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GROWTH MODELS WITH EXTERNALITIES ON NETWORKS

GIORGIO FABBRI∗, SILVIA FAGGIAN†, AND GIUSEPPE FRENI‡

Abstract. This study examines the dynamics of capital stocks distributed among

several nodes, representing different sites of production and connected via a

weighted, directed network. The network represents the externalities or spillovers

that the production in each node generates on the capital stock of other nodes. A

regulator decides to designate some of the nodes for the production of a consump-

tion good to maximize a cumulative utility from consumption. It is demonstrated

how the optimal strategies and stocks depend on the productivity of the resource

sites and the structure of the connections between the sites. The best locations to

host production of the consumption good are identified per the model’s parameters

and correspond to the least central (in the sense of eigenvector centrality) nodes

of a suitably redefined network that combines both flows between nodes and the

nodes’ productivity.

Keywords: Capital allocation, Production externalities, Network spillovers, Eco-

nomic centrality measures.

JEL Classification: C61, D62, O41, R12.

1. Introduction

There is a growing interest in the literature in the study of the economic effects

of heterogeneous interactions of different entities. Multisector growth models with

externalities (e.g., Benhabib et al., 2000), metapopulation models of interconnected

natural resources (e.g., Sanchirico and Wilen, 2005) and network models of various

kinds (e.g., Ballester et al., 2006, Elliott and Golub, 2019) are examples of this trend.

In this paper, we take a network perspective in studying a multisector growth model

with externalities.

We consider a growth model where production is distributed among several loca-

tions, different for productivity, and connected by the fact that production in one

engenders positive externalities on the production of the others. A single agent aims

to localize the production of a consumption good, in order to maximize the sum of

the sites’ utility from consumption.
1
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This work develops a simple dynamic model where the n (n ≥ 0) nodes of a

weighted, directed network represent the n sites where the capital stock is accumu-

lated, and the weight on the edges between two nodes represent the externalities

of production in one node on the production in the other. Specifically, it aims to

show how the structure of the network and other parameters of the system affect the

agent decision in the choice of one or more nodes/locations for the production of the

consumption good.

As the main contribution to the literature, the study shows that when the agent

is sufficiently “patient”, in the generalized growth theory sense that their rate of dis-

count is close to a critical discount rate,1 and the network is strongly connected, the

(possibly not unique) optimal closed-loop strategies are linear in the stock, exhibiting

an analytic formula for such strategies (Theorems 1 and 3). Moreover, at optimum,

independently of the assignment, the different site stocks are evaluated via a con-

stant common vector of relative prices that proves to be the eigenvector centrality of

another related network that combines the spillover effect and the sites’ net rates of

growth. The effect of these two forces are jointly captured by the adjacency matrix of

such modified network, that is the sum of the adjacency matrix of the original network

and the diagonal matrix of net productivities of sites.2 Moreover, it is proven that the

best allocation of the production of the consumption good is at the most peripheral

node(s), namely that (those) with the least centrality. For initial stocks in a cone

contained in the positive orthant (and characterized by means of eventually expo-

nentially positive matrices, as in Noutsos and Tsatsomeros, 2008), such allocation is

placed immediately at the most peripheral node. For other initial capital stocks, the

allocation in the most peripheral node is best in the long run, and initially may have

to be placed otherwise, notably when the initial capital stock in the most peripheral

nodes is small. Furthermore, if the least eigencentrality is unique, the optimal control

is unique, at least when the initial stock belongs to such cone.

The model is further extended to enclose transportation costs (Theorem 3), whose

effect is to modify the eigencentrality and the associated hierarchy of nodes.

This model is closely related to the one developed in Fabbri et al. (2024), and has

been briefly introduced in Fabbri et al. (2022) with the difference that in such works it

1See e.g., McFadden, 1973 for a discussion of critical discount rates in optimal growth theory.
2The resulting matrix may well have negative terms on the principal diagonal, although the other

entries remain nonnegative - i.e. it is a Metzler matrix - hence the associated network could be

referred to as a ”signed” network. Nonetheless, the fact that its adjacency matrix is Metzler helps

preserving several properties, such as the Perron-Frobenius property.



GROWTH MODELS WITH EXTERNALITIES ON NETWORKS 3

is assumed that several independent players occupy one node of exclusive exploitation

and interact in a dynamic game. In that case, the results in Fabbri et al. (2024) apply,

providing a divergent outcome, as externalities are not internalized by the different

agents. The model is also related to that in the continuous space-time growth models

by Boucekkine et al. (2013); Fabbri (2016); Boucekkine et al. (2019) and the discrete

space version developed by Calvia et al. (2023). While some of the techniques em-

ployed overlap with those found in the aforementioned papers, the economic models

feature notable distinctions. In Boucekkine et al. (2013) the model involves strategic

iterations for natural resource extraction, in Fabbri (2016) consumption takes place

independently at each node3 (at every node, a portion of the production is not in-

vested, resulting in consumption that takes place exclusively on-site). Furthermore,

in the latter cases, explicit results are provided exclusively for the symmetric scenario,

involving the Laplacian in continuous time and symmetric matrices in the discrete

case. These disparities also manifest themselves in the system’s behavioral aspects

when examining its asymptotic state in response to variations in agents’ preference

parameters (as discussed in Section 3.3).

The article is structured as follows: in Section 2 we introduce the model and discuss

its mathematical formulation. In Section 3, we present the main results of the article:

the introduction of the candidate optimal strategy (Theorem 1) and its admissibility

(Theorem 2), followed by a discussion (Subsection 3.3) on the asymptotic properties

of the system as the parameters of the agents’ preferences vary. Section 4 introduces

the extension of the model with transportation costs. Section 5 concludes. Appendix

A contains the proofs of statements.

2. The model

We consider capital stocks available in different but interconnected areas that are

considered to be sufficiently different from each other (and sufficiently homogeneous

in their interior) so as to be described by different parameters. We then analyze a

growth model in which the production in an area generates non-negative spillovers

on stocks in the others.

3This hypothesis can be conceived as an economic model featuring infinitely high transportation

costs. The findings presented in Section 4, illustrating the extension of our results to include explicit

(iceberg) transportation costs, may be viewed as an intermediary model bridging the gap between

the two extremes: one characterized by infinite transportation costs and the other by negligible

transportation costs.
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Mathematically speaking, we consider a network G with n nodes – as many as the

number of subareas – that we assume to be directed and weighted.

We denote by Ki(t) the capital stock at node i at time t and by yi the local

productions that we assume to linearly depend on the used capital: yi = ΓiKi, where

Γi > 0 is a productivity coefficient. We suppose that production at a node j generates

the spillover bjiyj = bjiΓjKj at node i, where bij are given nonnegative coefficients.

They are the weight of the links of our network so that G will represent the spillover

network of our economy that we will suppose to be strongly connected. B = (bij) is

the adjacency matrix of G.

The budget constraint at each location i imposes that the augmented production

ΓiKi(t) +
∑

j ̸=i bjiΓjKj(t) is split at each time between the consumption ci(t) and

the investment in the location-specific investment Ii(t). We assume that investments

are reversible (i.e., each Ii(t) can be negative). If we suppose that the capital at the

location j decays at rates δi we get the evolution of the the capital stock at node-i:

K̇i(t) = Ii(t)− δKi(t) = (Γi − δi)Ki(t) +
∑
j ̸=i

bjiΓjKj(t)− ci(t),

where i, j ∈ N, 1 ≤ i, j ≤ n, and in matricial form the system dynamics is given byK̇(t) = [Γ−D +B⊤Γ]K(t)− c(t), t ≥ 0

K(0) = k
(1)

where Γ is the diagonal matrix of productivities Γi, B = (bij), D is the (also diagonal)

matrix of decay rates δi, c(t) = (c1(t), · · · , cn(t))⊤

We require the capital stocks in every node to be nonnegative, that is

Ki(t) ≥ 0, ∀i, ∀t ≥ 0. (2)

Our goal is to identify the nodes where a certain agent, having free access to all,

prefers to produce the consumption good or, equivalently, those from which they

prefer to draw resources for consumption. We assume that the total consumption of

the agent is
n∑

i=1

ci(t) = ⟨c(t), e⟩

where e =
∑n

i=1 ei = (1, 1, · · · , 1)⊤, and that they maximize the functional

J(c) =

∫ +∞

0

e−ρtu

(
n∑

i=1

ci(t)

)
dt =

∫ +∞

0

e−ρtu (⟨e, c(t)⟩) dt, (3)
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with u the utility function

u(c) = ln(c) or u(c) =
c1−σ

1− σ
, σ > 0, σ ̸= 1

(the case of a logarithmic u stands for the case σ = 1), and ρ ∈ R is the discount

rate.4

In the above model, all externalities are non-negative. However, extensions of

the Perron-Frobenius theory to matrices with some negative entries (for example,

eventually positive or eventually exponentially positive matrices, see e.g. Farina and

Rinaldi, 2000) can be used to extend the analysis to cases in which positive and

negative externalities coexist.

Remark 1 Since by assumption the network G is strongly connected, the matrix

B is irreducible. Moreover, by hypothesis, B is non-negative. Since Γ is diagonal

with strictly positive values on the diagonal, the same properties hold for ΓB, so that

the matrix

ΓB + Γ−D

is again irreducible and has non-negative values out of the diagonal (it is a Metzler

matrix). This fact has three consequences:

(i) ΓB +Γ−D is again the adjacency matrix of a network (in this case a signed

network because it might have negative loops)

(ii) we can apply to ΓB+Γ−D the Perron-Frobenius theorem in its strong form

(see Bapat and Raghavan, 1997, Theorem 1.4.4 page 17) and conclude that it

has a simple (not necessarily positive) real eigenvalue λ, strictly greater than

the real parts of the other eigenvalues, and with a unique positive associated

normalized eigenvector η.

(iii) Since ΓB + Γ − D is irreducible and has non-negative non-diagonal entries,

then its transpose matrix

B⊤Γ + Γ−D

enjoys the same properties and then has a unique positive eigenvector ζ (dif-

ferent from η, in general) associated to the same dominant (i.e. with real part

strictly larger than the real part of any other eigenvalue) eigenvalue λ.

4The results hold regardless of the sign of ρ. Although a negative discount rate is uncommon

in applications, a stream of literature considers “upcounting” (see e.g., Le Van and Vailakis, 2005,

Dolmas, 1996, and Rebelo, 1991).
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3. Explicit Solutions

We here identify the set of parameters for which there exists an explicit solution.

We do so by means of Bellman’s Dynamic Programming. The associated Hamilton-

Jacobi-Bellman (briefly, HJB) equation is

ρv(k) = H(∇v(k)) + ⟨∇v(k), [(I +B⊤)Γ−D]k⟩ (4)

where the Hamiltonian H(p) is given by

H(p) = max
c≥0

{u (⟨e, c⟩)− ⟨c, p⟩} =


σ

1− σ

(
min

i
pi

)1− 1
σ
, σ ̸= 1,

−
[
ln
(
min

i
pi

)
+ 1
]

σ = 1.
(5)

To prove the last equality, we start by noting that: (a) the above maximum is attained

on the boundary except when p/|p| = e/|e|; (b) we are assuming (no positivity

constraint on stocks) the relaxed condition (2); (c) for equal extracted stocks ⟨e, c⟩, the
maximum is obtained when −

∑n
i=1 pici is minimized, hence when all the consumption

takes place at the node(s) where prices pi are at their minimum, i.e. at nodes in N(p)

where

N(p) = {ℓ : pℓ = min
i

pi} ⊆ {1, 2, ..., n}.

Let c∗i denote the elements of the maximizing vector c∗. Then

−
n∑

i=1

pic
∗
i = −min

i
pi
∑

i∈N(p)

c∗i ≡ −(min
i

pi)q
∗

where

q∗ = argmaxq{u(q)− q(min
i

pi)} = (u′)−1(min
i

pi)

Thus, the candidate optimal consumption is of type

c∗i = 0, ∀i ̸∈ N(p) and
∑

i∈N(p)

c∗i = q∗

and (5) readily follows.

3.1. Optimal Strategies. We now provide an explicit solution to the model problem

in the assumption that θ, defined as

θ :=


ρ− λ(1− σ)

σ
, σ ̸= 1

ρ, σ = 1
(6)

is (positive and) small enough, as described in (13). For the sake of simplicity, we

initially assume assume that there is a unique minimal (positive) coordinate of the
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eigenvector η. By possibly renaming the nodes, we can assume η1 = mini ηi. For the

extension of the theorem to multiple minimizers, the reader is referred to Theorem 3.

Theorem 1 (Optimal Strategies) Assume σ ̸= 1, θ > 0, and that η1 is the

unique minimal coordinate of η. The following facts hold:

(i) when admissible, the closed-loop optimal control is c∗ such that

c∗i = 0, ∀i ̸= 1 and c∗1(t) =
θ

η1
⟨K(t), η⟩ (7)

(ii) moreover, for all k ̸= 0, the value function of the problem in section 2 is

v(k) =
θ−σ

1− σ
ησ−1
1 ⟨k, η⟩1−σ; (8)

(iii) the associated optimal trajectory K∗(t) satisfies

⟨K∗(t), η⟩ = ⟨k, η⟩e(λ−θ)t (9)

Proof. See Appendix A. □

Remark 2 One can prove that in the case of logarithmic utility we have

θ = ρ, V (k) =
1

ρ

[
ln

(
⟨k, η⟩ρ
η1

)
− 1

]
.

Next we discuss admissibility of the optimal control described by (7). The following

remarks come handy:

(a) The closed-loop equation (briefly, CLE), namely the evolution system associ-

ated to the optimal control (7), has the form

K̇(t) = AK(t)

where A is the matrix

A = Γ−D +B⊤Γ− θ

η1
e1η

⊤. (10)

so that the optimal trajectory is given by

K∗(t) = etAk.

(b) It is also useful to recall that a matrix A is said eventually exponentially non

negative (positive), with exponential index t0 if

etA ≥ 0 (etA > 0), ∀t ≥ t0. (11)

All Metzler matrices are eventually exponentially non-negative with exponen-

tial index 0, and viceversa (see Lemma 3.1 in Noutsos and Tsatsomeros, 2008).
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Thus condition (13) in the Theorem 2 is equivalent to requiring A eventually

exponentially positive with exponential index 0, from which nonnegativity of

the trajectory is inferred, for every initial nonnegative stock k.

In the next Theorem we discuss under which assumptions the control described by

(7) is admissible in terms of eventual exponential positivity of the matrix A.

Theorem 2 (Admissibility) Assume that η1 is the unique minimal coordinate

of η. Assume also σ ̸= 1, θ > 0. The optimal control c∗ described in by (7) is

admissible (and then optimal) in the following two sets of assumptions:

(i) if A given by (10) is eventually exponentially positive, with index t0 = t0(A)

and the initial stock k lies in the cone K, defined by

K := et0A
(
Rn

+

)
. (12)

(ii) if θ satisfies

0 < θ < η1
Γjbj1
ηj

, for all j. (13)

and the initial stock k is in the positive orthant Rn
+.

Proof. See Appendix A. □

Remark 3 The assumption of A being eventually exponentially positive clearly

yields an implicit bound on the magnitude of θ. We refer the reader to Section 3.3

where we discuss how such implicit condition can be further explicitated.

3.2. Long-run Stocks. We now analyze the long-term behavior of the stock, es-

tablishing if the stock tends to stabilize over time around certain values at different

nodes. Note that for a null extraction, the convergence is toward the direction of the

eigenvector ζ associated with the dominant eigenvalue λ. Here, we will explain how

the equilibrium extraction reduces the growth rate to λ−θ and modifies the direction

of the associated eigenvector to ζ̂.

In the following lemma we establish a relationship between the eigenvectors and

eigenvalues of A⊤ to those of Γ −D + B⊤Γ (regardless of whether condition (13) is

met).

Lemma 1 Let η and ζ be respectively the (real) eigenvectors of the matrices ΓB+

Γ − D and its transpose, both associated to the dominant eigenvalue λ, as described

in Remark 1.
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(i) The vector η is an eigenvector of A⊤ associated with the eigenvalue λ − θ;

hence, there exists a real eigenvector ζ̂ of A associated with λ− θ. If θ > 0 is

small enough then λ− θ is the dominant eigenvalue of both the matrices and

ζ̂ is a positive vector.

(ii) Consider a basis {ζ, v2, . . . , vn} of generalized eigenvectors of Γ−D+B⊤Γ, as-

sociated with the eigenvalues {λ, λ2, . . . , λn}. Then {ζ̂ , v2, . . . , vn} is a basis of

generalized eigenvectors for A associated with eigenvalues {λ− θ, λ2, . . . , λn}.
In particular the eigenspace associated to λ− θ has dimension 1.

Proof. See Appendix A. □

We now establish that, in the long run, the optimal trajectoryK∗ converges towards

the direction of the eigenvector ζ̂ of A or, more precisely, that the detrended optimal

trajectory

Y (t) = e−(λ−θ)tK∗(t)

converges towards a multiple of ζ̂, provided θ is small enough.

Proposition 1 In the assumptions of Theorem 2, and for

0 < θ < λ− Reλ2,

where λ2 is the eigenvalue with greatest real part among {λ2, ..., λn}, the detrended

optimal trajectory Y (t) satisfies

lim
t→+∞

Y (t) =
⟨k, η⟩
⟨ζ̂ , η⟩

ζ̂ (14)

3.3. Bounds on Impatience of the Decision Maker. We have already noted that

the assumption of A being eventually exponentially positive, appearing in Theorem

2(i) and in Proposition 1, conceals an implicit bound on the magnitude of θ, em-

bodying “impatience” of the decision maker. Such interpretation is straightforward

for logarithmic utility where θ = ρ and a small enough θ can be seen as the decision

maker being sufficiently patient.

We intend to provide a more explicit bound and try robustness of the results of

Theorem 2(i) with respect to changes in the agent preferences in terms of impatience.

Remark 4 It will not be restrictive to limit the analysis to the case of a non-

negative matrix A. Indeed the matrix A is a Metzler matrix. If there are negative

elements on the main diagonal, we can add to A the matrix aI and for a big enough

the resulting matrix A+aI has the same eigenspaces (and generalized eigenspaces) as
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A but a spectrum which is shifted by a in the complex plane. For our purposes, which

primarily involve understanding the relative ranking of the real parts of the eigenval-

ues of A and its submatrices, as well as the behaviors of the associated eigenvectors,

there is no loss of generality in assuming that A is non-negative.

Remark 5 We recall the following facts:

(i) a matrix M is said to have strong Perron–Frobenius property if its spectral ray

ρ(M) is a (positive, real) simple eigenvalue, strictly larger than the norm of

all other eigenvalues, and associated to a positive eigenvector; for nonnegative

matrices, the condition on maximal norm can be replaced by ρ(M) larger than

the real part of all other eigenvalues;

(ii) the property (11) is equivalent to the following fact (Theorem 3.3 in Noutsos

and Tsatsomeros, 2008):

There exists a ≥ 0 such that A + aI and A⊤ + aI both have the strong Per-

ron–Frobenius property.

Now we analyse what happens when θ grows, starting from a positive level close to

zero. Preliminarily, we observe that the feedback described in equation (7) naturally

extends to the limiting case of θ = 0 (even though the optimization problem is ill-

posed in this scenario), with c∗ = 0. In this situation, the system evolves with a matrix

A defined in (10) coinciding with that of the system without extraction ΓB +Γ−D,

implying ζ = ζ̂. As noted in Remark 1, A is irreducible, and thus (since it is also

non-negative) it satisfies the strong Perron-Frobenius property described in Remark

5. Consequently, every detrended trajectory converges to a multiple of ζ, in view of

Proposition 1.

When instead θ is strictly positive, Lemma 1 indicates the two phenomena at play

for increasing values of θ:

(1) the eigenvector ζ̂ (which is ζ modified by the effect of consumption) may

cease to be contained inside the positive orthant; in this case, the trajectory

associated to A may bear negative or null components; possibly this fact takes

place for θ surpassing a first threshold θ1;

(2) if θ surpasses the threshold θ2 := λ − Re(λ2), then λ − θ is no longer the

greatest eigenvalue of A; in this case, the trajectories of the system ruled by A

no longer converge towards the direction of ζ̂, the system becomes unstable,

and condition (11) fails to hold (although a trajectory starting on the direction

of ζ̂ may still be optimal).
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In what follows we will prove that, at least in the case in which λ2 is real

0 < θ1 ≤ θ2

meaning that the stability is lost before the modified dominant eigenvector ζ̂ leaves

the positive orthant, and we provide a characterization of θ1.

Lemma 2 We define λ22 as the dominant eigenvalue5 of the (n − 1) × (n − 1)

matrix A22, obtained from A by removing the first row and the first column, and we

set θ1 = λ − λ22. If 0 < θ < θ1, then ζ̂ is a positive vector. If θ = θ1 then ζ̂ is

non-negative with null first component ζ̂1.

Proof. See Appendix A. □

The next proposition orders the thresholds θ1, θ2 when λ2 is real.

Proposition 2 Suppose that λ2, the second (ordered in terms of greatest real

part) eigenvector of Γ−D+B⊤Γ is real. Then, as long as 0 < θ < λ− λ22, we have

that λ2 < λ− θ.

Proof. See Appendix A. □

The above proposition implies 0 < θ1 ≤ θ2, where θ1 = λ − λ22 and θ2 = λ − λ2

Hence, Theorems 2 and Proposition 1 hold both for 0 < θ < λ− λ22.

4. An Extension of the Model with Transportation Costs

We now assume that the intertemporal utility takes into account iceberg-type trans-

portation costs βi ∈ [0, 1) (βi = 0 meaning no loss of consumption goods during

transportation, while βi = 1 would mean a complete loss), namely

J(c) =

∫ +∞

0

e−ρtu

(
n∑

i=1

(1− βi)ci(t)

)
dt, (15)

where β = (β1, · · · , βn)
⊤. At the same time we remove the simplifying assumption

that η1 = mini ηi with η1 being the unique minimal coordinate of η. In such case, the

Hamiltonian function becomes

H̃(p) = max
c≥0

{u (⟨e, (I − B)c⟩)− ⟨c, p⟩} ,

5The matrix A22 is non-negative (see Remark 4), we can then apply the weak form of the Perron-

Frobenius Theorem and obtain that A22 has a non-negative real eigenvalue, larger (or equal) than

the real part of any other eigenvalue of A22.
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where

I − B =


1− β1 0 · · · 0

0 1− β2 · · · 0
...

...

0 0 · · · 1− βn


and noted that ⟨c, p⟩ = ⟨(I − B)−1p, (I − B)c⟩, one has

H̃(p) = H((I − B)−1p) =


σ

1− σ

(
min

i

pi
1− βi

)1− 1
σ

, σ ̸= 1,

−
[
ln

(
min

i

pi
1− βi

)
+ 1

]
, σ = 1.

(16)

Theorem 3 Assume σ ̸= 1, θ > 0, k ∈ Rn
+, and either set of assumptions:

(i) θ satisfies (13);

(ii) k ∈ K, where K is defined by (12), and (11) is satisfied.

Then, the Value Function of the problem of maximizing (15) , subject to (1) is

v(k) =
θ−σ

1− σ

(
min

i

ηi
1− βi

)σ−1

⟨k, η⟩1−σ. (17)

Moreover, if

N∗ = argmini

{
ηi

1− βi

}
the closed-loop optimal controls are the vectors c∗ ∈ Rn

+ such that

c∗j = 0, ∀j ̸∈ N∗ and
∑
i∈N∗

c∗i =
θ

mini
ηi

1−βi

⟨k, η⟩. (18)

Proof. See Appendix A. □

5. Conclusions

This study delves into a model of distributed capital stocks across nodes, each repre-

senting distinct production sites interconnected through a directed, weighted network.

The network is used to represent the spillover effects originating from production at

one site, impacting the capital stock of neighboring sites.

A primary aspect of the investigation revolves around a regulatory decision to

earmark specific nodes for consumption goods production to maximize cumulative

utility from consumption. Results highlight the complex relationship between opti-

mal strategies, capital stocks, and both the productivity of resource nodes and the
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structure of their interconnections. The optimal locations to draw resources for con-

sumption correspond to the nodes with the least eigenvector centrality in a redefined

network that merges node productivities with inter-node flows. The study emphasizes

the critical role of network structure and node productivity in shaping production,

consumption, and resource allocation decisions.

Several open questions remain. The first, and most immediate, is: what happens

when the conditions of Theorem 2 are not met and thus the proposed optimal control

is not admissible? The theorem’s assumptions might not be met for two reasons. The

first is that, even if the parameter constraints are met, the system starts from a state

outside the cone identified in the statement. How can the dynamics be characterized

in this case? How can it be determined if the system still converges to the steady

state identified in the statement or not?

The second reason is that the assumptions on the parameters (especially regarding

the agent’s level of impatience) are not met. What happens in this scenario? What

do the optimal controls and trajectories look like? This second question becomes

even more relevant in the context of an extension that includes transportation costs,

especially when these costs are significant.
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Appendix A. Appendix: Proofs

Proof of Theorem 1. We search for a solution of HJB of type v(k) = b
1−σ

⟨k, η⟩1−σ,

with ∇v(k) = b⟨k, η⟩−ση so that HJB would imply

ρb

1− σ
⟨k, η⟩1−σ =

σ

1− σ

(
min

i

∂v

∂ki

)1− 1
σ

+ ⟨∇v(k), [(I +H⊤)Γ−D]k⟩ (19)

=
σ

1− σ
(η1)

1− 1
σ b1−

1
σ ⟨k, η⟩1−σ + λb⟨k, η⟩1−σ (20)

that is

b =

(
σ

ρ− λ(1− σ)

)σ

(η1)
σ−1 = θ−σ (η1)

σ−1
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so that

c∗1 = b⟨k, η⟩−σ(η1)
− 1

σ =
θ

η1
⟨k, η⟩, c∗i = 0, i ̸= 1.

We can then apply a rather standard verification technique (see for instance Flem-

ing and Rishel, 2012), the uniqueness of the optimal control follows by the concavity

of the problem (see Acemoglu, 2008). □

Proof of Theorem 2. (i) The only property to check is

etA(K) ⊂ Rn
+.

By (11), we have that etA > 0 for all t ≥ t0, thus K ⊆ Rn
+. Moreover, by

definition k ∈ K implies k = et0Ak1 for some k1 ∈ Rn
+, which implies that, for

every s ≥ 0,

esAk = e(s+t0)Ak1 ≥ 0.

(ii) When instead the stronger assumption (13) hold, it is immediate to check that

the matrix A is a Metzler matrix, so that the trajectory X∗(t) = etAk remains

positive at all times, for every initial condition k.

□

Proof of Lemma 1. The validity of (i) is straightforward. For the proof of (ii), we

observe first that any generalized eigenvector v corresponding to an eigenvalue λi ̸= λ

is orthogonal to η. Let’s consider an eigenvalue λi ̸= λ (which implies i ≥ 2) and let

vi be an element of the generalized eigenspace Vi. There exists a positive integer m

such that (Γ−D +B⊤Γ− λiI)
mvi = 0. This leads to:

0 = η⊤
[
(Γ−D +B⊤Γ− λi)

mvi
]
=
[
η⊤(Γ−D +B⊤Γ− λi)

m
]
vi = (λ− λi)

mη⊤ vi.

Since λ ̸= λi, it follows that η
⊤ vi = 0, which means η is orthogonal to vi. Given the

definition of A this fact ensures that vi is also a generalized eigenvector of A with the

eigenvalue λi.

Knowing that ζ̂ is an eigenvector for A with the eigenvalue λ−θ, it remains to note

that the set {ζ̂ , v2, . . . , vn} consists of linearly independent vectors. This is evident

since {v2, . . . , vn} are linearly independent (forming a subset of a basis) and ζ̂ belongs

to a distinct generalized eigenspace (of A) from all the Vi for i ≥ 2, ensuring it cannot

be expressed as a linear combination of the vi for i ≥ 2. □

Proof of Proposition 1. Since, thanks to Lemma 1 we know that the eigenspace

associated to λ − θ has dimension 1 and all other eigenvectors has lower real part
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than λ− θ, it is straightforward to prove that the detrended trajectory converges to

some real multiple of ζ̂. So there exists α > 0 such that

lim
t→+∞

Y (t) = αζ̂.

On the other hand, from (9), we derive

⟨Y (t), η⟩ ≡ ⟨k, η⟩,

Combining these two we derive

⟨k, η⟩ = lim
t→+∞

⟨Y (t), η⟩ = ⟨ lim
t→+∞

Y (t), η⟩ = ⟨αζ̂, η⟩,

so that

α =
⟨k, η⟩
⟨ζ̂ , η⟩

.

□

Proof of Lemma 2 . We show first that, as we increase the value of θ, the first

component of ζ̂ to become nonpositive is necessarily the first (although other com-

ponents might also become non-positive simultaneously). By contradiction, assume

that ζ̂ is non-negative, with ζ̂1 > 0 and ζ̂ℓ = 0 for a ℓ ̸= 1. Then, all ζ̂i such

that biℓ > 0, must also be zero. Indeed, if we set Kℓ = 0, then the equation

K̇ℓ(t) = (Γi − δi)Kℓ(t) +
∑

j ̸=i bjiΓjKj(t) > 0 arises and this cannot happen (along

the eigenvalues of A, the trajectory remains stationary, barring scalar multiplications,

thus, if the initial value of Kℓ is zero, it should stay that way). By iterating this logic

for all nodes linked to nodes linked to ℓ and so forth, and given that the graph is

strongly connected, all components of the eigenvector must be zero. This contradicts

our initial assumption of a strictly positive first component.

So, as we increase the value of θ, the first component to become non-positive is

necessarily the first one. When the first component is zero the eigenvector has the

form ζ̂ = (0, ζ̂2) where ζ̂2 is a non-negative vector in Rn−1 and

(λ− θ)(0, ζ̂2) = A(0, ζ̂2) = (a1, A22ζ̂2)

so that a1 = 0 and λ−θ is an eigenvalue of A22. Increasing θ this condition is satisfied

the first time when ζ̂2 is an eigenvector for the dominant eigenvalue λ22. This proves

the claim. □

Proof of Proposition 2 . The matrix A has the form

A =

(
a11 − θ A21 − θ(1, 1, ..., 1)

A12 A22

)
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so, if we consider an eigenvector v associated to λ2 we have (restricting our attention

to he last n− 1 components)

v⊤1 A12 + A22(v2, .., vn)
⊤ = λ2(v2, .., vn)

⊤.

Now two cases may occur:

(i) if v1 = 0 then (v2, .., vn) is an eigenvector of A22 but, since λ22 is the dominant

eigenvalue of A22 we have λ2 < λ22 < λ− θ and we get the claim;

(ii) if v1 ̸= 0 we can suppose (up to normalizing the vector) that v1 = 1 and we get

A12 = (λ2I − A22)(v2, .., vn)
⊤.

We observe that, since v is also an eigenvector for Γ−D+B⊤Γ, which is irreducible,

but not the one associated to the dominant eigenvalue, then it necessarily has negative

coordinates among v2, . . . , vn.

If by contradiction, λ2 > λ22 then λ2I − A22 is invertible and it inverse can be

written as

1

λ2

(
1− A22

λ2

)−1

=
1

λ2

∞∑
k=0

(
A22

λ2

)k

so that

(v2, . . . , vn)
⊤ =

1

λ2

∞∑
k=0

(
A22

λ2

)k

A12

but, since A12 is non-negative and each term of the sum
∑∞

k=0

(
A22

λ2

)k
is non-negative,

that would imply that (v2, . . . , vn)
⊤ is non-negative, a contradiction. □

Proof of Theorem 3 . The proof is very similar to that of Theorem 1 so that here

we point out only the differences.

We search for a solution of HJB of type v(k) = b
1−σ

⟨k, η⟩1−σ, with ∇v(k) =

b⟨k, η⟩−ση, so that HJB would imply

ρb

1− σ
⟨k, η⟩1−σ =

σ

1− σ

(
min

i

1

1− βi

∂v

∂ki

)1− 1
σ

+ ⟨∇v(k), [(I +H⊤)Γ−D]k⟩ (21)

=
σ

1− σ

(
min

i

ηi
1− βi

)1− 1
σ

b1−
1
σ ⟨k, η⟩1−σ + λb⟨k, η⟩1−σ (22)

that is

b =

(
σ

ρ− λ(1− σ)

)σ (
min

i

ηi
1− βi

)σ−1

= θ−σ

(
min

i

ηi
1− βi

)σ−1
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so that

q∗ =
∑
i∈N∗

c∗i = b⟨k, η⟩−σ

(
min

i

ηi
1− βi

)− 1
σ

=
θ

mini
ηi

1−βi

⟨k, η⟩

The remainder of the proof proceeds as in the case of Theorem 1. □
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