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This paper introduces a novel stochastic process with signed integer values. Its autore-
gressive dynamics effectively captures persistence in conditional moments, rendering
it a valuable feature for forecasting applications. The increments follow a Generalized
Poisson distribution, capable of accommodating over- and under-dispersion in the
conditional distribution, thereby extending standard Poisson difference models. We
derive key properties of the process, including stationarity conditions, the stationary
distribution, and conditional and unconditional moments, which prove essential for
accurate forecasting. We provide a Bayesian inference framework with an efficient
posterior approximation based on Markov Chain Monte Carlo. This approach seamlessly
incorporates inherent parameter uncertainty into predictive distributions. The effective-
ness of the proposed model is demonstrated through applications to benchmark datasets
on car accidents and an original dataset on cyber threats, highlighting its superior fitting
and forecasting capabilities compared to standard Poisson models.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Integer-valued variables are ubiquitous in diverse
ields, including medicine (Cardinal, Roy, & Lambert, 1999)
pidemiology (Davis, Dunsmuir, & Wang, 1999; Zeger,
988), finance (Liesenfeld, Nolte, & Pohlmeier, 2006; Ry-
berg & Shephard, 2003), and economics (Freeland, 1998;
reeland & McCabe, 2004). While literature is abundant
n modelling integer-valued data, fewer studies specif-
cally address signed integer-valued data, as their mod-
lling presents unique challenges (e.g., see Cunha, Vas-
oncellos, & Bourguignon, 2018; Koopman, Lit, & Lucas,
017; Pedeli & Karlis, 2011; Shahtahmassebi & Moyeed,
014, 2016). This paper contributes to this literature by
ntroducing a novel dynamic model based on the gen-
ralized Poisson difference (GPD) distribution. The GPD
amily, pioneered by Consul (1986), is highly flexible,
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accommodating unevenly dispersed data, both over- and
under-dispersed. It encompasses equal dispersion as a
special case, recovering the standard Poisson difference
(PD) distribution, also known as the Skellam distribution
(see, e.g., Shahtahmassebi and Moyeed (2016)).

In the literature on integer-valued autoregressive pro-
cesses, two primary modelling approaches have emerged:
integer-valued autoregressive-moving average models
(INARMA) and integer-valued GARCH (INGARCH). INARMA
models, introduced through binomial thinning (Al-Osh
& Alzaid, 1987; McKenzie, 1986), have been extended
in various directions (see, e.g., Alzaid & Al-Osh, 1993;
Jin-Guan & Yuan, 1991), including processes defined on
signed integers (e.g., Alzaid & Omair, 2014; Andersson &
Karlis, 2014; Cunha et al., 2018; Freeland, 2010; Kim &
Park, 2008). The INGARCH process with Poisson margins
was initially proposed by Ferland, Latour, and Oraichi
(2006) and subsequently extended by Zhu (2012) to ac-
commodate under- and overdispersion. Additionally,
Koopman et al. (2017) and Alomani, Alzaid, Omair, et al.
(2018) extended it to handle signed integers.
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This paper adopts the INGARCH modelling approach
ue to its numerous advantages. Firstly, it demonstrates
mproved fitting for count time series in the presence
f over- and under-dispersion and time-varying vari-
nce (Zhu, 2012). Secondly, it exhibits simpler conditional
robabilities, rendering it more tractable for likelihood-
ased inference methods and forecasting. We propose
new INGARCH model with Generalized Poisson Dif-

erence (GPD) conditional probabilities, referred to as
PD-INGARCH. This model extends PD-INGARCH
odels (Koopman et al., 2017) to account for uneven dis-
ersion and GP-INGARCH models (Zhu, 2012) to accom-
odate signed integer data. Additionally, we investigate

he theoretical properties of the proposed GPD-INGARCH
nd develop a suitable inference procedure.
Thinning operators play a crucial role in analyzing

he properties of integer-valued processes. Among these
perators, binomial thinning, initially introduced by Steu-
el and van Harn (1979), is the most commonly used.
ver time, it has been subject to generalizations in var-
ous directions (see, e.g., Alzaid & Al-Osh, 1993; Kim &
ark, 2008; Latour, 1998; McKenzie, 1985, 1986; Osh &
ly, 1992). Detailed reviews of binomial thinning and its
eneralizations can be found in works by Scotto, Weiß,
nd Gouveia (2015) and Weiß (2008). Thinning opera-
ions can be combined linearly to define new operations
uch as the binomial thinning difference (Freeland, 2010)
nd the quasi-binomial thinning difference (Cunha et al.,
018). This paper uses the quasi-binomial thinning differ-
nce to establish essential process properties, including
tationarity conditions and moments.
Another significant contribution pertains to the infer-

nce approach. While maximum likelihood estimation has
een extensively explored for integer-valued processes,
ayesian inference procedures have received compara-
ively less attention. Notably, Chen and Lee (2016) in-
roduced the Bayesian zero-inflated GP-INGARCH model
ith structural breaks, Zhu and Li (2009) proposed a
ayesian Poisson INGARCH(1,1), and Chen, So, Li, and
riboonchitta (2016) presented a Bayesian Autoregres-
ive Conditional Negative Binomial model. In this study,
e develop a Bayesian inference procedure for the pro-
osed GPD-INGARCH process, employing a Markov Chain
onte Carlo (MCMC) algorithm for posterior approxima-

ion. One of the advantages of the Bayesian approach
s that extra-sample information and constraints on
he parameter value can be easily included in the
stimation process through the prior distributions. For
on-Gaussian GARCH models, Bayesian inference can be
ffectively combined with data augmentation strategies
o enhance the tractability of the likelihood function and
umerical methods for addressing complex inference
roblems (see Ardia (2008)). Furthermore, the Bayesian
ramework allows for the straightforward incorporation
f parameter uncertainty into the predictive distribution,
hereby enhancing the robustness of forecasts (see, e.g.,
cCabe & Martin, 2005; McCabe, Martin, & Harris, 2011,
nd references therein).
We apply our model to a benchmark dataset on car

ccidents near the Schiphol airport, previously studied
n Andersson and Karlis (2014), and Brijs, Karlis, and Wets
2

(2008) with the primary purpose of evaluating fitting and
forecasting abilities of our model with respect to models
previously used for this dataset. We also cover a second
application to a cyber-threat dataset. Cyber threats are
increasingly considered a top global risk for the financial
and insurance sectors and the economy as a whole (e.g.
EIOPA, 2019). As highlighted by Hassanien et al. (2016),
the frequency of cyber events has markedly increased in
recent years, with cyber-attacks occurring daily. Under-
standing the dynamics of cyber threats and their impact is
crucial for ensuring effective controls and risk mitigation
tools. Despite the significance of this issue, research on
the analysis of cyber threats is limited and dispersed
across various fields, including cyber security (Agrafi-
otis, Nurse, Goldsmith, Creese, & Upton, 2018), crimi-
nology (Brenner, 2004), economics (Anderson & Moore,
2006), and sociology. Only a few studies have delved into
statistical modelling and forecasting of cyber-attacks. Xu,
Hua, and Xu (2017) introduced a copula model to pre-
dict cyber-security effectiveness, while (Werner, Yang,
& McConky, 2017) utilized an autoregressive integrated
moving average model to forecast the daily number of
cyber-attacks. Moreover, Edwards, Hofmeyr, and Forrest
(2015) applied Bayesian Poisson and negative binomial
models to analyze data breaches, revealing evidence of
over-dispersion and the absence of time trends in the
number of breaches. For a comprehensive review of mod-
elling cyber threats, refer to Husák, Komárková, Bou-Harb,
and Čeleda (2018). We bring a new perspective by pro-
viding evidence of temporal patterns in the mean and
variance of the threats, which can be used to predict
threat arrivals. In-sample and out-of-sample forecasting
comparisons between alternative model specifications are
carried out to provide insights into the threats’ dynamics
and over-dispersion features.

The paper is organized as follows. Section 2 introduces
both the GPD distribution and the GPD-INGARCH process.
Section 3 presents some process properties. Section 4 pro-
vides a full Bayesian inference procedure. Sections 5 and
6 illustrate GPD-INGARCH on simulated and real-world
data. Section 7 concludes.

2. Generalized Poisson difference INGARCH

A random variable X follows a Generalized Poisson
GP) distribution if its probability mass function (pmf) is

x(θ, λ) =
θ (θ + xλ)x−1

x!
e−θ−xλ, x = 0, 1, 2, . . . (1)

with rate parameter θ > 0 and skewness parameter
0 ≤ λ < 1 (Consul, 1986). We denote this distribution
as GP(θ, λ). Let X ∼ GP(θ1, λ) and Y ∼ GP(θ2, λ) be two
independent GP random variables where θ1 = (σ 2

+µ)/2
and θ2 = (σ 2

− µ)/2, with σ 2 > 0 and µ ∈ R such
hat θ1 > 0 and θ2 > 0. As proved in Consul (1986),
the probability distribution of Z = (X − Y ) follows a
Generalized Poisson Difference (GPD) distribution with
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Fig. 1. Generalized Poisson difference GPD(µ, σ 2, λ) pmf for some values of λ, µ and σ 2 . The pmf with λ = 0.2, µ = 2, and σ 2
= 10 (solid line) is

aken as a baseline in both panels.
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z(µ, σ 2, λ) = e−σ2
−zλ

+∞∑
s=max(0,−z)

1
4
σ 4

+ µ2

s!(s + z)!

[σ 2
+ µ

2

+ (s + z)λ
]s+z−1

[
σ 2

− µ

2
+ sλ

]s−1

e−2λs, (2)

where σ 2, µ, and λ are the scale, location, and skew-
ness parameters, respectively. We denote this distribution
with GPD(µ, σ 2, λ).

The moments of a GPD random variable can be derived
in closed form by leveraging the representation of the
GPD as the difference between independent GP random
variables.

Lemma 1. Let Z ∼ GPD(µ, σ 2, λ), then its mean and
variance are given by:

E(Z) =
µ

1 − λ
, V(Z) =

σ 2

(1 − λ)3
. (3)

The Pearson skewness and kurtosis are also expressed as
follows:

S(Z) =
µ

σ 3

(1 + 2λ)
√
1 − λ

, K (Z) = 3 +
1 + 8λ+ 6λ2

σ 2(1 − λ)
. (4)

See Appendix A for a proof.
Fig. 1 illustrates the sensitivity of the probability dis-

tribution to the location µ (panel a) and scale σ 2 (panel
) parameters. The various lines in each plot demonstrate
he impact of the skewness parameter λ. For given values
f λ and µ, when σ 2 decreases, the dispersion of the
PD decreases (dotted and dashed lines, right plot). For
iven values of λ and σ 2, the distribution is right-skewed
or µ = 8, which corresponds to S(Z) = 0.7155, and
eft-skewed for µ = −4, which corresponds to S(Z) =

0.3578, (dotted and dashed lines, left plot). Further nu-
erical illustrations can be found in the Supplementary
aterial.
In contrast with the usual GARCH(p, q) process (Francq
Zakoian, 2019), the INGARCH(p, q) process is defined as
3

n integer-valued process {Zt}t∈Z, where Zt is a series of
ounts. Let Ft−1 be the σ -field generated by {Zt−j}j≥1, then
he GPD-INGARCH(p, q) is defined as

t |Ft−1 ∼ GPD(µt , σ
2
t , λ)

with

µt = (1 − λ)α0 + (1 − λ)
p∑

i=1

αiZt−i +

q∑
j=1

βjµt−j, (5)

where α0 ∈ R, αi ≥ 0, βj ≥ 0, i = 1, . . . , p, p ≥ 1,
j = 1, . . . , q, q ≥ 0. For q = 0, the model reduces to
a GPD-INARCH(p) model and for λ = 0, one obtains a
kellam INGARCH(p, q) model which extends to Poisson
ifferences, the Poisson INGARCH(p, q) model of Ferland

et al. (2006). Based on (3), the conditional mean and
variance of the process are:

E(Zt |Ft−1) =
µt

1 − λ
, V(Zt |Ft−1) =

σ 2
t

(1 − λ)3
, (6)

respectively. Simulated GPD-INGARCH sequences can be
obtained as differences between GP sequences Zt = Xt−Yt
with Xt ∼ GP(θ1t , λ), Yt ∼ GP(θ2t , λ) where θ1t = (σ 2

t +

µt )/2 and θ2t = (σ 2
t − µt )/2. Each random sequence is

generated by the branching method of Famoye (1997),
which performs faster than the inversion method for large
values of θ1t and θ2t . To measure overdispersion we as-
sume σ 2

t = |µt |φ(1 − λ)2 where φ is an overdispersion
parameter. There is overdispersion in the conditional dis-
tribution, that is E(Zt |Ft−1)/V (Zt |Ft−1) < 1, if φ > 1.
This condition is always satisfied for 0 ≤ λ < 1 since
φ > (1 − λ)−2 in order to have θ2t > 0 and a well
defined GPD distribution. When λ < 0, the GPD is still
well defined provided λ > max{max(−1,−θj/mj), j =

1, 2} (see Supplementary Material) and both under and
overdispersion are allowed in our GPD-INGARCH model.

Fig. 2 provides some simulated examples of the GPD-
INGARCH(1, 1) process for different values of α0, α1 and
β1. We consider two parameter settings: low persistence,
that is α1 + β1 much less than 1 (first column in Fig. 2),
and high persistence, that is α + β close to 1 (second
1 1
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Fig. 2. Simulated INGARCH(1, 1) paths for different values of the parameters α0 , α1 and β1 . In Panels from (a) to (d), the effect of α0 (α0 > 0 in
the first line and α0 < 0 in the second line) is illustrated with λ = 0.4 and φ = 3. In Panels (e) and (f), the effect of λ (λ = 0.1 left and λ = 0.7
right) is produced in both settings.
column in Fig. 2). The first and second rows show paths
for a positive and negative value of the intercept α0,
respectively. The last row illustrates the effect of λ on the
trajectories with respect to the baselines in panels (a) and
(b). By comparing (I.a) and (I.b) in Fig. 3, one can observe
that an increase in β1 leads to higher serial correlation and
the kurtosis levels (compare (II.a) and (II.b)).

Stationarity is a crucial property for forecasting appli-
cations. Therefore, we present a necessary condition on
the parameters αi and βj to ensure that a second-order
stationary process has an INGARCH representation. Define
the two following polynomials: D(B) = 1−β1B−· · ·−βqBq

and G(B) = α1B + · · · + αpBp, where B is the back-
shift operator. Assume the D(z) roots lie outside the unit
circle. For non-negative β this is equivalent to assume
j

4

D(1) =
∑q

j=1 βj < 1. Consequently, the operator D(B) has
inverse D−1(B) and it is possible to write µt = D−1(B)(α0+

G(B)Zt ) = α0D−1(1)+H(B)Zt , where H(B) = G(B)D−1(B) =∑
∞

j=1 ψjBj and the ψj are given by the power expansion
of the rational function G(z)/D(z) in a neighbourhood of
zero. Let K (B) = D(B)−G(B), then the necessary condition
can be written as follows:

Proposition 1. A necessary condition for a second-order
stationary process {Zt}t∈Z to satisfy Eq. (5) is that K (1) =

D(1) − G(1) > 0 or equivalently
∑p

i=1 αi +
∑q

j=1 βj < 1.
Proof. See Appendix A □
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3. Properties of the GPD-INGARCH

We study here some relevant properties of our process
by providing a suitable thinning representation and fol-
lowing the strategy used in Ferland et al. (2006) and Zhu
(2012) for Poisson INGARCH and Generalized Poisson IN-
GARCH, respectively. We use the quasi-binomial thin-
ning as defined in Weiß (2008) and the thinning differ-
ence (Cunha et al., 2018) operators. Some background
material and preliminary results, together with the proofs
of the results of this section, are given in Appendix A.

3.1. Thinning representation and stationarity

We now show how the INGARCH process can be ob-
tained as a limit of successive approximations. Let {U1t}t∈Z
and {U2t}t∈Z be two independent sequences of indepen-
dent GP random variables. For each t ∈ Z and i ∈ N, let
{V1t,i,j}j∈N and {V2t,i,j}j∈N be two independent sequences
f independent integer random variables. Moreover, as-
ume that Us and Vt,i,j, s, t ∈ Z, i, j ∈ N, are mutually
ndependent variables, and define the sequence:
(n)
t = I(n = 0)(1 − λ)U1t + (1 − λ)U1t

+ I(n > 0)(1 − λ)
n∑ Ani,t∑

V1t−i,i,j (7)

i=1 j=1

5

Y (n)
t = I(n = 0)(1 − λ)U2t

+ I(n > 0)(1 − λ)U2t + (1 − λ)
n∑

i=1

Bni,t∑
j=1

V2t−i,i,j, (8)

here An
i,t = X (n−i)

t−i /(1 − λ), and Bn
i,t = (Y (n−i)

t−i )/(1 − λ).
In the following, we introduce a new thinning dif-

erence operator and show that Z (n)
t = X (n)

t − Y (n)
t has

his thinning representation. See Cunha et al. (2018) for
n application of the thinning operation to GPD-INAR
rocesses and Supplementary Material for further details.

efinition 1. Let X ∼ GP(θ1, λ) and Y ∼ GP(θ2, λ) be
wo independent GP random variables, and Z = X − Y ,
ith µ = θ1 − θ2 and σ 2

= θ1 + θ2. We define the new
perator ⋄as:

⋄ Z |Z d
= (ρθ1,λ ◦ X) − (ρθ2,λ ◦ Y )|(X − Y ), (9)

here (ρθ1,λ ◦ X) and (ρθ2,λ ◦ Y ) are the quasi-binomial
thinning operations such that (ρθ1,λ ◦ X)|X = x ∼

QB(p, λ/θ1, x) and (ρθ2,λ ◦ Y )|Y = y ∼ QB(p, λ/θ2, y). The
symbol ‘‘A d

= B’’ means that both random variables A and
B have the same distribution.

Using this new operator, we can represent Z (n)
t as fol-
lows.
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Proposition 2. The process Z (n)
t = X (n)

t − Y (n)
t has the

representation:

Z (n)
t = (1 − λ)Ut + (1 − λ)2

n∑
i=1

ϕ
(t−i)
i ⋄

(
Z (n−i)
t−i

1 − λ

)
, n > 0,

(10)
(n)
t = (1 − λ)Ut for n = 0 and Z (n)

t = 0 for n < 0, where
ϕ
(τ )
i ⋄ indicates the sequence of random variables with mean
ψi/(1 − λ), involved in the thinning operator at time τ and
{Ut}t∈Z is a sequence of independent GPD random variables
with mean ψ0/(1 − λ) with ψ0 = α0/D(1).

The proposition above shows that {Z (n)
t }t∈Z is obtained

through a cascade of thinning operations along the se-
quence {Ut}t∈Z and is a finite weighted sum of inde-
pendent GPD random variables. It follows that both the
expected value and the variance of Z (n)

t are well defined.
Moreover, it can be seen that E[Z (n)

t ] does not depend on
t; hence it can be denoted with µn. Using Proposition 2
and µk = 0 if k < 0, it is possible to write µn as follows

µn = (1 − λ)E (Ut)+ (1 − λ)2
n∑

i=1

E

(
ϕ
(t−i)
i ⋄

(
Z (n−i)
t−i

1 − λ

))

= ψ0 +

∞∑
j=1

ψjµn−j = D−1(B)α0 + H(B)µn,

(11)

from which it follows that D(B)µn = G(B)µn + α0 ⇔

K (B)µn = α0, where K (B) = D(B) − G(B). The last
equation shows that the sequence {µn}n∈N satisfies a finite
difference equation with constant coefficients. The char-
acteristic polynomial is K (z), and all its roots lie outside
the unit circle if K (1) > 0. Under this assumption, one can
prove the following.

Proposition 3. If K (1) > 0 then:

(i) {Z (n)
t }n∈N has an almost sure limit;

(ii) {Z (n)
t }n∈N has a mean-square limit;

(iii) {Z (n)
t }t∈Z is strictly stationary, for any given n.

Since {Zt}t∈Z is the almost sure limit of {Z (n)
t }t∈Z one

ets the following result:

roposition 4. The process {Zt}t∈Z is strictly stationary and
dmits finite first- and second-order moments.

Furthermore, one can find the conditional distribution
f {Zt}t∈Z using the properties of the thinning representa-
ion of Proposition 2.

roposition 5. Let Ft−1 = σ ({Zu}u≤t−1), for t ∈ Z,
he conditional law of {Z (n)

t }t∈Z given Ft−1 converges to a
GPD(µt , σ

2
t , λ).

.2. Moments of the GPD-INGARCH

The conditional mean and variance of the process Zt

can be easily derived from Eq. (6), while the unconditional

6

mean and variance are

E(Zt ) =
α0

1 −
∑p

i=1 αi −
∑q

j=1 βj
, V(Zt ) = φ3E(σ 2

t ) + V(µt ),

(12)

where φ = 1/(1−λ). A set of equations exists from which
the variance and autocorrelation function of the process
can be obtained. Suppose Zt follows the INGARCH(p,q)
model in Eq. (5) with

∑p
i=1 αi +

∑q
j=1 βj < 0. From Th.

1 part (iii) in Weiß (2009), the autocovariance γZ (k) =

Cov[Zt , Zt−k] and γµ(k) = Cov[µt , µt−k] satisfy the linear
equations

γZ (k) =

p∑
i=1

αiγZ (|k − i|) +

min(k−1,q)∑
j=1

βjγZ (k − j)

+

q∑
j=k

βjγµ(j − k), k ≥ 1; (13)

γµ(k) =

min(k,p)∑
i=1

αiγµ(|k − i|) +

p∑
i=k+1

αiγZ (i − k)

+

q∑
j=1

βjγµ(|k − j|), k ≥ 0. (14)

An explicit expression of these moments is available for
two special cases.

Example 1 (GPD-INARCH(1)). Consider the GPD-INARCH(1
model with µt = α0 + α1Zt−1, then the linear equations
in Eq. (14), become

γZ (k) =

p∑
i=1

αiγZ (|k − i|) + δk0µ, k ≥ 0;

γµ(k) =

min(k,p)∑
i=1

αiγµ(|k − i|) +

p∑
i=k+1

αiγZ (i − k), k ≥ 0,

where the second equation comes from Example 2 inWeiß
(2009). We derive the following autocovariances

γZ (k) =

{
αk−1
1 γZ (1), for k ≥ 2
α1(φ3E(σ 2

t )) + α1V(µt ), for k = 1,
(15)

γµ(k) =

{
αk
1V(µt ), for k ≥ 1

α2
1(φ

3E(σ 2
t )) + α2

1V(µt ), for k = 0 .
(16)

he variance of µt and of Zt and the autocorrelation
unctions are

(µt ) =
α2
1(φ

3E(σ 2
t ))

1 − α2
1

, V(Zt ) =
φ3E(σ 2

t )
1 − α2

1
,

ρµ(k) = αk
1, ρZ (k) = αk

1,

(17)

respectively, where φ = 1/(1 − λ).

Example 2 (GPD-INGARCH(1,1)). Consider the GPD-
INGARCH(1,1) model with µ = α + α Z + β µ .
t 0 1 t−1 1 t−1
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From Eq. (14), it follows

γZ (k) =

{
(α1 + β1)k−1γZ (1), for k ≥ 2
α1(φ3E(σ 2

t )) + (α1 + β1)V(µt ), for k = 1 .

(18)

We can now determine V(µt ). First, note that we have

γµ(k) =

{
(α1 + β1)kV(µt ), for k ≥ 1
α2
1[φ

3E(σ 2
t )] + (α1 + β1)2V(µt ), for k = 0,

(19)

where the second line in Eq. (19) is equal to V(µt ). From
this latter equation and Eq. (12), we can derive the fol-
lowing expressions

V(µt ) =
α2
1(φ

3E(σ 2
t ))

1 − (α1 + β1)2
,

V(Zt ) =
φ3E(σ 2

t )(1 − (α1 + β1)2 + α2
1)

1 − (α1 + β1)2
.

(20)

The autocorrelations functions are
ρµ(k) = (α1 + β1)k,

ρZ (k) = (α1 + β1)k−1 α1[1 − β1(α1 + β1)]
1 − (α1 + β1)2 + α2

1
.

(21)

. Bayesian inference

We propose a Bayesian framework to estimate GPD-
NGARCH models that exploits the stochastic represen-
ation of the GPD as a difference between latent GP
ariables and the data augmentation principle to make
oth the likelihood function and the posterior distribution
ore tractable. The Bayesian approach to prediction in-
ludes parameter uncertainty in the posterior predictive,
hus providing robust forecasts.

.1. Prior assumption

We assume the following prior distributions. A Dirich-
et prior distribution is chosen for ϕ = (α1, . . . , αp, β1,

. . , βq), i.e., ϕ ∼ Dird+1(c), with density:

(ϕ) =

Γ

(∑d
i=0 ci

)
∏d

i=0 Γ (ci)

d∏
i=1

ϕ
ci−1
i

(
1 −

d∑
i=1

ϕi

)(c0−1)

, (22)

where ϕi ≥ 0 and
∑d

i=1 ϕi ≤ 1. Panel (a) in Fig. 4
provides the level sets of the joint density of α1 and β1
with hyper-parameters c0 = 3, c1 = 4 and c2 = 3.
We assume a flat prior for α0, i.e. π (α0) = IR(α0). For λ
and φ we assume a joint prior distribution with uniform
marginal prior λ ∼ U[0,1] and shifted gamma conditional
prior φ ∼ Ga∗(a, b, c), with density function:

π (φ) =
ba

Γ (a)
(φ − c)(a−1)e−b(φ−c) for φ > c, (23)

where c = (1 − λ)−2. Panel (b) provides the level sets
of the joint density function of φ and λ, with hyper-
parameters a = b = 5. The joint prior distribution of the
parameters will be denoted by π (θ) = π (ϕ)π (α0)π (λ)π (φ)
7

4.2. Data augmentation

The probability distribution of Zt is

ft (Zt = z|θ) = e−σ2
t −zλ

+∞∑
s=s

1
4
σ 4
t + µ2

t

s!(s + z)!

[σ 2
t + µt

2

+ (s + z)λ
]s+z−1

[
σ 2
t − µt

2
+ sλ

]s−1

e−2λs (24)

with s = max(0,−z) and define Z1:T = (Z1, . . . , ZT ). Since
the posterior distribution

π (θ|Z1:T ) ∝

T∏
t=1

ft (Zt |θ)π (θ) (25)

is not analytically tractable, we apply Markov Chain Monte
Carlo (MCMC) for posterior approximation in combination
with a data-augmentation approach (Tanner & Wong,
1987). As in Karlis and Ntzoufras (2006), we exploit the
stochastic representation of the GPD as the difference of
GP latent variables Xt ∼ GP(θ1t , λ) and Yt ∼ GP(θ2t , λ)
with pmf ft (Xt = x|θ1t , λ) and ft (Yt = y|θ2t , λ)), respec-
tively. Let X1:T = (X1, . . . , XT ) and Y1:T = (Y1, . . . , YT ),
then the complete-data likelihood becomes

f (Z1:T , X1:TY1:T |θ) =

T∏
t=1

δ(Zt − Xt + Yt )ft (Xt |θ)ft (Xt − Zt |θ),

(26)

where δ(z − c) is the Dirac function that takes value 1 if
z = c and 0 otherwise. The joint posterior distribution of
the parameters θ and the latent variables X1:T and Y1:T is

π (X1:T , Y1:T , θ|Z1:T ) ∝ f (Z1:T , X1:TY1:T |θ)π (θ) (27)

4.3. Gibbs sampler

We apply a Gibbs algorithm (Robert & Casella, 2013,
Ch. 10) with a Metropolis–Hastings (MH) step. In the
sampler, we draw the latent variables and the parameters
of the model by iterating the following:

1. draw (Xt , Yt ) from f (Xt , Yt |Z1:T , θ) for 1 ≤ t ≤ T ;
2. draw ϕ from π (ϕ|Z1:T , Y1:T , X1:T , θ−ϕ);
3. draw φ from π (φ|Z1:T , Y1:T , X1:T , θ−φ);
4. draw λ from π (λ|Z1:T , Y1:T , X1:T , θ−λ),

where θ−η indicates the collection of parameters exclud-
ing the element η. The full conditional distribution of the
latent variables satisfies

(Xt , Yt ) ∼ f (Zt |Xt , Yt , θ)f (Xt , Yt |Z1:T , θ). (28)

We draw from the full conditional distribution by MH.
Differently from Karlis and Ntzoufras (2006), we use a
mixture proposal distribution, allowing for better MCMC
chain mixing. At the jth iteration, we generate a candidate
X∗ from GP(θ , λ) with probability ν and (X∗

− Z )
t 1t t t
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Fig. 4. Contour lines of the log-prior density function for α1 and β1 (left) and φ and λ (right).
T
t

θ

rom GP(θ2t , λ) with probability 1 − ν, and accept with
robability

= min

{
1,

ft (X∗
t |θ1t , λ)ft (X∗

t − Zt |θ2t , λ)

ft (X
(j−1)
t |θ1t , λ)ft (X

(j−1)
t − Zt |θ2t , λ)

q(X (j−1)
t )

q(X∗
t )

}
(29)

here q(Xt ) = νf (Xt |θ1t , λ) + (1 − ν)f (Xt − Zt |θ2t , λ) and
X (j−1)
t is the (j−1)-th iteration value of the latent variable

Xt .
Considering the parameter ϕ, its full conditional den-

sity is

ϕ ∼ π (ϕ|Z1:T , Y1:T , X1:T , θ−ϕ) ∝ π (ϕ)
T∏

t=1

ft (Xt , Yt |θ). (30)

We adopt an MH step with Dirichlet independent pro-
posal distribution ϕ∗

∼ Dir(c∗), where c∗
= (c∗

0 , c
∗

1 , c
∗

2 ),
nd with acceptance probability

= min
{
1,

π (ϕ∗
|Z1:T , Y1:T , X1:T , θ−ϕ)

π (ϕ(j−1)|Z1:T , Y1:T , X1:T , θ−ϕ)

}
. (31)

The full conditional density of φ is

(φ|Z1:T , Y1:T , X1:T , θ−φ) ∝ π (φ)
T∏

t=1

ft (Xt , Yt |θ). (32)

e consider the change of variable ζ = log(φ − c)
with Jacobian exp(ζ ) and a MH step with a random walk
proposal ζ ∗

∼ N(ζ (j−1), γ 2), where ζ (j−1)
= log(φ(j−1)

−c),
φ(j−1) is the previous value of the parameter, and c =

1/(1 − λ)2. The acceptance probability is

ϱ = min
{
1,

π (φ∗
|Z1:T , Y1:T , X1:T , θ−φ) exp(ζ ∗)

π (φ(j−1)|Z1:T , Y1:T , X1:T , θ−φ) exp(ζ (j−1))

}
,

(33)

here φ∗
= c + exp(ζ ∗).

Samples from the full conditional density of λ

(λ|Z1:T , Y1:T , X1:T , θ−λ) ∝ π (λ)
T∏

ft (Xt , Yt |θ). (34)

t=1

8

are obtained by a MH with Beta random walk proposal
λ∗

∼ Be(sλ(j−1), s(1 − λ(j−1))), where s is a precision
parameter. The acceptance probability is:

ϱ =

min
{
1,

π (λ∗
|Z1:T , Y1:T , X1:T , θ−λ)Be(sλ∗, s(1 − λ∗))

π (λ(j−1)|Z1:T , Y1:T , X1:T , θ−λ)Be(sλ(j−1), s(1 − λ(j−1)))

}
.

(35)

he MCMC samples θ(j), j = 1, . . . , J are used to evaluate
he approximated Bayes estimator

ˆ =
1
J

J∑
j=1

θ(j).

4.4. Forecasting

The Gibbs sampler above can approximate point and
distribution forecasts of the variables of interest ZT+h, h =

1, . . . ,H , where H is the forecasting horizon. At the jth
iteration, we draw Z (j)

T+h from the conditional distribution
given past observations Z1, . . . , ZT , and the parameter
draws θ(j), as

Z (j)
T+h|FT , θ

(j)
∼ GPD

(
µ

(j)
T+h, σ

2,(j)
T+h , λ

(j)
)
, (36)

where j = 1, . . . , J , denotes the MCMC draw and

µ
(j)
T+h =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α
(j)
0 (1 − λ(j)) + α

(j)
1 (1 − λ(j))ZT

+β
(j)
1 µ

(j)
T , for h = 1

α
(j)
0 (1 − λ(j)) + α

(j)
1 (1 − λ(j))Z (j)

T+h−1

+β
(j)
1 µ

(j)
T+h−1, for h = 2, . . . ,H

(37)

σ
2 (j)
T+h = |µ

(j)
T+h|φ

(j)(1 − λ(j))2. (38)

Forecasts for the variables in the level VT+h = VT+h−1 +

ZT+h can be easily obtained from the recursion

V (j)
T+h = VT+h−1 + Z (j)

T+h, h = 1, . . . ,H, (39)

with initial value V (j)
T equal to the sample VT available

at time T , where the GPD increments Z (j)
T+h are sampled

from GPD
(
µ

(j)
, σ

2,(j)
, λ(j)

)
under the constraint: Z (j)

≥
T+h T+h T+h
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Table 1
Autocorrelation function (ACF), effective sample size (ESS), and inefficiency factor (INEFF) of the posterior MCMC samples
for the settings: low persistence and high persistence. The results are averages over 50 independent MCMC experiments
on 50 independent datasets of 400 observations each. We ran the proposed MCMC algorithm for 1,010,000 iterations
and evaluated the statistics before (subscript BT) and after (subscript AT), removing the first 10,000 burn-in samples
and applying a thinning procedure with a factor of 250. The p-values of Geweke’s convergence diagnostic are provided
between parentheses.

Low persistence High persistence
(α = 0.25, β = 0.23, λ = 0.4) (α = 0.53, β = 0.25, λ = 0.6)

α β λ α β λ

ACF (1)BT 0.96 0.97 0.97 0.91 0.88 0.98
ACF (10)BT 0.86 0.83 0.81 0.70 0.52 0.83
ACF (30)BT 0.75 0.69 0.63 0.52 0.37 0.60
ACF (1)AT 0.43 0.39 0.27 0.21 0.13 0.16
ACF (10)AT 0.25 0.18 0.12 0.20 0.06 0.11
ACF (30)AT 0.18 0.15 0.07 0.15 0.06 0.09

ESSBT 0.02 0.02 0.02 0.02 0.03 0.02
ESSAT 0.07 0.07 0.09 0.09 0.12 0.11

INEFFBT 50.53 51.07 43.88 48.39 43.35 49.25
INEFFAT 26.36 27.29 13.99 17.21 16.84 12.59

CDBT 11.81 −28.69 0.78 0.93 −6.27 2.40
(0.11) (0.14) (0.10) (0.04) (0.06) (0.05)

CDAT 5.72 −13.18 0.2 0.74 −3.84 1.17
(0.23) (0.23) (0.23) (0.13) (0.15) (0.11)
V (j)
T+h−1. The point forecast E(VT+h|FT ) can be approxi-

mated as follows

ˆE(VT+h|FT ) =
1
J

J∑
j=1

V (j)
T+h (40)

and, similarly, other quantities of interest, such as predic-
tive distribution and quantiles, can be approximated using
the simulated values Z (j)

T+h.

5. Simulation study

The objectives of our simulation experiments are man-
ifold: firstly, we test for the correct implementation of this
algorithm presented in Section 4; secondly, to assess the
efficiency of the algorithm; thirdly, to explore the sensi-
tivity of the results to the prior specification; and finally,
to demonstrate the impact of model misspecification on
the GARCH coefficient estimates.

We apply Geweke’s (2004) procedure to test for the
correct implementation of the Gibbs sampler. We used
2,000 MCMC samples and the first three moments as test
functions for each parameter. Our Gibbs sampler with-
stands all tests. The values of the statistics are reported
in Appendix B. See Section S.2 in Supplement Material
for background material on Geweke’s test. As regards
the efficiency of the MCMC, we computed the (Geweke,
1992) convergence diagnostic measure (CD), the ineffi-
ciency factor (INEFF)1 and the Effective Sample Size (ESS).

1 The inefficiency factor is defined as

INEFF = 1 + 2
∞∑
k=1

ρ(k)

here ρ(k) is the sample autocorrelation at lag k for the parameter of
nterest. It measures how well the MCMC chain mixes. An INEFF equal
o m tells us that one needs to draw MCMC samples m times as many
s uncorrelated samples.
9

We simulated 50 independent series of 400 observa-
tions each. We ran the Gibbs sampler for 1,010,000 iter-
ations on each dataset, discarded the first 10,000 draws
to remove dependence on initial conditions and applied
a thinning procedure with a factor of 250 to reduce the
dependency between consecutive draws. For each setting,
Appendix B reports the output of one of the experiments.
Since in the applications, the specification with p = q = 1
provides the best fitting, in the following, we present the
results for this case and define α1 = α and β1 = β , for
ease of notation.

As in GARCH and stochastic volatility modelling (see,
e.g. Chib, Nardari, and Shephard, 2002 and references
therein), we test the efficiency of the algorithm in two
different settings: low persistence and high persistence.
The true values of the parameters are: α = 0.25, β =

0.23, λ = 0.4 in the low persistence setting and α =

0.53, β = 0.25, λ = 0.6 in the high persistence setting.
Table 1 shows, for the parameters α, β , and λ, the INEFF,
ESS, and ACF averaged over the 50 replications before (BT
subscript) and after thinning (AT subscript).

The thinning procedure reduces the autocorrelation
levels and increases the ESS, especially in the high per-
sistence setting. The p-values of the CD statistics in-
dicate that the null hypothesis that two sub-samples
of the MCMC draws have the same distribution is ac-
cepted. The efficiency of the MCMC algorithm gener-
ally improved after thinning. On average, the inefficiency
measures (19.05), the p-values of the CD statistics (0.18),
and the acceptance rates (0.35) achieve the values recom-
mended in the literature (e.g., see Roberts, Gelman, Gilks,
et al., 1997).

We investigate the impact on inference of a prior dis-
tribution favouring nonstationarity, that is, a prior with
larger probability mass at values of α + β close to 1. The
results in Figs. B.8 and B.9 in Appendix B show that in both
high and low persistence settings, the information from
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Fig. 5. Posterior histograms for α (first row) and β (second row) in the low persistence case (left panel) and high persistence case (right panel),
when we fit the correct model GPD − INGARCH and the misspecified model PD − INGARCH .
the data dominates the posterior, which is not particularly
sensitive to the prior choice.

Finally, we study estimation bias when the model is
not correctly specified. Since the GARCH dynamics in µt
is related to the over-dispersion λ and the conditional
mean of the process (see Eq. (12)), one can expect some
estimation bias when λ is not correctly specified. In our
experiments, when a PD-INGARCH is estimated on data
generated from a GPD-INGARCH, the GARCH parameters
are biased. For illustrative purposes, we report in Fig. 5
the results of some of our experiments. The estimation
bias for α and β is 0.11 and −0.09, respectively, in the
low persistence case and 0.1 and 0.02, respectively, in the
high persistence.

6. Real data examples

6.1. Car accident data

The dataset for this application consists of the number
of car accidents near Schiphol airport in The Nether-
lands during 2001, sampled at a daily frequency (see
Fig. 6). This set of 365 observations has been previously
examined in Andersson and Karlis (2014) and Brijs et al.
(2008). Based on the results of the Augmented Dickey–
Fuller and Phillips–Perron tests for unit roots, the time
series of accident counts is found to be non-stationary.
In contrast, the first differences do not exhibit unit roots
(refer to Table C.1 in Appendix C). Therefore, we applied
the estimation procedure outlined in Section 4 to the
first differences. The Gibbs sampler was run for 110,000
iterations, with the first 10,000 discarded as a burn-in
sample. The final sample was then thinned down at a rate

of 10%.

10
Table 2 presents the parameter posterior mean and
standard error and the 95% credible interval for the un-
restricted INGARCH(1,1) model (model M1). See Fig. C.1
in the Appendix for the histograms of posteriors. There is
evidence of persistence in the expected accident arrivals,
α̂ + β̂ = 0.203, heteroskedastic effects, β̂ = 0.161,
skewness λ̂ = 0.023, and overdispersion φ̂ = 17.203.

We study the contribution of overdispersion, hetero-
skedasticity, and persistence by testing some restrictions
of the INGARCH(1,1). Model M2 corresponds to an
INGARCH(1, 1) where the observations are from the stan-
dard Poisson-difference GARCH model PD-INGARCH(1, 1).
Model M3 corresponds to an autoregressive model,
GPD-INARCH(1, 0), whereas M4 is a standard Poisson
difference autoregressive model, PD-INARCH(1, 0). The
estimates of the restricted models M2 to M4 are given
in Table 2.

In Bayesian analysis, model comparison can be carried
out in different ways, such as through the Deviance Infor-
mation Criterion (DIC) and Bayes Factor (BF). Using DIC for
latent variable models presents difficulties, as discussed
in Celeux, Forbes, Robert, and Titterington (2006). Thus,
we compare models via BF, which is the ratio of nor-
malizing constants of the posterior distributions of two
potential models (see Cameron and Pettitt (2014) for a
review). MCMC methods allow for generating samples
from the posterior distributions, which can then be ex-
ploited to estimate the ratio of normalizing constants. In
this paper, we follow the RLR method proposed by Geyer
(1994). As acknowledged by Gelman and Meng (1998),
RLR is a specific form of bridge sampling. It provides
a very efficient tool for BF approximation since logistic
regression is readily available in standard statistical soft-
ware. We refer the reader to Llorente, Martino, Delgado,
and Lopez-Santiago (2023) for a recent and authoritative
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Fig. 6. Frequency (left) and day-on-day changes (right) of the accidents at the Schiphol airport in The Netherlands in 2001.
Table 2
Model estimates for the Schiphol’s dataset. Posterior mean (Mean), standard deviation (Std) and 95% credible intervals
(CI) of the parameters θ are provided for different specifications of the GPD-INGARCH (different panels), where M1
is the GPD-INGARCH(1,1), M2 is the PD-INGARCH(1,1) with λ = 0, M3 is the GPD-INARCH(1,0) and M4 is the
PD-INARCH(1,0) with λ = 0.
θ Mean Std CI Mean Std CI

M1: GPD-INGARCH(1,1) M2: PD-INGARCH(1,1) and λ = 0

α0 −0.051 0.017 (−0.088, −0.025) −0.051 0.016 (−0.08, −0.023)
α 0.042 0.014 (0.021, 0.073) 0.042 0.013 (0.019, 0.066)
β 0.161 0.012 (0.142, 0.189) 0.158 0.011 (0.141, 0.189)
λ 0.023 0.01 (0.007, 0.044) – – –
φ 17.203 5.68 (9.001, 30.708) 16.67 6.479 (9.495, 32.181)

M3: GPD-INARCH(1,0) M4: PD-INARCH(1,0) and λ = 0

α0 −0.063 0.024 (−0.118, −0.024) −0.066 0.02 (−0.113, −0.031)
α 0.039 0.014 (0.015, 0.069) 0.041 0.013 (0.02, 0.071)
β – – – – – –
λ 0.02 0.01 (0.005, 0.042) – – –
φ 18.547 8.404 (8.864, 41.224) 15.814 5.277 (8.428, 29.907)
survey of marginal likelihood approximation methods in
Bayesian hypothesis testing. RLR consists of deriving the
normalizing constants by logistic regression, considering
both samples as if they were issued from a mixture of two
distributions with probability

pj(v, ηj) =
hj(v) exp(ηj)

h1(v) exp(η1) + h2(v) exp(η2)
, j = 1, 2 (41)

o be generated from the jth distribution of the mix-
ure. Geyer (1994) proposes to estimate the log-Bayes
actor κ = η2 − η1 by maximizing the quasi-likelihood
unction

n(κ) =

n∑
i=1

log p1(Vi1, η1) +

n∑
i=1

log p2(Vi2, η2), (42)

where n is the number of MCMC draws for each model
and Vij = log fj(Z1:T , X

(i)
j,1:T , Y

(i)
j,1:T |θ

(i)
j ) is the log-likelihood

of the model j evaluated at the ith MCMC sample.
We ran six reverse logistic regressions and performed

pairwise comparisons of our models. The approximated
logarithmic Bayes factors BF (Mi,Mj) are given in Table 3.
n the entire sample, our GPD-INGARCH(1, 0), that is, the
PD-INARCH, overperforms the other models (bottom-
ight panel). However, the stability of a prediction model
s a crucial factor in ensuring accurate forecasts. Conse-

uently, we assessed the in-sample and out-of-sample
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predictive performances of different model specifications.
Rolling estimation and prediction exercises were con-
ducted from June 2001 to December 2001, utilizing win-
dows of 160 observations. We evaluated the in-sample
Bayes factors between model pairs for each window and
computed the h-step-ahead posterior predictive distri-
bution for the number of accidents. We followed the
procedure outlined in Section 4, which enables the incor-
poration of parameter uncertainty into the forecasts (see,
e.g., McCabe & Martin, 2005; McCabe et al., 2011, and
references therein).

Given the Mean Square Forecasting Error (MSFE) of
each model, we computed in Fig. 7 the model weights de-
fined aswj = exp(−MSFE(Mj))/(exp(−MSFE(M1))+· · ·+

exp(−MSFE(M4))) (Billio, Casarin, Ravazzolo, & Van Dijk,
2013). There is evidence of superior performance by the
unrestricted GPD-GARCH during periods characterized by
larger variability and overdispersion. For illustrative pur-
poses, we have presented the BFs of the in-sample analy-
ses for three periods: January 23, 2001, to March 14, 2001;
May 4, 2001, to June 23, 2001; and November 11, 2001,
to December 31, 2001 (see Table 3). To streamline the
presentation, we have reported results at horizons h =

1, 3, 5, 7. In the out-of-sample analysis, GPD models M1
and M3 (black lines) outperform others at all horizons
during periods characterized by higher overdispersion,
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Table 3
In-sample logarithmic Bayes Factors for the Schiphol’s dataset, BF(Mi , Mj), of the model Mi (rows) against model
Mj (columns), with i < j, where M1 is the GPD-INGARCH(1,1), M2 is the PD-INGARCH(1,1) with λ = 0, M3 is
the GPD-INARCH(1,0) and M4 is the PD-INARCH(1,0) with λ = 0. Numbers in parentheses are Monte Carlo standard
deviations of the estimated Bayes factors. Bayes factors are evaluated on the whole sample and sub-samples of 50
periods (different panels).
BF(Mi , Mj) M2 M3 M4 M2 M3 M4

23 Jan 2001–14 Mar 2001 04 May 2001–23 Jun 2001

M1 95.99 108.79 466.10 190.04 600.33 835.24
(0.56) (0.63) (2.72) (1.10) (3.49) (4.86)

M2 −41.58 91.81 475.67 707.74
(0.24) (0.54) (2.77) (4.12)

M3 427.36 111.04
(2.50) (0.65)

11 Nov 2001–31 Dec 2001 Full sample (01 Jan 2001–31 Dec 2001)

M1 70.84 429.97 2.06e+03 278.25 −3.46e+03 −3.89e+03
(0.42) (2.59) (12.46) (0.22) (2.71) (3.04)

M2 465.86 1.40e+03 −6.15e+03 −7.07e+03
(2.81) (8.49) (4.81) (5.53)

M3 576.21 1.24e+03
(3.51) (0.97)
Fig. 7. Rolling out-of-sample predictive performances for the Schiphol’s dataset. Given the Mean Square Forecasting Errors (MSFE) of all models
nder consideration (Mj j = 1, . . . , 4), the model weight is computed as wj = exp(−MSFE(Mj))/(exp(−MSFE(M1)) + · · · + exp(−MSFE(M4))), for
ifferent horizons h (different plots) and models Mj (different lines and colours).
uch as November-December 2001. However, at longer
orizons, exceeding two weeks, performances become
omparable.

.2. Cyber threat data

According to the Financial Stability Board (FSB, 2018,
p. 8–9), a cyber incident is any observable occurrence in

n information system that jeopardizes the cyber security

12
of the system or violates the security policies and proce-
dures or the use policies. Over the past years, there have
been several discussions on the taxonomy of incidents
classification (see, e.g. ENISA, 2018). This paper uses the
classification in the Passeri (2019) dataset. Passeri (2019)
is a cyber-incident website that collects public reports
and provides the number of cyber incidents for different
categories of threats: crimes, espionage and warfare. Fig. 8
shows the total and category-specific number of cyber at-
tacks at a daily frequency from January 2017 to December
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Fig. 8. Daily cyber-threats counts between 1st January 2017 and 31st December 2018.
2018. Albeit limited in its variety of cyber attacks, the
dataset covers some relevant cyber events and is one of
the few publicly available datasets (Agrafiotis et al., 2018).
The daily threat frequencies are between 0 and 12, which
motivates using a discrete distribution. We remove the
stochastic trend by considering the first difference and
then fit the GPD-INGARCH model.

We applied our estimation procedure of Section 4 and
ran the Gibbs sampler for 110,000 iterations, discarded
the first 10,000 as a burn-in sample, and thinned down
the sample with a rate of 10%. Our results in Panel M1 of
Table 4 suggest that the GPD-INGARCH is a suitable model
for the cyber threat dataset as it effectively captures both
persistence and heteroskedastic effects, indicated by α̂ +

ˆ = 0.395 and β̂ = 0.333. Moreover, our estimates λ̂ =

.327 and φ̂ = 92.155 indicate the presence of skewness
nd over-dispersion in the data. Fig. C.2 presents the
orresponding posterior histograms.
We investigate the heteroskedastic and overdispersion

eatures of the data by comparing different models via BF.
n the whole sample, the PD-INGARCH(1,1) model over-
erforms the other, providing evidence of overdispersion

ˆ = 72.231 and confirming the absence of skewness in
he conditional distribution, i.e., λ = 0 (see Table 4 and
he bottom-right panel of Table 5). The estimates β̂ =
13
0.333 and β̂ = 0.388 for M1 and M2, respectively, and
the fact that both PD- and GPD-INGARCH have better fit-
ting than PD- and GPD-INARCH indicates heteroskedastic
effects in the data.

We study the in-sample and the out-of-sample pre-
dictive performances of different model specifications.
Rolling estimation and prediction exercises are consid-
ered from January 2018 to December 2018, with win-
dows of 365 observations. We evaluate the BF between
model pairs and the model weights based on each model’s
MSFE, as summarized in Table 5. We reported the model
weights at some horizons, i.e. h = 1, 3, 5, 7, for il-
lustrative purposes. In our results, GPD-INGARCH(1,1)
overperforms other models during periods with a larger
number of threats and higher overdispersion. For the
in-sample model comparison, see, e.g., the results for
February-March 2018 and May-July 2018 (top panels in
Table 5). This result is confirmed by the out-of-sample
forecasting, especially at larger horizons, 5 and 7 days
ahead (solid black lines in panels h = 5 and h = 7 of
Fig. 9). The GPD model class can better capture spikes in
the series (Fig. C.5 in the Appendix). When the number
of attacks, their conditional skewness, and overdispersion
are lower, PD-INGARCH(1,1) provides better results in and
out of the sample. The evidence points to variations in the
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Table 4
Model estimates for the cyber treat dataset. Posterior mean (Mean), standard deviation (Std) and 95% credible intervals
(CI) of the parameters θ are provided for different specifications of the GPD-INGARCH (different panels), where M1
is the GPD-INGARCH(1,1), M2 is the PD-INGARCH(1,1) with λ = 0, M3 is the GPD-INARCH(1,0) and M4 is the
PD-INARCH(1,0) with λ = 0.
θ Mean Std CI Mean Std CI

M1: GPD-INGARCH(1,1) M2: PD-INGARCH(1,1) and λ = 0

α0 −0.057 0.011 (−0.08, −0.039) −0.041 0.005 (−0.051, −0.034)
α 0.062 0.012 (0.043, 0.089) 0.055 0.009 (0.045, 0.086)
β 0.333 0.014 (0.307, 0.351) 0.388 0.029 (0.295, 0.403)
λ 0.327 0.013 (0.303, 0.354) – – –
φ 92.155 17.117 (64.241, 127.834) 64.681 6.989 (48.230, 77.582)

M3: GPD-INARCH(1,0) M4: PD-INARCH(1,0) and λ = 0

α0 −0.042 0.007 (−0.057, −0.031) 0.021 0.004 (0.014, 0.027)
α 0.07 0.011 (0.052, 0.094) 0.044 0.008 (0.03, 0.058)
β – – – – – –
λ 0.333 0.013 (0.309, 0.358) – – –
φ 83.601 12.715 (61.275, 111.008) 72.231 13.7568 (54.505, 105.217)
Table 5
In-sample logarithmic Bayes Factors for the cyber threat dataset, BF(Mi , Mj), of the model Mi (rows) against the
model Mj (columns), with i < j, where M1 is the GPD-INGARCH(1,1), M2 is the PD-INGARCH(1,1) with λ = 0, M3 is
the GPD-INARCH(1,0) and M4 is the PD-INARCH(1,0) with λ = 0. Numbers in parentheses are Monte Carlo standard
deviations of the estimated Bayes factors. Bayes factors are evaluated on the whole sample and sub-samples of 50
periods (different panels).
BF(Mi , Mj) M2 M3 M4 M2 M3 M4

05 Feb 2018–27 Mar 2018 26 May 2018–15 Jul 2018

M1 73.30 114.52 18.18 44.68 424.87 27.14
(0.32) (0.51) (0.08) (0.22) (2.19) (0.14)

M2 102.25 −90.22 496.43 −68.43
(0.46) (0.39) (2.57) (0.34)

M3 −329.19 −769.36
(1.44) (3.97)

11 Nov 2018–31 Dec 2018 Full sample (02 Jan 2017–31 Dec 2018)

M1 −1.63e+03 18.30 −182.37 −3.18e+03 488.62 −3.54e+03
(6.47) (0.08) (0.76) (1.04) (0.17) (1.16)

M2 1.47e+03 2.11e+03 2.47e+03 406.80
(5.87) (8.28) (0.82) (0.13)

M3 −456.23 −2.69e+03
(1.93) (0.89)
performances of two model classes: ARCH and GARCH. At
the one-day-ahead horizon, INARCH models often over-
perform INGARCH models, whereas at larger horizons
when the heteroscedastic effects are stronger (e.g., June-
August 2018 in panel h = 5), both PD- and GPD-INGARCH
models (solid lines in Fig. 9) perform better than INARCH
models (dashed lines). Our findings naturally call for
dynamic and horizon-specific model selection or com-
bination strategies (Billio et al., 2013; McAlinn & West,
2019), which we leave for future research.

7. Conclusions

A new family of stochastic processes with values in
the set of signed integers has been introduced in this
paper, where increments of the process follow a gen-
eralized Poisson difference distribution, and the param-
eters have GARCH dynamics. Relevant properties have
been derived via a thinning representation of the pro-

cess, and a consistent forecasting procedure has been

14
derived. We adopted a Bayesian inference framework
and developed an efficient Monte Carlo Markov Chain
sampler to approximate the posterior distribution and
incorporate parameter uncertainty in the predictive dis-
tribution. Our simulation studies show that the MCMC
algorithm is efficient in different parameter settings and
that inference results are robust with respect to the prior
specification. The findings suggest that standard Poisson
difference models yield biased estimates of the GARCH
dynamics when observations are generated from a gen-
eralized Poisson model with large enough overdisper-
sion. This modelling approach is validated by analysing
a benchmark dataset on car accidents and an original
application to cyber-threat data. The in-sample and out-
of-sample model comparisons reveal that the proposed
GPD-INGARCH model best captures over-dispersion and
persistence in conditional moments. Notably, the fore-
casting abilities of the models exhibit temporal variations
and differ across forecasting horizons for both datasets.
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Fig. 9. Rolling out-of-sample predictive performances for the cyber threat dataset. Given the Mean Square Forecasting Errors (MSFE) of all models
under consideration (Mj j = 1, . . . , 4), the model weight is computed as wj = exp(−MSFE(Mj))/(exp(−MSFE(M1)) + · · · + exp(−MSFE(M4))), for
ifferent horizons h (different plots) and models Mj (different lines and colours).
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hese observations naturally prompt further exploration
f dynamic and horizon-specific model selection and com-
ination for generalized Poisson models.
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ppendix A. Proof of the results contained in the paper

.1. Proofs of the results in Section 2

We state the following preliminary results before prov-
ing the results in Lemma 1.

Lemma A.1. Let X ∼ GP(θ1, λ) and Y ∼ GP(θ2, λ)
e two independent GP random variables. The probability
istribution of Z = (X − Y ) follows a Generalized Poisson
ifference distribution (GPD) with pmf:

z(θ1, θ2, λ) = e−θ1−θ2−zλ

∞∑
y=max(0,−z)

θ2(θ2 + yλ)y−1

y!
θ1(θ1 + (y + z)λ)y+z−1

(y + z)!
e−2yλ,

(A.1)

where z takes values in Z, −1 < λ < 1 and θ1, θ2 >

0 are the parameters of the distribution. We denote this
distribution as GPD(θ1, θ2, λ).

roof. See Consul (1986). □

https://doi.org/10.24433/CO.1842159.v1
https://doi.org/10.24433/CO.1842159.v1
https://doi.org/10.24433/CO.1842159.v1
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In this paper, we used an alternative parametrization
f the GPD that is better suited for modelling purposes.
he following lemma shows that our parametrization is
quivalent to the one used in Consul (1986).

emma A.2. The probability distribution in Eq. (2) is
equivalent to the one in Eq. (A.1) via the reparametrization

= θ1 − θ2 and σ 2
= θ1 + θ2.

roof of Lemma A.2. Let Z ∼ GPD(θ1, θ2, λ). We in-
troduce the new parametrization: θ1 = (σ 2

+ µ)/2 and
θ2 = (σ 2

− µ)/2. By substituting θ1 and θ2 into Eq. (A.1)
we have

P({Z = z}) = eσ
2
−zλ

+∞∑
y=max(0,−z)

σ 4
− µ2

2y!(y + z)!(
σ 2

+ µ

2
+ (y + z)λ

)y+z−1 (
σ 2

− µ

2
+ yλ

)y−1

e−2λy. □

(A.2)

Proof of Lemma 1. If Z ∼ GPD(θ1, θ2, λ) in the parame-
trization of Consul (1986), the moments are given in the
Supplementary Material. By using our reparametrization
of the GPD θ1 = (σ 2

+ µ)/2 and θ2 = (σ 2
− µ)/2 we

btain mean, variance, skewness, and kurtosis:

E(Z) =
θ1 − θ2

1 − λ
=

µ

1 − λ
,

(Z) =
θ1 + θ2

(1 − λ)3
=

σ 2

(1 − λ)3
= κ2

S(Z) =
µ(3)

σ 3 =
κ3

κ
3/2
2

=
µ

σ 3

(1 + 2λ)
√
1 − λ

,

K (Z) =
κ4 + 3κ2

2

σ 4 = 3 +
1 + 8λ+ 6λ2

σ 2(1 − λ)
,

(A.3)

where κi, i = 2, 3, 4 are respectively the second, third and
fourth cumulants. □

Proof of Proposition 1. Let ψj be the coefficient of z j in
the Taylor expansion of G(z)D(z)−1. We have

µ = E(Zt ) = E(E(Zt |Ft−1)) = E

⎛⎝α0D−1(1) +

∞∑
j=1

ψjZt−j

⎞⎠
= α0D−1(1) + µD−1(1)G(1) (A.4)

⇔ µ =
α0

D(1) − G(1)
= α0

⎛⎝1 −

p∑
i=1

αi −

q∑
j=1

βj

⎞⎠−1

= α0K−1(1), (A.5)

where the equality before last in Eq. (A.4) follows from

E(Zt |Ft−1) = E(α0D−1(1) + H(B)Zt |Ft−1)

= α0D−1(1) +

∞∑
ψjZt−j.

(A.6)
j=1
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Following (Ferland et al., 2006), the last equality of (A.4)
follows from:

E(α0D−1(1) +

∞∑
j=1

ψjZt−j) = E(α0D−1(1)) + E(
∞∑
j=1

ψjZt−j)

= α0D−1(1) +

∞∑
j=1

ψjE(Zt−j)

= α0D−1(1) + µH(1) = α0D−1(1) + µD−1(1)G(1).

(A.7)

rom (A.5), a necessary condition for the second-order
tationarity of {Zt} is:

(
1 −

∑p
i=1 αi −

∑q
j=1 βj

)
> 0. □

.2. Proof of the results in Section 3

Before proving Proposition 2, we introduce a suitable
hinning operation and state a preliminary result. We
enote with ρθ,λ◦ the quasi-binomial thinning operator,
uch that it follows a QB(ρ, θ/λ, x) distribution. See Alzaid
nd Al-Osh (1993) and Weiß (2008) and Supplementary
aterial for a definition.

roposition A.1. If X follows a GP(λ, θ) distribution and
uasi-binomial thinning is performed independently on X,
hen ρθ,λ ◦ X has a GP(ρλ, θ) distribution.

roof. See Alzaid and Al-Osh (1993). □

roof of Proposition 2. It easy to show that, both X (n)
t

nd Y (n)
t in Eq. (7) and (8) admit the representation

(n)
t = (1 − λ)U1t + (1 − λ)

n∑
i=1

ϕ
(t−i)
1i ◦

(
X (n−i)
t−i

1 − λ

)
, n > 0

(A.8)

and

Y (n)
t = (1 − λ)U2t + (1 − λ)

n∑
i=1

ϕ
(t−i)
2i ◦

(
Y (n−i)
t−i

1 − λ

)
, n > 0,

(A.9)

where ϕ ◦ X is the quasi-binomial thinning operation. Let
Z (n)
t = X (n)

t − Y (n)
t then

Z (n)
t = (1 − λ)U1t + (1 − λ)

n∑
i=1

ϕ
(t−i)
1i ◦ X (n−i)

t−i − (1 − λ)U2t

− (1 − λ)
n∑

i=1

ϕ
(t−i)
2i ◦ Y (n−i)

t−i

= (1 − λ)(U1t − U2t ) + (1 − λ)
n∑

i=1

(
(ϕ(t−i)

1i ◦ X (n−i)
t−i )

− (ϕ(t−i)
2i ◦ Y (n−i)

t−i )
)

= (1 − λ)Ut + (1 − λ)
n∑
ϕ
(t−i)
i ⋄ Z (n−i)

t−i . □
i=1
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Before proving Proposition 3, we recall the definition
f a probability-generating function (pgf) and prove a
reliminary result. Let W = (W1, . . . ,Wk) be a random
ector and w = (w1, . . . , wk)′ a realization of W. The pgf
W(t) of W is defined as

W(t) = E

(
k∏

i=1

tWi
i

)
=

∑
w∈Nk

P({W = w})
k∏

i=1

twi
i , (A.10)

where t = (t1, . . . , tk)′ ∈ Ck. The pgf has the following
properties.

Proposition A.2. Let Z(n)
1...k = (Z (n)

1 , . . . , Z (n)
k ) be a sub-

equence of {Z (n)
t }t∈Z where, without loss of generality, we

hoose the first k periods. Let X(n)
1...k = (X (n)

1 , . . . , X (n)
k ) and

Y(n)
1...k = (Y (n)

1 , . . . , Y (n)
k ) be such that Z(n)

1...k = (X(n)
1...k − Y(n)

1...k)
′

then

gZ1...k (t) = gX1...k (t)gY1...k (t
−1). (A.11)

Proof of Proposition A.2. The result follows from:

gZ(t) = E

(
k∏

i=1

tZii

)
= E

(
k∏

i=1

tXii

)
E

(
k∏

i=1

1

tYii

)
= gX(t)gY(t−1).

□ (A.12)

Proof of Proposition 3. (i) To prove almost sure con-
ergence for {Z (n)

t }, we show that the difference of two
equences {X (n)

t } and {Y (n)
t } that enjoy almost sure con-

ergence will also enjoy almost sure convergence. We
now that Z (n)

t = X (n)
t − Y (n)

t , where X (n)
t and Y (n)

t are two
sequences of GP random variables. From Zhu (2012) we
have

Xn(ω)
a.s.

−→ X(ω) H⇒ P({ω : lim
n→∞

Xn(ω) = X(ω)}) = 1,

Yn(ω)
a.s.

−→ Y (ω) H⇒ P({ω : lim
n→∞

Yn(ω) = Y (ω)}) = 1.

Let A = {ω : limn→∞ Xn(ω) = X(ω)} and B = {ω ∈

Ω × Ω : limn→∞(aXn(ω) + bYn(ω)) = aX(ω) + bY (ω)}.
Then ∀a, b ∈ R, we show almost sure convergence of the
sum (aXn(ω) + bYn(ω)). Let∫
Ω

IB(ω)dP(ω) =

∫
(Ω∩A)∪(Ω∩AC )

IB(ω)dP(ω)

=

∫
Ω

IB(ω)IA(ω)dP(ω) +

∫
Ω

IB(ω)IAC (ω)dP(ω)

=

∫
Ω

IB(ω)IA(ω)dP(ω) +

∫
Ω

IAC (ω)(∫
Ω

IB∩AC (ω)dP(ω|ω′)
)
dP(ω′) = P(B|A)P(A) + P(B|AC )P(AC )  

=0

= P({ω : lim
n→∞

(aXn(ω) + bYn(ω))})

= P({ω : a lim
n→∞

Xn(ω) = aX(ω) − bY (ω) + bY (ω)}) = 1.

(A.13)

herefore, if X (ω)
n

a.s.
−→ X(ω) and Y (ω)

n
a.s.

−→ Y (ω) which
mplies aXn(ω) + bYn(ω)

a.s.
−→ aX(ω) + bY (ω), ∀a, b ∈ R.

ence, for a = 1 and b = −1, this is true for the difference
(n)

= X (n)
− Y (n).
t t t
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(ii) To prove the mean-square limit we use Z (n)
t =

X (n)
t − Y (n)

t and the following lemma.

Lemma A.3. If Xn(ω) and Yn(ω) have a mean-square limit

n(ω)
L2

−→ X(ω), Yn(ω)
L2

−→ Y (ω), and for their sum:

Xn(ω) + bYn(ω)
L2

−→ aX(ω) + bY (ω), ∀a, b ∈ R.

Hence, by setting a = 1 and b = −1 in Lemma A.3

e obtain Xn(ω) − Yn(ω)
L2

−→ X(ω) − Y (ω) and that Z (n)
t

converges to Zt in L2(Ω,F,P).
(iii) In order to show stationarity for {Z (n)

t }, we follow a
procedure similar to the one in Ferland et al. (2006). Let k
and h be two positive integers, then following (Brockwell,
Davis, & Fienberg, 1991), to prove the strict stationarity of
(Z (n)

t )t∈Z, one needs to show that

Z(n)
1+h...k+h = (Z (n)

1+h, . . . , Z
(n)
k+h)

′

and Z(n)
1...k = (Z (n)

1 , . . . , Z (n)
k )′ (A.14)

have the same joint distribution, where vectors in Eq.
(A.14) are written as Z(n)

1+h...k+h = (X(n)
1+h...k+h−Y(n)

1+h...k+h)
′
=

((X (n)
1+h − Y (n)

1+h), . . . , (X
(n)
k+h − Y (n)

k+h))
′ and Z(n)

1...k = (X(n)
1...k −

Y(n)
1...k)

′
= ((X (n)

1 − Y (n)
1 ), . . . , (X (n)

k − Y (n)
k ))′. To show that

both vectors have the same pgf, we first write the pgfs of
X , Y , and Z , as shown above, and use the properties of the
pgf given in Proposition A.2.

gX(n)
1...k

(t) = E

⎛⎝ k∏
j=1

t
X (n)
j

j

⎞⎠
= E

⎛⎝E
(
X(n)

1...k|U1,1−n...k

)⎛⎝ k∏
j=1

t
X (n)
j

j

⎞⎠⎞⎠
=

∑
v1∈N(k+n)

E
(
X(n)

1...k|U1,1−n...k = v1
)

⎛⎝ k∏
j=1

t
X (n)
j

j

⎞⎠P
(
U1,1−n...k = v1

)
(A.15)

gY(n)1...k
(t) =

∑
v2∈N(k+n)

E
(
Y(n)
1...k|U2,1−n...k = v2

)
⎛⎝ k∏

j=1

t
Y (n)
j

j

⎞⎠P
(
U2,1−n...k = v2

) (A.16)

GZ(n)1...k
(t) =

∑
v∈N(k+n)

E
(
Z(n)
1...k|U1−n...k = v

)
⎛⎝ k∏

j=1

t
(X (n)

j −Y (n)
j )

j

⎞⎠P (U1−n...k = v) . (A.17)

By the thinning representation, for any given value
u1,t−n...t+k = (u1,t−n, . . . , u1,t+k)′ of the vector
U1,t−n...t+k = (U1,t−n, . . . ,U1,t+k)′ and u2,t−n...t+k =

(u2,t−n, . . . , u2,t+k)′ of the vector U2,t−n...t+k = (U2,t−n, . . . ,

U2,t+k)′, the components of the vectors (X (n)
1 , . . . , X (n)

k )′

and (Y (n)
1 , . . . , Y (n)

k )′ are computed using a set of well-

determined variables from the sequences V1,τ ,η and V2,τ ,η ,
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where τ = t−n, . . . , t+k−1 and η = 1, . . . , n. Therefore,
if U1,t−n...t+k and U1,t−n+h...t+k+h are both fixed to the
same value v1 and U2,t−n...t+k and U2,t−n+h...t+k+h are both
fixed to the same value v2, it follows that the conditional
distribution of Z(n)

1+h...k+h = ((X (n)
1+h − Y (n)

1+h), . . . , (X
(n)
k+h −

Y (n)
k+h))

′ and Z(n)
1...k = ((X (n)

1 − Y (n)
1 ), . . . , (X (n)

k − Y (n)
k ))′ given

Ut−n...t+k and Ut−n+h...t+k+h, are the same. Accordingly,

E
(
Z(n)
1+h...k+h|U1−n+h...k+h = v

)⎛⎝ k∏
j=1

t
Z (n)j+h
j

⎞⎠
= E

(
Z(n)
1...k|U1−n...k = v

)⎛⎝ k∏
j=1

t
Z (n)j
j

⎞⎠
and, since P ({U1−n+h...k+h = v}) = P ({U1−n...k = v}), it is
possible to write

gZ(n)1...k
(t) =

∑
v∈Z(k+n)

E
(
Z(n)
1+h...k+h|U1−n+h...k+h = v

)
⎛⎝ k∏

j=1

t
Z (n)j+h
j

⎞⎠P ({U1−n+h...k+h = v})

= gZ(n)1+h...k+h
(t)

nd conclude that Z(n)
1+h...k+h and Z(n)

1...k have the same joint
distribution. □

Proof of Proposition 4. The process (Zt )t∈Z is stationary
since it is the a.s. limit of the stationary process Z (n)

t . We
now prove the first- and second-order moments are finite.
Define Z (n)

t = X (n)
t − Y (n)

t , where X (n)
t and Y (n)

t are finite
sums of independent Generalized Poisson variables. Then
it follows that Z (n)

t is a finite sum of Generalized Poisson
difference variables. As shown by Zhu (2012), the first two
moments of Xt and Yt are finite: E[Xt ] = µX ≤ C1, E[Yt ] =

µY ≤ C ′

1, V[Xt ] = σ 2
X ≤ C2, V[Yt ] = σ 2

Y ≤ C ′

2, therefore,
E[Zt ] = E[Xt ] − E[Yt ] = µX − µY ≤ µX + µY ≤ C1 + C ′

1
is finite and V[Xt − Yt ] = V[Xt ] + V[Xt ] = σ 2

X + σ 2
Y ≤

C2 + C ′

2 is also finite, where Cov(Xt , Yt ) = 0 since Xt and
Yt are independent and where Ci and C ′

i , i = 1, 2 are
constants. □

Proof of Proposition 5. To verify that the distributional
properties of the sequence are satisfied, we will follow the
same arguments as in Ferland et al. (2006) but adjust for
our sequence. Given Ft−1 = σ ({Zu}u≤t−1), for t ∈ Z, let

µt = α0D−1(1) +

n∑
j=1

ψjZt−j.

The sequence {µt} satisfies

µt = α0 +

p∑
i=1

αiZt−i +

q∑
j=1

bjµt−j. (A.18)

Moreover, recalling that Zt = Xt −Yt , for a fixed t , we can
(n) (n) (n)
consider three sequences, {r1t }n∈N, {r2t }n∈N and {rt }n∈N, (

18
defined by

r (n)1t = (1 − λ)U1t + (1 − λ)
n∑

i=1

Xt−i∑
j=1

V1t−i,i,k (A.19)

r (n)2t = (1 − λ)U2t + (1 − λ)
n∑

i=1

Yt−i∑
j=1

V2t−i,i,k. (A.20)

and

r (n)t = r (n)1t − r (n)2t . (A.21)

s shown by Ferland et al. (2006), there is a subsequence
nk} such that r (nk)t converges almost surely to Zt . We
now that

t − r (n)1t = (Xt − X (n)
t ) + (X (n)

t − r (n)1t ) (A.22)

nd

t − r (n)2t = (Yt − Y (n)
t ) + (Y (n)

t − r (n)2t ). (A.23)

ince X (n)
t

a.s.
−→ Xt and Y (n)

t
a.s.

−→ Yt , we know that the first
term in both Eq. (A.22) and (A.23) goes to zero. Therefore,
we can write

Zt − r (n)t = (Xt − Yt ) − (r (n)1t − r (n)2t )

=

[
(Xt − X (n)

t ) − (Yt − Y (n)
t )
]

+

[
(X (n)

t − r (n)1t ) − (Y (n)
t − r (n)2t )

]
= (Zt − Z (n)

t ) +

[
(X (n)

t − Y (n)
t ) − (r (n)1t − r (n)2t )

]
= (Zt − Z (n)

t ) +

[
Z (n)
t − (r (n)1t − r (n)2t )

]
,

(A.24)

nd, as before, (Zt − Z (n)
t ) goes to zero since we have

roven almost sure convergence. We have now to show
hat the second term in the last line of Eq. (A.24) goes
o zero. For this purpose, we need to find a sequence

(n)
t = (r (n)1t − r (n)2t ) − Z (n)

t that converges almost surely
o zero. For this reason, it is more suitable to rewrite the
revious sequence as W (n)

t = (r (n)1t − r (n)2t ) − (Xt − Yt ) =

r (n)1t − Xt ) − (r (n)2t − Yt ). Ferland et al. (2006) show that

lim
→∞

E
(
(r (n)1t − Xt )

)
= 0, lim

n→∞
E
(
(r (n)2t − Yt )

)
= 0

(A.25)

herefore, we can conclude that

lim
n→∞

E
(
(r (n)t − Zt )

)
= 0. (A.26)

q. (A.26) implies that W (n)
t converges to zero in L1, there-

ore there exists a sub-sequence W (nk)
t converging almost

urely to the same limit. From this, the distributional
roperties of Xt are satisfied. Since r (nk)1t

a.s.
−→ Xt and

(nk)
2t

a.s.
−→ Yt , it is also true that r (nk)t

a.s.
−→ Zt . Hence,

(n)
t |Ft−1

a.s.
−→ Zt |Ft−1.

owever, r (n)t |Ft−1 = (r (n)1t − r (n)2t )|Ft−1 and from Zhu
(n) (n)
2012) we know that both r1t and r2t have a Generalized



G. Carallo, R. Casarin and C.P. Robert International Journal of Forecasting xxx (xxxx) xxx

T

V

V

P

T

ρ

α

s
r
e
(

Poisson distribution. Since the difference between two GP
random variables is GPD distributed, we can write

r (n)t |Ft−1 ∼ GPD

⎛⎝α0D−1(1) +

n∑
j=1

ψjZt−j

⎞⎠ (A.27)

and conclude that Zt |Ft−1 ∼ GPD(µ̃t , σ̃
2
t , λ). □

Proof of the results in Example 1. For k ≥ 2, γZ (k) =

α1γZ (k − 1) = αk−1
1 γZ (1), and for k = 1, γZ (1) =

Cov(Zt , Zt−1) = α1γZ (0) = α1V(Zt ) = α1(φ3E(σ 2
t )) +

α1V(µt ). For k ≥ 1 we have γµ(k) = α1γµ(k − 1) =

αk
1V(µt ). For k = 0, γµ(k) = V(µt ) = α1γZ (1) =

α1
{
α1(φ3E(σ 2

t ) + V(µt ))
}

= α2
1(φ

3E(σ 2
t )) + α2

1V(µt ).
herefore,

(µt ) =
α2
1(φ

3E(σ 2
t ))

1 − α2
1

(A.28)

(Zt ) = φ3E(σ 2
t ) + V(µt )

= φ3E(σ 2
t ) +

α2
1[φ

3E(σ 2
t )]

1 − α2
1

=
φ3E(σ 2

t )
1 − α2

1
, (A.29)

where φ = 1/(1 − λ). Finally, the autocorrelations are
derived as follows:

ρµ(k) =
γµ(k)
V(µt )

=
αk
1 V(µt )
V(µt )

= αk
1 (A.30)

ρZ (k) =
γZ (k)
V(Zt )

= αk−1
1 γZ (1)

1 − α2
1

φ3E(σ 2
t )

= αk−1
1

α1(1 − α2
1)φ

3E(σ 2
t ) + α3

1φ
3E(σ 2

t )
1 − α2

1

1 − α2
1

φ3E(σ 2
t )

= αk
1. □ (A.31)

roof of the results in Example 2. For k ≥ 2, γZ (k) =

α1γZ (k− 1)+ β1γZ (k− 1) = (α1 + β1)k−1γZ (1). For k = 1,
γZ (1) = Cov(Zt , Zt−1) = α1γZ (0) + β1γµ(0) = α1V(Zt ) +

β1V(µt ) = α1[φ
3E(σ 2

t )] + (α1 + β1)V(µt ). For k ≥ 1 we
have γµ(k) = α1γµ(k−1)+β1γµ(k−1) = (α1+β1)kV(µt ).
For k = 0, γµ(k) = V(µt ) = α1γZ (1) + β1γµ(1) =

α1
{
α1(φ3E(σ 2

t )) + (α1 + β1)V(µt )
}
+β1 ((α1 + β1)V(µt ))

= α2
1(φ

3E(σ 2
t )) + (α1 + β1)2V(µt ). We conclude that:

V(µt ) =
α2
1(φ

3E(σ 2
t ))

1 − (α1 + β1)2
,

V(Zt ) = φ3E(σ 2
t ) + V(µt ) =

φ3E(σ 2
t )(1 − (α1 + β1)2 + α2

1 )
1 − (α1 + β1)2

.

(A.32)

he autocorrelations are derived as follows:

µ(k) =
γµ(k)
V(µt )

=
(α1 + β1)k V(µt )

V(µt )
= (α1 + β1)k (A.33)

ρZ (k) =
γZ (k)
V(Zt )

= (α1 + β1)k−1 γZ (1)
1 − (α1 + β1)2

φ3E(σ 2∗

t )(1 − (α1 + β1)2 + α2
1)

= (α1 + β1)k−1 α1(1 − β1(α1 + β1))
2 2 □ (A.34)
1 − (α1 + β1) + α1
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Table B.1
Value of Geweke’s test statistics for the three parameters of the
GPD-INGARCH(1,1) and different choices of the test function g(x).
g(x) α β λ

x −1.32 0.14 1.17

x2 0.0881 0.3472 1.5581

x3 1.4672 0.5406 1.8321

Appendix B. Further details for the numerical illustra-
tion

B.1. Correct implementation test

Fig. B.1 shows Geweke’s statistics evaluated on the first
n MCMC samples, n = 1, . . . , 2000, for the parameters
, β and λ and the first three moments. A graphical in-
pection indicates convergence of the statistics. Table B.1
eports the statistics on the 2,000 samples for the differ-
nt parameters (columns) and choices of the test function
rows). The absolute value of the statistics Z is always
below 2.58, the critical value of Geweke’s statistics at
the 1% level. Thus, the null hypothesis of the correct
implementation of the MCMC is accepted. See Section
S.2 in Supplement Material for background material on
Geweke’s statistics.

B.2. Sampling efficiency

We consider 400 samples from two GPD-INGARCH(1,1)
simulation settings: one with low persistence and the
other with high persistence. The first setting has param-
eters λ = 0.4, α1 = 0.25, β1 = 0.23, α0 = −0.2 and
φ = 22.78, while the second setting with parameters
λ = 0.6, α1 = 0.53, β1 = 0.25, α0 = −0.2 and φ =

26.25. We run the Gibbs sampler for 1,010,000 iterations,
discard the first 10,000 draws to avoid dependence from
initial conditions, and apply a thinning procedure with
a factor of 100 to reduce the dependence between con-
secutive draws. The following figures show the posterior
approximation of α1, β1 and λ. For illustrative purposes,
we report in Figs. B.2 to B.4 the MCMC output for one
MCMC draw before removing the burn-in sample and
thinning. In contrast, in Figs. B.5 to B.7, we display the
MCMC output after removing the burn-in sample and
implementing thinning.

B.3. Prior sensitivity

This section compares inference results under two
prior assumptions. For the diffuse prior, we assume the
Dirichlet prior given in Eq. with hyper-parameter values
c0 = 3, c1 = 4 and c2 = 3. For the strongly informative
prior, we assume a Dirichlet prior with c0 = 0.8, c1 = 0.8,
and c2 = 0.8 which assigns a large probability mass to
values of α + β close to 1. The sensitivity to the prior
choice has been assessed in the low and high persistence
settings.

Fig. B.8 shows the contour lines of the prior and the

MCMC samples from the posterior of α and β . Fig. B.9
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Fig. B.1. Plot of Geweke’s statistics for correct implementation of the MCMC. Statistics are evaluated on the first n MCMC samples, n = 1, . . . , 2000,
or the parameters α (solid line), β (dashed line), and λ (dotted line) and the first three moments (different plots). Grey is the acceptance region of
he test at the 1% level.
n
c

hows the mean and the 2.5% and 97.5% quantiles of the
osterior distribution of α + β approximated with an
ncreasing number of MCMC samples (after thinning and
urn-in) (see Fig. C.3).
20
In all scenarios, the information from the data domi-
ates the posterior, which is not very sensitive to the prior
hoice.
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Fig. B.2. MCMC trace plots for the parameters in both settings: low and high persistence.
s
I

Appendix C. Further details for the real-data applica-
tions

C.1. Preliminary analysis

In this section, the descriptive statistics and the re-
sults of the stationarity and normality tests are reported
for Schiphol’s (Table C.1) and Cyber threats (Table C.2)
datasets (see Fig. C.4).
 t

21
C.2. Posterior inference

The following reports the posterior histograms and the
1-step-ahead forecasts for Schiphol’s and Cyber threats
datasets. The mean square errors at different horizons,
h = 1, . . . , 7, are provided for the Generalized Pois-
on difference specifications, GPD-INGARCH and GPD-
NARCH, and the standard Poisson difference specifica-
ions, PD-INGARCH and PD-INARCH (see Fig. C.6).
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Fig. B.3. Histograms of MCMC draw for the parameters in both settings: low and high persistence.

22
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Fig. B.4. Autocorrelation functions for the parameters in both low and high persistence settings.
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t

Fig. B.5. MCMC trace plots for the parameters in both settings: low and high persistence, after removing the burn-in sample and implementing
hinning.
Table C.1
Descriptive statistics, stationary and normality tests for the car accident dataset. ADF is the Augmented Dickey–Fuller
test with stationarity as the null hypothesis, PP is the Phillips–Perron test with stationarity as the null hypothesis, and
KS is the Kolmogorov–Smirnov test where the null hypothesis states that the data comes from a Normal distribution.

Mean Variance Skewness Kurtosis ADF PP KS

Car Accident 8.78 24.55 0.91 3.89 −9.21** −15.66** 0.94**
∆ Car accident −0.0055 39.71 0.06 3.59 −18.35** −34.84** 0.36**

** The symbol means that the null hypothesis is rejected at 5% significance level.
24
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Fig. B.6. Histograms of MCMC draws for the parameters in both settings: low and high persistence, after removing the burn-in sample and
implementing thinning.
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Fig. B.7. Autocorrelation functions for the parameters in low and high persistence settings, after removing the burn-in sample and implementing
thinning.

26
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Fig. B.8. Log-density function (contour lines) and MCMC samples (blue dots) of α and β for the diffuse prior (left) and the strongly informative
prior (right) in the low and high persistence settings. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. B.9. Posterior mean (solid) and quantiles (dashed) of α+β for an increasing number of MCMC iterations (horizontal axis) under a diffuse prior
(black) and a strongly informative prior (red) assumptions in the low and high persistence settings. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

27
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Table C.2
Descriptive statistics, stationary and normality tests for the cyber dataset. ADF is the Augmented Dickey–
Fuller test with stationarity as the null hypothesis, PP is the Phillips–Perron test with stationarity as the
null hypothesis, and KS is the Kolmogorov–Smirnov test where the null hypothesis states that the data
comes from a Normal distribution.

Mean Variance Skewness Kurtosis ADF PP KS

Cyber 3.72 8.08 1.07 5.07 −23.16** −26.98** 0.74**
∆ Cyber 9.14e−04 11.72 0.12 4.53 −30.89** −48.91** 0.29**

** The symbol means that the null hypothesis is rejected at 5% significance level.
Fig. C.1. Histograms of MCMC draws for the parameters of Schiphol’s accident data of Fig. 6.
Fig. C.2. Histograms of MCMC draws for the parameters of the Cyber treats data of Fig. 8.
28
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Fig. C.3. Out-of-sample forecast on the Schiphol dataset. Actual (black) and predicted (red) values at horizon h = 1 for the GPD-INGARCH, GPD-
INARCH, PD-INGARCH, and PD-INARCH (different plots). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. C.4. Out-of-sample forecast on the Schiphol’s dataset. Mean Square Forecast Error at different horizons h = 1, 3, 5, 7 (different plots) on the
Schiphol dataset for the GPD-INGARCH, GPD-INARCH, PD-INGARCH, and PD-INARCH (different lines).

29



G. Carallo, R. Casarin and C.P. Robert International Journal of Forecasting xxx (xxxx) xxx

G
t

S

A

f
1

R

A

Fig. C.5. Out-of-sample forecast on the Cyber threats dataset. Actual (black) and predicted (red) values at horizon h = 1 for the GPD-INGARCH,
PD-INARCH, PD-INGARCH, and PD-INARCH (different plots). (For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)
Fig. C.6. Out-of-sample forecast on the Cyber threats dataset. Mean Square Forecast Error at different horizons h = 1, 3, 5, 7 (different plots) on the
chiphol dataset for the GPD-INGARCH, GPD-INARCH, PD-INGARCH, and PD-INARCH (different lines).
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