A Relevance-Based CNN Trimming Method for
Low-Resources Embedded Vision

Dalila Ressil[0000—0001—5291—5438], Mara Pistellatol[0000—0001-6273—290X]
Andrea Albarel]jl[0000—0002—3659—5099] 7
and Filippo Bergamascol[000()700017666871556]
I'DAIS, Universitd Ca’Foscari Venezia, 155, via Torino, Venezia Italy
{dalila .ressi, mara.pistellato, albarelli,
filippo.bergamasco}@unive.it

)

Abstract. A significant amount of Deep Learning research deals with
the reduction of network complexity. In most scenarios the preservation
of very high performance has priority over size reduction. However, when
dealing with embedded systems, the limited amount of resources forces
a switch in perspective. In fact, being able to dramatically reduce com-
plexity could be a stronger requisite for overall feasibility than excellent
performance. In this paper we propose a simple to implement yet effec-
tive method to largely reduce the size of Convolutional Neural Networks
with minimal impact on their performance. The key idea is to assess the
relevance of each kernel with respect to a representative dataset by com-
puting the output of its activation function and to trim them accordingly.
The resulting network becomes small enough to be adopted on embedded
hardware, such as smart cameras or lightweight edge processing units. In
order to assess the capability of our method with respect to real-world
scenarios, we adopted it to shrink two different pre-trained networks to
be hosted on general purpose low-end FPGA hardware to be found in
embedded cameras. Our experiments demonstrated both the overall fea-
sibility of the method and its superior performance when compared with
similar size-reducing techniques introduced in recent literature.

Keywords: Computer Vision - CNN - Industrial Application - Com-
pression - Filter Pruning

1 Introduction

Over the past few years industrial applications have been exploiting extensively
the advantages coming from Deep Learning, in particular when using Convolu-
tional Neural Networks (CNNs). The intrinsic flexibility of these networks makes
them widely adopted in a variety of practical applications, from medical to in-
dustrial. In particular, image and signal processing tasks are well-suited for the
convolutional architecture, therefore a huge number of Computer Vision solu-
tions have been proposed in the literature. Deploying a large and accurate model
to perform a certain task takes considerable energy and space. Even if this might
not be a problem during the training phase, it becomes a big issue at inference

2 D.Ressi et al.

time, especially if the model has to run on devices with reduced computational
resources or small storage space.

This is the case with many modern applications, including IoT devices, smart
cameras, drones, smartphones or any other kind of device characterized by lim-
ited resources and low energy consumption requirements. For this reason, the
adaptation of inference networks to embedded systems has been covered by many
researchers [27, 5], devising solutions ranging from architectures specially crafted
for Field Programmable Gate Arrays (FPGAs) [23, 13] to techniques focused on
low consumption for wireless and mobile devices [28]. Indeed, according to the
type of task to perform, two main approaches are to be found in literature.
The choice is between training from scratch a smaller specialized network, or
compressing a large pre-trained network and adapting it for the task (pruning).

In this paper we introduce a pruning technique that, while of general appli-
cation, has been developed to address a specific vision task. Namely, our goal
was to synthesize on FPGA hardware, available on commercial smart cameras,
a lightweight CNN to locate both 1D and 2D signal peaks respectively in line
scan and area scan images. To this end, we started from full-size networks and
we made them tiny by means of a novel pruning algorithm which does not re-
quire manual tuning of parameters and allows to greatly reduce the number
of floating point operations (FLOPs) computed. In a throughout experimental
section we show that the trimmed network achieves better results with respect
to a network with the pruned architecture that is trained starting from random
weights. Moreover, the resulting performance is better than the one obtainable
with other state-of-the-art trimming methods. Finally, by using other compres-
sion techniques such as quantization of the weights [3, 24] the resulting model
can even be further reduced.

2 Related work

Fitting large inference networks to embedded systems is a topic that attracted
the attention of many researchers in the recent past. A typical solution consists to
re-design network components to achieve similar results with smaller resources.
It is the case of MobileNets [10] and ThinNet [2], where the authors substitute
classical convolutions with depthwise separable convolutions. Another example
is SqueezeNet [12], achieving the same accuracy of AlexNet with 50 times less
parameters. It uses multiple strategies to reduce each layer complexity, like de-
sign space exploration and the introduction of new modules. Such solutions are
usually targeted for mobile devices [14, 29] but can also be implemented in large
networks to reduce their size. Another interesting approach, called distillation
[9], consists in using a larger network to teach the same task to a smaller net-
work. However, it can only be used for classification.

Great effort has also been put on techniques to compress existing networks
by reducing the number and/or precision of each weight. The former is usually
referred as Pruning [1] and the latter as Quantization [3, 24, 6]. Pruning comes

Relevance-Based CNN Trimming Method 3

in a lot of different flavours, and sometimes it is difficult to actually understand
which method is the best [30] considering the high inconstancy of performance
for different application scenarios [20]. Weight pruning techniques [7] remove
single connections by setting some weights to zero, but the resulting sparse
matrices cannot exploit BLAS libraries and are hard to implement on FPGA
[6]. A simpler and more structured manner is to prune whole kernels from a
Convolutional Neural Network. This procedure is often referred as filter pruning
or trimming [11]. Our work belongs to this category.

As discussed in [17], filter pruning techniques can be further categorized into
two groups: methods focusing on property importance and others concentrating
on adaptive importance. In the first group we find methods which prune filters
according to intrinsic properties of the networks, and do not modify the training
loss. In 2016, Hu et al. [11] proposed a layer-wise method which analyses the
neuron outputs to compute the Average Percentage of Zero (APoZ) activations
after the ReLLU mapping. The idea is to remove neurons with an APoZ larger
than one standard deviation from the average APoZ of the target trimming layer.
Instead of looking at the outputs, the method proposed by Li et al. [16] measures
the relative importance of a filter in each layer by computing the sum of its
absolute weights (i.e. its L1-Norm). A more recent approach has been suggested
by He et al. [8]. It expands the norm-based filter criterion by computing the
Geometric Median (GM) of the filters within the same layer. The idea is that
filters close to the GM can be represented by the other filters, and therefore are
good candidates to be pruned. The authors illustrate how the smallest norm
filters can be very important, as they could actually be larger than zero or they
can have a small norm deviation. In 2020 Lin et al. [17] proposed a method
called Filter Pruning using High-Rank Feature Maps (HRank). They claim that
average rank of multiple feature maps generated by a single filter is independent
from the distribution of the images. Filters which generate lower-rank feature
maps are less important and can be removed first in a one-shot manner, requiring
only a few fine-tuning epochs after the pruning phase.

Adaptive importance methods like [19, 18] usually achieve better compression
and speed-up than property importance based ones. On the other hand, these
techniques change the loss function up to the point that retraining becomes a
separated problem, usually requiring to search again a new best set of hyper-
parameters.

There is a last class of filter pruning algorithms that deserves to be men-
tioned. Sometimes filter pruning is exploited to find the best sub-network from
an original one. It is the case of [4] and [26] where they use PCA to compress-
ing both length and width of the network. Our goal however is to compress an
existing network without the need to retrain it completely. For this reason, we
focus on Property Importance algorithms.

Methods aiming to remove parameters from the network, regardless where
the connections or the filters are, can be considered global. Usually there is only
one threshold to be set, such as the number of filters or the compression rate
to achieve. Some methods focus on specific layers, usually relying on certain

4 D.Ressi et al.

statistics to pick the most promising ones. Rather than global methods, these
layer-wise pruning algorithms require more than one threshold or other param-
eters to be set, making them less robust.

Finally, pruning is usually performed in three stages: (i) preparation of an
appropriately large network either by training it from scratch or by adapting
an existing trained network using transfer learning; (ii) removal of superfluous
parameters and (iii) fine-tuning to recover the loss of accuracy. The second and
third stages are often repeated until the network reaches the desired level of
compression. Some methods, however, perform pruning in a one-shot fashion by
removing a chosen set of weights in a single pass [17].

3 The pruning method

We propose a global filter pruning method based on the idea that kernels can be
ranked by means of a relevance metric computed according to the output after
the activation function. Less relevant filters are iteratively removed in a prune
one and re-train fashion, to allow the network to adjust to the reduced channel.
Conforming with this process, we call our method ReFT (Relevance-based Filter
Trimming).

More formally, given a convolutional layer, its input can be represented as a
2D tensor I x H containing a signal of I single H—dimensional feature vectors’.
The convolutional layer contains K different S x H kernels that are convolved
with the input to produce an I x K output tensor. This operation requires
approximately S x H multiply-add operations for I filter shift for a total of
SHIK operations. Our goal is to define a relevance function to be computed over
the K kernels in order to iteratively remove the kernel with smaller relevance.
Each kernel removal will result in a reduction of the multiply-add operation in
the order of SHI. Furthermore, it will reduce the size of the output of the layer
of a factor proportional to the input I.

In detail, the ReFT iterative reduction process is performed according to the
pseudo-code described in Algorithm . Here, Kernels is the full set of kernels
in the network, Kernels(i) is the subset of kernels at layer ¢ and Kernels(i, ¢)
points to a specific kernel. The value output(i,c, s) refers to the output of the
activation function after Kernels(i,c) for data point s.

The network reduction stops when either the number of kernels left is below
a given threshold ¢ or the performance of the network (measured by the function
per f Metric) is less than minimum acceptable value e. The actual characteristic
measured by per f Metric could change according to the application scenario. For
instance it could be a function of the average loss with respect to a validation
set or a specific metric over the confusion matrix.

During its main iteration the ReFT algorithm selects the least relevant kernel,
removes it from the network and performs a partial retrain if the removed kernel
was not negligible (i.e. exhibiting an output value of 0 for all the samples in S.

! this is actually the case for 1D convolutional layers, but the extension to 2D layers
is straightforward

Relevance-Based CNN Trimming Method 5

Algorithm: ReFT network reduction

Choose a representative dataset S;
while |Kernels| >t and perfMetric > ¢ do
for s € S do
for i € Layers do
for c € Kernels(i) do
| OiL(s) + output(i,c,s)
end

end
end
(a, B) = arg min(relevance(i, c));

Remove Kernels(a,) from the network;
if 3. .s05(s) #0 then

‘ Retrain a few epochs to adapt model;
end

end

Of course, key to the effectiveness of the ReFT reduction is the choice of a
suitable relevance function. As anticipated when introducing the method, the
main idea is to account for the output distribution of the kernel with respect
to real data, rather than for its input weight (which is much more common in
literature). The rationale is to look at the actual effect of the kernel, rather than
at its potential impact expressed in an implicit way by its input weights. To this
end, we define a span function as:

span(i, ¢,7) = qio0—~(0%) — ¢,(O%)

That is the difference between percentile 100 — v and percentile 7 in the
distribution O! over all the data points s in the dataset S. Thus, we have that
span(i,c,0) represents the distance between the maximum and the minimum
output for Kernels(i,c) over the dataset S.

In principle, the span function could be directly adopted to define relevance
by choosing a specific value for «. However, in order to mitigate the effect of
outliers, we would like to use the full span only to disambiguate between kernels
with similar output distributions, while adopting more conservative percentiles
most of the time.

To obtain this result, we define relevance as an implicit metric by defining
this pairwise partial ordering function:

relevance(j, k) < relevance(l,m) <=
span(j, k,2) < span(l,m,2) V
span(j,k,2) = span(l,m,2) A

)

span(j, k,0) < span(l,m,0)

6 D.Ressi et al.

Signal # 10005 3 peaks No dot
—— Signal
200 g
Z
G
3
£ 100
0
0 200 400 600 800 1000
Sample 0.
. Height: 163
Signal # 10006 2 peaks Aﬁ'g%e: 56.8
—— Signal 0 -
igna 4
200 9 -
oy 20
G
5 40
£ 100
60
0
0 200 400 600 800 1000

Sample

Fig. 1: Left: two scanlines acquired by the camera for the peak detection task.
Multiple or no peaks can be present in the same scanline, sometimes very close
to each other. Right: two samples from the Dots dataset. Also in this case there
might not be any dot present or multiple ones. In the bottom right picture the
detected dot center is highlighted by a red cross

In practice, this means that filter j, k is less relevant than filter n,m if the
distance between the 98" and the 2"¢ percentile is lower or, if they are equal,
the full span is lower. While it could seem counter-intuitive that the 98" and
the 2¢ can be frequently equal, this actually happens a lot due to the behaviour
of clamping functions such as ReLU.

4 Applications and Experimental Evaluation

In this section we compare our method to other similar recent pruning algo-
rithms introduced in §2. In order to have a fair comparison, we selected property
importance methods focusing on the Ll-norm of the filters [16], rank of the fea-
ture maps (HRank [8]), and layers’ outputs like Apoz [11] and GM [17]. We first
analyse the performances of the proposed technique (ReFT) for specific camera
tasks, designed to be carried out in relatively small embedded devices. After
that, we apply our pruning to VGG16 on Cifarl0 to show that the proposed
method is effective also when applied to more complex architectures.

4.1 Pruning CNNs for Camera Tasks

As already discussed, image processing for quality inspection in an industrial
environment often involves strict requirements. For this reason, smart cameras

Relevance-Based CNN Trimming Method 7

Model Acc Pos err Height err Params Flops Ratio
Peaks 0.999 0.342 0.0149 2.22K 2.412M 1.00
Peaks-ReFT 0.993 0.644 0.0471 0.936K 0.290M 0.42
Peaks-APoZ 0.988 0.717 0.0566 0.885K 0.295M 0.42
Peaks-L1-norm | 0.984 0.806 0.0635 0.936K 0.290M 0.42
Peaks-GM 0.965 1.04 0.0784 0.936K 0.290M 0.42
Peaks-ReFT-S | 0.989 1.1400 0.0578 0.936K 0.290M 0.42

Table 1: Average accuracy, average peak position error, average height error,
number of parameters and compression ratio for Peak network with 34 pruned
kernels (out of the 40 available distributed across 3 conv layers). Pruning meth-
ods have been repeated 20 times. ReFT-S is the training of Peak-ReFT with
random weights. See fig.2 for standard deviation.

Model Acc Poserr Eccerr Params Flops Ratio
Dots 1.000 1.11 0.073 14.2K 10.537M 1.00
Dots-ReFT 0.999 3.21 0.073 10.3K 0.332M 0.73
Dots-APoZ 0.997 3.73 0.137 10.2K 0.711M 0.71
Dots-L1-norm | 0.791 5.91 0.153 10.3K 0.332M 0.73
Dots-GM 0.745 5.61 0.158 10.3K 0.332M 0.73
Dots-HRank 0.953 4.57 0.156 10.3K 0.332M 0.73
Dots-ReFT-S | 0.994 1.25 0.101 10.3K 0.332M 0.73

Table 2: Average accuracy, average dot position error, average eccentricity error,
number of parameters and compression ratio with 34 pruned kernels (out of 40)
in the first three convolutional layers. Pruning methods have been repeated 20
times. Dot-ReFT-S is the training of Dot-ReFT with random weights. See fig.2
for standard deviation.

that can pre-process frames during acquisition (for example by feeding images to
a built-in CNN) may offer a substantial advantage over classical image processing
solutions [22, 21]. Usually, such setups require extreme and specialised network
pruning approaches, in order to improve both time and memory efficiency. As a
case study, we show two practical applications which significantly benefit from
the proposed pruning method, especially when implemented on a FPGA device.

The first is realized by a CNN to detect peaks in a one-dimensional light
intensity timeserie. This is a typical scenario in 3D reconstruction in which planar
laser beams are projected onto the object under study and observed by one or
more cameras geometrically calibrated with the laser. The intersection of each
laser plane with the object results in a line, usually orthogonal with the pixel
arrangement of the linear camera. Therefore, each line produces a spike, or peak,
whose position can be easily related with the depth of the object 3D point
illuminated by the laser (See for example the signal plotted in the left column
of Fig. 1). Our tested model is a relatively simple feed-forward Convolutional

8 D.Ressi et al.

Peaks Accuracy Dots Accuracy
1.00 1. <~ <
0.99 0.9
> .
:
‘E’_, 0.98 3 S Rer
<L):> 2 0.8 —— Apoz ol
0.97 —— L1-norm
—+— GM
0.7} —— HRank
0.96
0 10 20 30 0 5 10 15 20 25 30
Number of pruned kernels Number of pruned kernels
Peak position Dot position
<
Z
w
<
=
0 10 20 30 0 5 10 15 20 25 30
Number of pruned kernels Number of pruned kernels
Peak height Peak(area)
0.150
—+ ReFT
~0.125 —+ Aoz
> —— L1-norm
= —+— aMm
e 0.100 I PRank
£0.075
w
< 0.050
=
0.025 W
0 10 20 30 0 5 10 15 20 25 30
Number of pruned kernels Number of pruned kernels

Fig.2: Comparison of different pruning techniques for peak and dot detection
networks (1st and 2nd columns respectively). For each task we report accuracy,
MAE of position error and MAE of height and area.

Neural Network taking in input a vector of 1024 intensity values and producing
a vector of N output bins, each one containing peak probability, height, location
and width of detected peaks. The network is made of 4 convolutional blocks
(interleaved by ReLU activations and maxpooling) and then it splits to compute
the different losses.

The second case study is the 2-dimensional extension of the linear peak de-
tection network to detect dots in image data (see the right column of Fig. 1
for some examples). The network architecture is essentially equal to the cor-
responding 1-dimensional case, except for it takes a 2D images as input and
1-dimensional convolutions are replaced with their 2D counterparts.

Relevance-Based CNN Trimming Method 9

Both networks provide multiple outputs, namely: the probability of the pres-
ence of a peak or dot, the information about peak position, and its height. In
the 2D case, we also consider dot area and eccentricity.

Synthetic datasets Our Peaks dataset contains 100000 line scan acquisitions
divided into training, validation and test set with ratio 80:10:10. Intensity ranges
from 0 to 255 in vectors of 1024 values representing a line-camera image. Dots
dataset was generated by approximating the intensity response with a bivariate
Normal function characterized by a certain height (the intensity of the dot),
eccentricity (how much the dot deviates from being circular) and angle (the
major axis orientation). Signals are assumed to be acquired 80 scanlines at a
time and multiple dots can be simultaneously present in each image. It consists
of 100000 acquisitions with separated test and validation set of 10000 samples
each.

Network training and pruning Both the networks were trained with a learn-
ing rate (Ir) of 1E — 5, decreased by a factor of 0.1 if the loss does not improve
for 3 consecutive epochs. The validation set is used to stop before overfitting.
Fine tuning after pruning is performed with ir = 1E — 5 for a fixed number of
epochs = 3. We pruned both the Peaks and Dots networks only from the first 3
blocks, which contain 16, 16 and 8 kernels respectively, leaving at least 1 kernel
per block.

Results Figure 2 shows how the performance of the 1D peak detection (top)
and 2D dot detection (bottom) networks are affected by the pruning process. Our
method lead to a good prediction accuracy even if a severe number of kernels
are removed. L1-norm tend to perform worst, with the accuracy dropping signif-
icantly especially for the 2D dot detection network. Together with the detection
accuracy, position and height are better estimated when the network is pruned
with our proposed method. Apoz shows similar performance but higher stan-
dard deviation. Table 1 and 2 summarize the performance of the two networks
while pruning an optimal number of kernels (33 in this case). It is interesting
to notice that both the models pruned with our method (Peak-ReFT and Dots-
ReFT) perform better than a model with the same number of kernels trained
from scratch (Peak-ReFT-S and Dots-ReFT-S). In other words, it is better to
trim a complex network than training a simpler network from the start.

4.2 VGG16 on Cifarl0

To demonstrate that our method is valid also on more complex CNNs we used
VGG16 [25] network on Cifarl0 dataset [15]. Cifarl0 contains 60000 RGB im-
ages belonging to 10 classes and it is often used together with VGG16 to assess
the efficiency of compressing methods. VGG16 is a large convolutional network
trained on the ILSVR2012 dataset. The network contains 13 convolutional lay-
ers with 3 fully connected on top and the activation function for each layer is

10 D.Ressi et al.

a ReLU, except for the final softmax. In order to perform classification on a
dataset different from the one the network has been trained on, we need to use
transfer learning. We exploited the pretrained 13 convolutional layers, to which
we attached two more fully connected layers with a small dropout rate and ReLU
activations. Finally, we added one last fully connected layer to reduce the output
to the correct number of classes. The images are resized from their 32 x 32 orig-
inal shape to 48 x 48, which is the smallest input size required to be able to use
all VGG16 convolutional layers. We split the images into 3 separated datasets
for train, validation and test with a 60:20:20 ratio. A fast training with learning
rate 3E — 5 is performed on Cifarl0 dataset, using the validation set to stop
the training at a proper time. Every time the pruning algorithm removes a filter
we performed a fine tuning step with 5 epochs and a small learning rate set to
1E — 6, followed by another 5 epochs with the same learning rate divided by
10, to recover any loss in accuracy. We tested HRank with the same parameters
except for one during the recovery stage, as the pruned kernels are removed in a
single pass, and the authors suggest a higher number of epochs (50) to recover
the accuracy. The convolutional layers are frozen both at training and pruning
time, such that the network can only modify the fully connected weights.

Figure 3 shows the topl accuracy varying the number of pruned kernels.
Our method outperforms the others, with a particularly remarkable difference
when more than 300 kernels are removed. Even though ReFT algorithm achieved
fair superior performances, some credit has to be given to the other methods.
In general, methods that are limited to compute metrics on the filter values
(like L1-norm and GM) perform worse than ones analyzing the output of the
layers (our method and Apoz). However, the latter are more computational
intensive and require a representative dataset to be used, something particularly
noticeable when working with images on large networks, such as Cifarl0 on
VGG16. HRank mitigated this problem by requiring only a small set of images
to compute the output responses, but in our tests consistently performed worse
than others. HRank, anyway, needs to be run only once, drastically decreasing
the computing time during the pruning phase.

Model Topl Topb Params Flops Ratio
VGG16 0.801 0.988 15.1M 1.41G 1.000
VGG16-ReFT 0.780 0.986 11.9M 1.15G 0.789
VGG16-APoZ 0.761 0.983 11.5M 1.23G 0.762
VGG16-L1-norm 0.731 0.979 11.9M 1.15G 0.789
VGG16-GM 0.581 0.944 11.9M 1.15G 0.789

Table 3: Comparison of topl accuracy, topb accuracy, number of parameters,
FLOPs and compression ratio achieved by filter pruning on VGG16 and Cifar10
after pruning 460 filters.

Relevance-Based CNN Trimming Method 11

Topl accuracy

0.8 —
506
9
©
—_
0.4
[SR —
< ReFT
— Apoz
= Ll-norm
0.2f — gm
—— HRank

0 250 500 750 1000 1250 1500 1750 2000
Number of pruned kernels

(a) Topl accuracy of VGG16 on Cifarl0 with different pruning methods.

Top5 accuracy

Accuracy
o
0]

—— ReFT

~——— Apoz
0.7 — Ll-norm

— GM

—— HRank
0.6

0 250 500 750 1000 1250 1500 1750 2000
Number of pruned kernels

(b) Topb accuracy of VGG16 on Cifar10 with different pruning methods.

Fig.3: Accuracy loss as the number of pruned filter increases for the different
methods analysed. The speed in performance degradation is connect to the ex-
perimental setup, as the fine-tuning phase does not take into consideration the
validation loss for a proper stopping condition, but rather it runs for a fixed
number of epochs.

5 Conclusions

We presented a simple CNN pruning method working by ranking the relevance of
each convolutional kernel according to the output produced on a representative
dataset. Our heuristic is simple to implement but it better preserves the network
predicting power compared to similar state-of-the-art approaches while pruning
a large amount of kernels.

We analysed two practical case study: peak detection in both 1 and 2 dimen-
sional intensity signals to assess the feasibility on simple networks designed for
FPGA hardware. In our tests, we almost halved the number of weights without

12 D.Ressi et al.

a noticeable decrease of prediction accuracy. Even if developed to implement
low-level vision tasks, our method has proven to be effective even when applied
on classical datasets and network architectures like VGG16 on Cifarl0.

References

[1] Blalock, Davis et al. “What is the state of neural network pruning?” In:
arXiv preprint arXiv:2003.03033 (2020).

[2] Cao,S. et al. “ThinNet: An Efficient Convolutional Neural Network for Ob-
ject Detection”. In: 2018 24th International Conference on Pattern Recog-
nition (]CPR). 2018, pp. 836-841. pDO1: 10.1109/ICPR.2018.8545809.

[3] Courbariaux, Matthieu, Bengio, Yoshua, and David, Jean-Pierre. “Train-
ing deep neural networks with low precision multiplications”. In: arXiv
preprint arXiv:1412.7024 (2014).

[4] Garg, Isha, Panda, Priyadarshini, and Roy, Kaushik. “A low effort ap-
proach to structured CNN design using PCA”. In: IEEFE Access 8 (2019),
pp. 1347-1360.

[6] Gasparetto, A. et al. “Cross-Dataset Data Augmentation for Convolutional
Neural Networks Training”. In: vol. 2018-August. 2018, pp. 910-915. DOT:
10.1109/ICPR.2018.8545812.

[6] Han, Song, Mao, Huizi, and Dally, William J. “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and huff-
man coding”. In: arXiv preprint arXiw:1510.00149 (2015).

[7] Han, Song et al. “Learning both weights and connections for efficient neural
networks”. In: arXiv preprint arXiv:1506.02626 (2015).

[8] He, Yang et al. “Filter pruning via geometric median for deep convolu-
tional neural networks acceleration”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019, pp. 4340—
4349.

[9] Hinton, Geoffrey, Vinyals, Oriol, and Dean, Jeff. “Distilling the knowledge
in a neural network”. In: arXiv preprint arXiv:1503.02531 (2015).

[10] Howard, Andrew G et al. “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications”. In: arXiv preprint arXiv:1704.04861
(2017).

[11] Hu, Hengyuan et al. “Network trimming: A data-driven neuron pruning ap-
proach towards efficient deep architectures”. In: arXiv preprint arXiv:1607.03250
(2016).

[12] Tandola, Forrest N et al. “SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and;j 0.5 MB model size”. In: (2016).

[13] Jahanshahi, Ali. “TinyCNN: A Tiny Modular CNN Accelerator for Em-
bedded FPGA”. In: arXiv preprint arXiv:1911.06777 (2019).

[14] Jin, Jonghoon, Dundar, Aysegul, and Culurciello, Eugenio. “Flattened
convolutional neural networks for feedforward acceleration”. In: arXiv preprint
arXiv:1412.5474 (2014).

[15]

[16]

[17]

[18]

[19]

Relevance-Based CNN Trimming Method 13

Krizhevsky, Alex, Nair, Vinod, and Hinton, Geoffrey. “CIFAR-10 (Cana-
dian Institute for Advanced Research)”. In: (). URL: http://www.cs.
toronto.edu/~kriz/cifar.html.

Li, Hao et al. “Pruning filters for efficient convnets”. In: arXiv preprint
arXiv:1608.08710 (2016).

Lin, Mingbao et al. “Hrank: Filter pruning using high-rank feature map”.
In: Proceedings of the IEEE/CVFE Conference on Computer Vision and
Pattern Recognition. 2020, pp. 1529-1538.

Lin, Shaohui et al. Towards optimal structured cnn pruning via generative
adversarial learning. 2019.

Liu, Zhuang et al. “Learning efficient convolutional networks through net-
work slimming”. In: Proceedings of the IEEFE international conference on
computer vision. 2017, pp. 2736-2744.

Liu, Zhuang et al. “Rethinking the value of network pruning”. In: arXiv
preprint arXiw:1810.05270 (2018).

Pistellato, M. et al. “Dynamic optimal path selection for 3D Triangulation
with multiple cameras”. In: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 9279 (2015), pp. 468-479. por: 10.1007/978-3-319-
23231-7_42.

Pistellato, M. et al. “Robust joint selection of camera orientations and
feature projections over multiple views”. In: vol. 0. 2016, pp. 3703-3708.
DOI: 10.1109/ICPR.2016.7900210.

Qiu, Jiantao et al. “Going deeper with embedded fpga platform for con-
volutional neural network”. In: Proceedings of the 2016 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays. 2016.
Rastegari, Mohammad et al. “Xnor-net: Imagenet classification using bi-
nary convolutional neural networks”. In: Furopean conference on computer
viston. Springer. 2016, pp. 525-542.

Simonyan, Karen and Zisserman, Andrew. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: CoRR abs/1409.1556 (2014).
Suau, Xavier, Apostoloff, Nicholas, et al. “Filter distillation for network
compression”. In: 2020 IEEE Winter Conference on Applications of Com-
puter Vision (WACV). IEEE. 2020, pp. 3129-3138.

Sze, Vivienne et al. “Efficient processing of deep neural networks: A tuto-
rial and survey”. In: Proceedings of the IEEE 105.12 (2017).

Zhang, Chaoyun, Patras, Paul, and Haddadi, Hamed. “Deep learning in
mobile and wireless networking: A survey”. In: IEEE Communications
surveys & tutorials 21.3 (2019), pp. 2224-2287.

Zhang, Xiangyu et al. “Shufflenet: An extremely efficient convolutional
neural network for mobile devices”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, pp. 6848—6856.

Zhu, Michael and Gupta, Suyog. “To prune, or not to prune: explor-
ing the efficacy of pruning for model compression”. In: arXiv preprint
arXiv:1710.01878 (2017).

