hz, CH=CH trans-P), 127.7 (CH, DIC-m-CH), 126.6 (CH, tol-m-CH),
129.0 (CH, tol-o-C), 129.1 (CH, tol-o-C), 128.6 (CH, DIC-p-CH), 150.6 (C, NC).

31P {1H} NMR (CDCl3, T = 298 K, ppm) δ: 25.4 (s, JPtP = 3520 Hz).

IR (KBr, cm−1) νCN = 2123 cm−1 νSO = 1298 cm−1, 1141 cm−1; δSO = 674 cm−1. [(P(p-F-

Ph)3)(DIC)Pt(η2-(E)-1,2-ditosylethene)] (4b). Compound 4b was obtained employing 0.0500
g (0.0670 mmol) of complex 1, 0.0088 g (0.0670 mmol) of DIC and 0.0212 g (0.0670 mmol) of
P(p-F-Ph)3. A total of 0.0567 g (yield 86%) of complex 4b was obtained as a white powder.

1H NMR (CDCl3, T = 298 K, ppm) δ: 2.18 (s, 6H, DIC-CH3), 2.38 (s, 3H, tol-CH3), 2.39
(s, 3H, tol-CH3), 3.90 (dd, JHH = 8.2, JHP = 2.4, JPtH = 56.1 Hz, 1H, CH=CH trans-C), 4.14 (dd,
JHH = 8.2, JHP = 9.5 JPtH = 53.0 Hz, 1H, CH=CH trans-P), 6.95 (d, J = 8.2 Hz, 2H, tol-H), 6.97
(d, J = 8.2 Hz, 2H, tol-H), 7.06 (d, J = 7.5 Hz, 2H, DIC-m-H), 7.11–7.37 (m, 6H, P(C6H4F)3),
7.20 (t, J = 7.5 Hz, 1H, DIC-p-H), 7.34 (d, J = 8.2 Hz, 2H, tol-H), 7.43 (d, J = 8.2 Hz, 2H, tol-H),
7.61–7.71 (m, 6H, P(C6H4F)3).

13C {1H} NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 18.5 (CH3, DIC-CH3),
21.6 (CH3, tol-CH3), 57.2 (CH, d, JCP = 4.7, JPtC = 336 Hz, CH=CH trans-C), 59.5 (CH, d,
JCP = 48.7, JPtC = 286 Hz, CH=CH trans-P), 126.5 (CH, tol-m-CH), 126.6 (CH, tol-m-CH),
129.2 (CH, tol-o-C), 127.9 (CH, DIC-m-CH), 129.0 (CH, DIC-p-CH), 150.2 (C, NC).

31P {1H} NMR (CDCl3, T = 298 K, ppm) δ: 23.4 (s, JPtP = 3561 Hz).

IR (KBr, cm−1) νCN = 2127 cm−1, 2150 cm−1, νSO = 1298 cm−1, 1160 cm−1; δSO = 673
cm−1.

[(PPh3)(TosMIC)Pt(η2-(E)-1,2-ditosylethene)] (4c). Compound 4c was obtained employ-
ing 0.0503 g (0.0674 mmol) of complex 1, 0.0131 g (0.0674 mmol) of TosMIC and 0.0177 g
(0.0674 mmol) of PPh3. A total of 0.0570 g (yield 85%) of complex 4c was obtained as a
white powder.

1H NMR (CDCl3, T = 298 K, ppm) δ: 2.37 (s, 3H, TosMIC-CH3), 2.41 (s, 6H, tol-CH3),
3.81 (dd, JHH = 8.3, JHP = 2.3, JPtH = 56.1 Hz, 1H, CH=CH trans-C), 4.02 (dd, JHH = 8.3,
JHP = 9.5, JPtH = 53.0 Hz, 1H, CH=CH trans-P), 4.93 (broad AB system, 2H, JPtH = 16.0 Hz,
CH2S), 6.92 (d, J = 8.0 Hz, 2H, tol-H), 6.98 (d, J = 8.0 Hz, 2H, tol-H), 7.30 (d, J = 8.0 Hz, 2H,
TosMIC-H), 7.35 (d, J = 8.0 Hz, 2H, tol-H), 7.40 (d, J = 8.0 Hz, 2H, tol-H), 7.44–7.60 (m, 15H,
PPh3), 7.81 (d, J = 8.0 Hz, 2H, TosMIC-H).

13C {1H} NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 21.6 (CH3, tol-CH3), 21.8
(CH3, TosMIC-CH3), 58.0 (CH, d, JCP = 4.3, JPtC = 330 Hz, CH=CH trans-C), 60.7 (CH,
d, JCP = 47.7, JPtC = 283 Hz, CH=CH trans-P), 62.8 (CH2,CH2S), 126.5 (CH, TosMIC-CH),
126.6 (CH, tol-CH), 129.1 (CH, tol-CH), 129.2 (CH, TosMIC-CH), 129.5 (CH, tol-CH), 151.3
(C, NC).

31P {1H} NMR (CDCl3, T = 298 K, ppm) δ: 25.5 (s, JPtP = 3487 Hz).

IR (KBr, cm−1) νCN = 2182 cm−1 νSO = 1299 cm−1, 1152 cm−1; δSO = 672 cm−1. [(P(p-

F-Ph)3)(TosMIC)Pt(η2-(E)-1,2-ditosylethene)] (4d). Compound 4d was obtained employing
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0.0500 g (0.0670 mmol) of complex 1, 0.0131 g (0.0670 mmol) of TosMIC and 0.0212 g (0.0670
mmol) of P(p-F-Ph)3. A total of 0.0611 g (yield 86%) of complex 4d was obtained as a white
powder.

1H NMR (CDCl3, T = 298 K, ppm) δ: 2.38 (s, 3H, tol-CH3), 2.41 (s, 3H, tol-CH3), 2.45
(s, 3H, TosMIC-CH3), 3.74 (dd, JHH = 8.3, JHP = 2.1, JPtH = 56.2 Hz, 1H, CH=CH trans-C),
4.00 (dd, JHH = 8.3, JHP = 9.5, JPtH = 53.6 Hz, 1H, CH=CH trans-P), 4.63 (m, 2H, CH2S), 6.94
(d, J = 8.0 Hz, 2H, tol-H), 6.98 (d, J = 8.0 Hz, 4H, tol-H), 7.15–7.21 (m, 6H, P(C6H4F)3), 7.28
(d, J = 8.1 Hz, 2H, TosMIC-H), 7.37 (d, J = 8.0 Hz, 4H, tol-H), 7.53–7.61 (m, 6H, P(C6H4F)3),
7.80 (d, J = 8.1 Hz, 2H, TosMIC-H).

13C {1H} NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 21.6 (CH3, tol-CH3), 21.8
(CH3, TosMIC-CH3), 58.3 (CH, d, JCP = 5.2, JPtC = 334 Hz, CH=CH trans-C), 60.1 (CH,
d, JCP = 47.9, JPtC = 283 Hz, CH=CH trans-P), 63.0 (CH2,CH2S), 126.5 (CH, TosMIC-CH),
126.6 (CH, tol-CH), 129.2 (CH, tol-CH), 129.3 (CH, TosMIC-CH), 129.3 (CH, tol-CH), 150.8
(C, NC). 31P {1H} NMR (CDCl3, T = 298 K, ppm) δ: 23.4 (s, JPtP = 3541 Hz).

IR (KBr, cm−1) νCN = 2174 cm−1 νSO = 1297 cm−1, 1160 cm−1; δSO = 673 cm−1.
[(PPh3)(TIC)Pt(η2-(E)-1,2-ditosylethene)] (4e). Compound 4e was obtained employing 0.0500

g (0.0670 mmol) of complex 1, 0.0056 g (0.0670 mmol) of TIC and 0.0176 g (0.0670 mmol) of
PPh3. A total of 0.0504 g (yield 86%) of complex 4e was obtained as a white powder.

1H NMR (CDCl3, T = 298 K, ppm) δ: 1.34 (s, 9H, C(CH3)), 2.36 (s, 3H, tol-CH3), 2.40
(s, 3H, tol-CH3), 3.83 (dd, JHH = 8.1, JHP = 2.0, JPtH = 56.9 Hz, 1H, CH=CH trans-C), 4.02
(dd, JHH = 8.2, JHP = 9.4, JPtH = 51.8 Hz, 1H, CH=CH trans-P), 6.90 (d, J = 8.1 Hz, 2H, tol-H),
6.97 (d, J = 8.1 Hz, 2H, tol-H), 7.33 (d, J = 8.1 Hz, 2H, tol-H), 7.31–7.47 (m, 11H, tol-H, PPh3),
7.60–7.68 (m, 6H, PPh3).

13C {1H} NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 21.5 (CH3, tol-CH3), 30.0
(CH3, C(CH3)), 56.1 (CH, d, JCP = 4.8, JPtC = 345 Hz, CH=CH trans-C), 57.4 (C, JPtC = 12.3
Hz, C(CH3)), 58.2 (CH, d, JCP = 50.1, JPtC = 284 Hz, CH=CH trans-P), 126.6 (CH, tol-CH),
129.0 (CH, tol-CH), 129.1 (CH, tol-CH), 134.0 (C, NC). 31P {1H} NMR (CDCl3, T = 298 K,

ppm) δ: 26.0 (s, JPtP = 3547 Hz).
IR (KBr, cm−1) νCN = 2182 cm−1 νSO = 1297 cm−1, 1154 cm−1; δSO = 671 cm−1. [(P(p-

F-Ph)3)(TIC)Pt(η2-(E)-1,2-ditosylethene)] (4f). Compound 4f was obtained employing 0.0476
g (0.0638 mmol) of complex 1, 0.0053 g (0.0638 mmol) of TIC and 0.0202 g (0.0638 mmol) of
P(p-F-Ph)3. A total of 0.0512 g (yield 82%) of complex 4f was obtained as a white powder.

1H NMR (CDCl3, T = 298 K, ppm) δ: 1.39 (s, 9H, C(CH3)), 2.38 (s, 3H, tol-CH3), 2.40 (s,
3H, tol-CH3), 3.78 (dd, JHH = 8.1, JHP = 2.2, JPtH = 56.7 Hz, 1H, CH=CH trans-C), 4.02 (dd,
JHH = 8.1, JHP = 9.6, JPtH = 52.2 Hz, 1H, CH=CH trans-P), 6.92 (d, J = 8.2 Hz, 2H, tol-H), 6.97
(d, J = 8.2 Hz, 2H, tol-H), 7.13–7.19 (m, 6H, P(C6H5F)3), 7.32 (d, J = 8.2 Hz, 2H, tol-H), 7.41
(d, J = 8.2 Hz, 2H, tol-H), 7.58–7.67 (m, 6H, P(C6H5F)3).

13C {1H} NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 21.6 (CH3, tol-CH3), 30.0
(CH3, C(CH3)), 56.5 (CH, d, JCP = 4.6, JPtC = 346 Hz, CH=CH trans-C), 57.7 (C, JPtC = 12.3
Hz, C(CH3)), 58.7 (CH, d, JCP = 50.4, JPtC = 282 Hz, CH=CH trans-P), 126.5 (CH, tol-CH),
129.1 (CH, tol-CH), 129.2 (CH, tol-CH), 139.8 (C, NC).

31P {1H} NMR (CDCl3, T = 298 K, ppm) δ: 24.1 (s, JPtP = 3596 Hz).

IR (KBr, cm−1) νCN = 2175 cm−1 νSO = 1297 cm−1, 1160 cm−1; δSO = 672 cm−1.
[(PPh3)(CyIC)Pt(η2-(E)-1,2-ditosylethene)] (4g). Compound 4g was obtained employing 0.0500

g (0.0670 mmol) of complex 1, 0.0073 g (0.0670 mmol) of CyIC and 0.0176 g (0.0670 mmol) of
PPh3. A total of 0.0524 g (yield 87%) of complex 4g was obtained as a white powder.
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1H NMR (CDCl3, T = 298 K, ppm) δ: 1.23–1.54 (m, 6H, Cy-CH2), 1.59–1.83 (m, 4H,
Cy-CH2), 2.36 (s, 3H, tol-CH3), 2.40 (s, 3H, tol-CH3), 3.57–3.66 (m, 1H, Cy-CH), 3.76 (dd,
JHH = 8.1, JHP = 2.1, JPtH = 56.7 Hz, 1H, CH=CH trans-C), 3.98 (dd, JHH = 8.1, JHP = 9.4 JPtH
= 51.9 Hz, 1H, CH=CH trans-P), 6.90 (d, J = 8.0 Hz, 2H, tol-H), 6.97 (d, J = 8.0 Hz, 2H, tol-H),
7.32 (d, J = 8.0 Hz, 2H, tol-H), 7.31–7.45 (m, 11H, tol-H, PPh3), 7.60–7.69 (m, 6H, PPh3).

13C {1H} NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 21.6 (CH3, tol-CH3), 22.9
(CH2, Cy-CH2), 24.8 (CH2, Cy-CH2), 32.0 (CH2, Cy-CH2), 54.4 (CH, Cy-CH), 56.1 (CH, d,
JCP = 4.8, JPtC = 344 Hz, CH=CH trans-C), 58.2 (CH, d, JCP = 50.2, JPtC = 284 Hz, CH=CH
trans-P), 126.6 (CH, tol-CH), 129.0 (CH, tol-CH), 129.1 (CH, tol-CH), 133.9 (C, NC). 31P {1H}

NMR (CDCl3, T = 298 K, ppm) d: 26.0 (s, JPtP = 3547 Hz).

IR (KBr, cm−1) νCN = 2190 cm−1 νSO = 1296 cm−1, 1153 cm−1; δSO = 671 cm−1. [(P(p-F-

Ph)3)(CyIC)Pt(η2-(E)-1,2-ditosylethene)] (4h). Compound 4h was obtained employing 0.0616
g (0.0824 mmol) of complex 1, 0.0090 g (0.0824 mmol) of CyIC and 0.0261 g (0.0824 mmol) of
P(p-F-Ph)3. A total of 0.0695 g (yield 88%) of complex 4h was obtained as a white powder.

1H NMR (CDCl3, T = 298 K, ppm) δ: 1.28–1.54 (m, 6H, Cy-CH2), 1.59–1.85 (m, 4H,
Cy-CH2), 2.37 (s, 3H, tol-CH3), 2.40 (s, 3H, tol-CH3), 3.65–3.73 (m, 1H, Cy-CH), 3.78 (dd,
JHH = 8.2, JHP = 2.2, JPtH = 56.9 Hz, 1H, CH=CH trans-C), 3.98 (dd, JHH = 8.2, JHP = 9.6 JPtH
= 52.2 Hz, 1H, CH=CH trans-P), 6.92 (d, J = 8.1 Hz, 2H, tol-H), 6.97 (d, J = 8.1 Hz, 2H, tol-H),
7.13–7.19 (m, 6H, P(C6H4F)3), 7.32 (d, J = 8.1 Hz, 2H, tol-H), 7.41 (d, J = 8.1 Hz, 2H, tol-H),
7.58–7.67 (m, 6H, P(C6H4F)3).

13C {1H} NMR (CDCl3, T = 298 K, ppm, selected peaks) δ: 21.6 (CH3, tol-CH3), 22.8
(CH2, Cy-CH2), 24.8 (CH2, Cy-CH2), 32.0 (CH2, Cy-CH2), 54.5 (CH, Cy-CH), 56.4 (CH, d,
JCP = 5.2, JPtC = 344 Hz, CH=CH trans-C), 58.6 (CH, d, JCP = 50.6, JPtC = 284 Hz, CH=CH
trans-P), 126.5 (CH, tol-CH), 129.1 (CH, tol-CH), 129.2 (CH, tol-CH), 139.8 (C, NC).

31P {1H} NMR (CDCl3, T = 298 K, ppm) δ: 24.1 (s, JPtP = 3589 Hz).

IR (KBr, cm−1) νCN = 2179 cm−1 νSO = 1297 cm−1, 1161 cm−1; δSO = 672 cm−1.

3.5. Synthesis of Pt(0) Complexes Bearing N-Heterocyclic Carbene (NHC) Ligands

[(TolCH2ImCH2Tol)2Pt(η2-(E)-1,2-ditosylethene)] (6a). A total of 0.0500 g (0.0670 mmol)
of the precursor 1 was dissolved in ca. 7 mL of anhydrous dichloromethane into a 50 mL
two-necked flask under inert atmosphere (Ar). The resulting mixture was treated with
0.0623 g (0.1340 mmol) of silver–NHC complex 5a, previously dissolved in ca. 7 mL of
anhydrous dichloromethane, and stirred at room temperature for 4 days. Afterwards, the
mixture was treated with activated carbon and filtered on a Celite filter. The addition of a
1:1 mixture of diethylether and n-pentane to the concentrated solution yielded the complex
6a as a white precipitate, which was filtered off on a Gooch and washed with n-pentane.
This gave 0.0591 g (yield 81%) of complex 6a.

1H NMR (CDCl3, T = 298 K, ppm) δ: 2.32 (s, 12H, tol-CH3 (NHC)), 2.35 (s, 6H, tol-
CH3), 3.40 (s, 2H, JPtH = 47.3 Hz, CH=CH), 5.04 (d, J = 14.8 Hz, 4H,CH2-tol (NHC)), 5.46
(d, J = 14.8 Hz, 4H, CH2-tol (NHC)), 6.63 (s, JPtH = 11.0 Hz, 4H, CH=CH (NHC)), 6.90 (d,
J = 8.0 Hz, 4H, tol-H), 7.11, 7.09 (AB system, J = 8.7 Hz, 16H, tol-H (NHC)), 7.37 (d, J = 8.0
Hz, 4H, tol-H).

13C{1H}NMR (CDCl3, T = 298 K, ppm) δ: 21.1 (CH3, tol-CH3 (NHC)) 21.5 (CH3, tol-
CH3), 48.6 (CH, JPtC = 297 Hz, CH=CH), 53.8 (CH2, JPtC = 39.0 Hz, N-CH2), 120.1 (CH, JPtC
= 35.8 Hz, CH=CH (NHC)), 126.2 (CH, tol-m-CH), 128.2 (CH, tol-m-CH (NHC)), 128.8 (CH,
tol-o-CH), 129.3 (CH, tol-o-CH (NHC)), 133.7 (C, tol-i-C (NHC)), 137.3 (C, tol-p-C (NHC)),
140.6 (C, tol-i-C), 141.6 (C, tol-p-C), 178.6 (C, JPtC = 1374 Hz, NCN).

IR (KBr, cm−1) νSO = 1279 cm−1, 1129 cm−1; δSO = 667 cm−1.
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[(CH3ImCH2Ph)2Pt(η2-(E)-1,2-ditosylethene)] (6b). A total of 0.0500 g (0.0670 mmol) of
the precursor 1 was dissolved in ca. 7 mL of anhydrous dichloromethane into a 50 mL
two-necked flask under inert atmosphere (Ar). The resulting mixture was treated with
0.0482 g (0.1340 mmol) of silver–NHC complex 5b, previously dissolved in ca. 7 mL of
anhydrous dichloromethane, and stirred at room temperature for 3 days. Afterwards, the
mixture was treated with activated carbon and filtered on a Celite filter. The addition of a
1:1 mixture of diethylether and n-pentane to the concentrated solution yielded the complex
6b as a white precipitate, which was filtered off on a Gooch and washed with n-pentane.
This gave 0.0587 g (yield 90%) of complex 6b.

1H NMR (CDCl3, T = 298 K, ppm) δ: 2.36 (s, 6H, tol-CH3), 3.42 (s, 2H, JPtH = 47.6 Hz,
CH=CH), 3.76 (s, 6H, JPtH = 5.3 Hz N-CH3 (NHC)), 5.39–5.46 (AB system, J = 15.3 Hz, 4H,
CH2-tol (NHC)), 6.70 (d, J = 2.0 Hz, JPtH = 13.3 Hz, CH=CH (NHC)), 6.79 (d, J = 2.0 Hz,
JPtH = 13.3 Hz, 4H, CH=CH (NHC)), 6.90 (d, J = 8.3 Hz, 4H, tol-H), 7.07–7.10, (m, 4H, Ph-H
(NHC)), 7.25–7.30, (m, 6H, Ph-H (NHC)), 7.37 (d, J = 8.3 Hz, 4H, tol-H).

13C {1H} NMR (CDCl3, T = 298 K, ppm) δ: 21.5 (CH3, tol-CH3), 37.9 (CH3, JPtC = 39.9
Hz, N-CH3), 47.8 (CH, JPtC = 296 Hz, CH=CH), 53.8 (CH2, JPtC = 39.5 Hz, N-CH2), 119.8
(CH, JPtC = 31.3 Hz, CH=CH (NHC)), 121.8 (CH, JPtC = 31.3 Hz, CH=CH (NHC)), 126.2 (CH,
tol-m-CH), 127.5 (CH, tol-m-CH (NHC)), 128.6 (CH, tol-o-CH), 128.8 (CH, tol-o-CH (NHC)),
136.8 (C, tol-i-C (NHC)), 140.7 (C, tol-p-C (NHC)), 141.5 (C, tol-i-C), 141.5 (C, tol-p-C), 178.1
(C, JPtC = 1365 Hz NCN).

IR (KBr, cm−1) νSO = 1277 cm−1, 1130 cm−1; δSO = 668 cm−1.

3.6. Computational Details

All calculations were performed by using DFT, as implemented in the ORCA 4.2 suite
of ab initio quantum chemistry programs [26]. Geometry optimizations were performed
with the B97M-D3BJ functional [27] using the double-ζ-quality def2-SVP [28] basis set that
included relativistic core potentials for Pd.

Solvent effects (dichloromethane, ε = 8.93) were included using CPCM. More accurate
single-point energies were computed from the optimized geometries using ωB97M-V [29]
DFT and the triple-ζ-quality def2-TZVPP [28] basis set. Vibrational frequencies were
computed at the B97M-D3BJ/def2-SVP level of theory to derive the Gibbs free energy.

3.7. Cytotoxicity Assay

Two types of ovarian cancer cell lines (A2780 and A2780cis), one breast cancer cell
line (MDA-MB-231) and a normal cell line (MRC-5) were cultured following the supplier’s
guidelines (Sigma-Aldrich, St. Louis, MO, USA) and maintained at 37 ◦C in a humidified
atmosphere containing 5% CO2. In 96-well plates, 1·103 cancer cells and 8·103 MRC-5 cells
were seeded and treated after 24 h with six different concentrations of Pt(0) complexes
(0.001, 0.01, 0.1, 1, 10, 100 µM) [30,31]. Stock solutions (10 mM) of all platinum complexes
were prepared using DMSO as a solvent. After 96 h of treatment, cell viability was assessed
using a CellTiter-Glo assay (Promega, Madison, WI, USA) with Tecan M1000 or SynergyH1
microplate readers (Mennedorf, Switzerland). IC50 values were determined from logistical
dose–response curves using GraphPad Prism 8 software. Triplicate measurements were
taken to calculate averages, and standard deviations were represented by error bars.

3.8. Crystal Structure Determination

The data of the 2a, 3a, 3b, 4b and 6b crystals were collected at the XRD2 beamline of
the Elettra Synchrotron, Trieste (Italy) [32], using a monochromatic wavelength of 0.620 Å,
at 100 K or 298 K. The datasets were integrated, scaled and corrected for Lorentz, absorption
and polarization effects using the XDS package [33]. Data from two random orientations
have been merged to obtain complete datasets for the triclinic 3a, 3b, 4b and 6b crystal
forms, using CCP4-Aimless [34,35] code. The structures were solved by direct methods
using the SHELXT program [36] and refined using full-matrix least squares implemented
in SHELXL−2019/3 [37]. Thermal motions for all non-hydrogen atoms have been treated
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anisotropically, and hydrogens have been included at calculated positions, riding on their
carrier atoms. Thermal and geometric restrains (SIMU, DFIX, DANG, FLAT) have been
used to properly model disordered and poorly defined fragments. Data for 4b have been
refined as a racemic twin (twin fraction refined to 30%). The Coot program was used
for structure building [38,39]. Pictures were prepared using Ortep3 [40] and Pymol [41]
software. The crystal data are given in Table S1.

Crystallographic data have been deposited at the Cambridge Crystallographic Data
Centre and allocated the deposition number CCDC 2323081, 2323083, 2323084, 2323085,
2323087 and 2323082 for 3a at 100 K, 3b at 100 K, 2a at 100 K, 2a at 298 K, 4b at 100
K and 6b at 100 K, respectively. These data can be obtained free of charge via https:
//www.ccdc.cam.ac.uk/structures (accessed on 9 February 2024).

4. Conclusions

In conclusion, we have reported a two-step synthesis of 17 new platinum(0) complexes
bearing different ancillary ligands and (E)-1,2-ditosylethene as a model olefin. These
compounds were exhaustively characterized by NMR and IR analyses, highlighting the
characteristic signals of the investigated complexes. Moreover, for some of them, it was
possible to confirm the structure by XRD analysis. The most stable compounds were
tested towards two different ovarian cancer cell lines (A2780 and A2780cis) and one breast
cancer cell line (MDA-MB-231). Most of the compounds exhibited good cytotoxicity (in the
micromolar range) towards A2780 and MDA-MB-231 cells, with IC50 values comparable
and sometimes even better than cisplatin. On the contrary, only a few compounds showed
cytotoxicity towards cisplatin-resistant cancer cells (A2780cis). Moreover, in the case of
complexes containing isocyanide and phosphine ligands, the best results were obtained
with triphenylphosphine and alkyl isocyanides (TIC and CyIC).

Notably, complexes 3d, 6a and 6b showed a poor cytotoxicity towards normal cells
(IC50 > 100 µM) and, at the same time, a good antiproliferative activity towards cancer cells.

We strongly believe that these three last complexes deserve to be investigated in depth
in the future, with the aim of defining in detail their mechanism of action and cytotoxicity
on more complex biological systems such as organoids and animal models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29051119/s1, Figure S1: 1H NMR spectrum of com-
pound 1 in CDCl3 at 298 K; Figure S2: 13C{1H} NMR spectrum of compound 1 in CDCl3 at 298 K;
Figure S3: 1H NMR spectrum of compound 2a in CDCl3 at 298 K; Figure S4: 13C{1H} NMR spectrum
of compound 2a in CDCl3 at 298 K; Figure S5: 31P{1H} NMR spectrum of compound 2a in CDCl3 at
298 K; Figure S6: 1H NMR spectrum of compound 2b in CDCl3 at 298 K; Figure S7: 13C{1H} NMR
spectrum of compound 2b in CDCl3 at 298 K; Figure S8: 31P{1H} NMR spectrum of compound 2b
in CDCl3 at 298 K; Figure S9: 1H NMR spectrum of compound 2c in CDCl3 at 298 K; Figure S10:
13C{1H} NMR spectrum of compound 2c in CDCl3 at 298 K; Figure S11: 31P{1H} NMR spectrum
of compound 2c in CDCl3 at 298 K; Figure S12: 1H NMR spectrum of compound 3a in CDCl3 at
298 K; Figure S13: 13C{1H} NMR spectrum of compound 3a in CDCl3 at 298 K; Figure S14: 1H NMR
spectrum of compound 3b in CDCl3 at 298 K; Figure S15: 13C{1H} NMR spectrum of compound
3b in CDCl3 at 298 K; Figure S16: 1H NMR spectrum of compound 3c in CDCl3 at 298 K; Figure
S17: 13C{1H} NMR spectrum of compound 3c in CDCl3 at 298 K; Figure S18: 1H NMR spectrum of
compound 3d in CDCl3 at 298 K; Figure S19: 13C{1H} NMR spectrum of compound 3d in CDCl3
at 298 K; Figure S20: 1H NMR spectrum of compound 4a in CDCl3 at 298 K; Figure S21: 13C{1H}
NMR spectrum of compound 4a in CDCl3 at 298 K; Figure S22: 31P{1H} NMR spectrum of com-
pound 4a in CDCl3 at 298 K; Figure S23: 1H NMR spectrum of compound 4b in CDCl3 at 298 K;
Figure S24: 13C{1H} NMR spectrum of compound 4b in CDCl3 at 298 K; Figure S25: 31P{1H} NMR
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