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Abstract

Assessing the significance of the correlation between the components of a bivari-

ate random field is of great interest in the analysis of spatial data. This problem has

been addressed in the literature using suitable hypothesis testing procedures or using

coefficients of spatial association between two sequences. In this paper, testing the

association between autocorrelated variables is addressed for the components of a bi-

variate Gaussian random field using the asymptotic distribution of the maximum like-

lihood estimator of a specific parametric class of bivariate covariance models. Explicit

expressions for the Fisher information matrix are given for a separable and a nonsepa-

rable version of the parametric class, leading to an asymptotic test. A simulation study

compares the type I error and the power of the proposed test with the modified t test

(Clifford et al., 1989). The empirical evidence supports our proposal, and as a result,

in most of the cases, the new test performs better than the modified t test even when
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the bivariate covariance model is misspecified or the distribution of the bivariate ran-

don field is not Gaussian. Finally, to illustrate how the proposed test works in practice,

we study a real dataset concerning the relationship between arsenic and lead from a

contaminated area in Utah, USA.

Keywords: Cross-covariance estimation; Geostatistics; Increasing domain; Hypothesis test-

ing; Power function.

1 Introduction

In the analysis of spatial data, the quantification of spatial associations between two vari-

ables has been addressed in several appliad areas where the association between two random

fields can give answers to specific problems. For example, Blanco-Moreno et al. (2006)

analized spatial and temporal patterns of lolium rigidum-avena sterilis mixed populations

in a cereal field while Ojeda et al. (2012) proposed to use the codispersion coefficient to

define a measure of similarity between images. The assessment of the correlation between

two spatial processes has been tackled using at least two different perspectives. With the

first perspective, the problem is assessed using a hypothesis testing approach, mainly by

transforming the t test in a suitable way to include the spatial information available for each

process (Clifford et al., 1989; Haining, 1991; Dutilleul, 1993). Recently, a computational

method based on permutations and smoothing of the original variables has been suggested

in the context of biodiversity (Viladomat et al., 2014). With the second perspective, the

association between two spatial processes is assessed by considering coefficients of spatial

association (Matheron, 1965; Tjøstheim, 1978; Lee, 2001), which have been increasingly

used in several applied areas, such as hydrology and soil sciences (Goovaerts, 1997; Pringle

and Lark, 2006; Córdoba et al., 2013). In particular, the codispersion coefficient, first in-

troduced by Matheron (1965), has received attention in recent years because it allows for
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the quantification of the existing spatial association between two processes in a particular

direction (Ojeda et al., 2012; Cuevas et al., 2013). These and other procedures have been

implemented computationally (Osorio et al., 2014), in practice facilitating the analysis of

correlation between two real spatial sequences. Applications and extensions of the codis-

persion coefficient in time series, image processing, and multivariate geostatistics can be

found in Vallejos (2008, 2012) and Vallejos et al. (2015).

A third approach assumes that the bivariate spatial process is a bivariate Gaussian ran-

dom field (BGRF) that has been observed in a spatial domain. Because, under Gaussianity,

the mean and the covariance structure completely characterize the distribution of the bivari-

ate process, the dependence within and between the two processes is completely described

using the bivariate cross covariance function. The linear model of coregionalization has

been used for many years as a parametric model for such functions (Wackernagel (2003),

Zhang (2007)). It is obtained by accounting for every component of the bivariate random

field as a linear combination of mutually uncorrelated random fields. Nevertheless, as out-

lined by Gneiting et al. (2010) and Porcu et al. (2013), this model possess some drawbacks.

For instance, it is not possible to recover the smoothness of the latent processes, as the

smoothness of the components is dominated by the roughest of the latent components rep-

resenting them. To overcome these drawbacks, new and more flexible models have been

proposed in recent years (see Genton and Kleiber, 2014, for an excellent review). For ex-

ample, Gneiting et al. (2010) and Apanasovich et al. (2012) introduced the bivariate Matérn

model, and Daley et al. (2014) proposed a bivariate model with a compactly supported cor-

relation function of the Wendland type (Wendland, 1995). The models proposed by the

previous authors share a common general construction for a bivariate parametric model,

which consists of modeling the marginal and the cross covariance functions using a spe-

cific univariate covariance model with possibly different parameters, while the marginal

correlation between the components is described using the so-called colocated correlation
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parameter (Gneiting et al., 2010). In a special case of this general construction (separable

model), the two components of the BGRF share the same correlation structure.

Using this kind of general construction, we propose a parametric test for assessing the

significance of the correlation between the components of a BGRF. Specifically, our test

is based on the asymptotic distribution of the maximum likelihood (ML) estimator of the

colocated correlation parameter. Because a zero correlation is a necessary and sufficient

condition for independence in the Gaussian case, this method can be used to test the hy-

pothesis of independence or, in general, to test the significance of the correlation between

the components of a BGRF. Following a result stated by Mardia and Marshall (1984) in the

context of an increasing domain asymptotic framework, we find explicit expression for the

Fisher information matrix associated to the aforementioned general construction. An inter-

esting result is that, when the model is of a separable form, the ML asymptotic distribution

of the colocated correlation parameter is free from any spatial dependence, whereas in the

general case, the asymptotic distribution is affected by the spatial dependence.

We conducted several simulation studies to explore the power of the tests and the type

I error for the Clifford et al. test and our proposal considering bivariate Matérn and Wend-

land models. In the simulation study, we also investigate the robustness of the proposed

test against different types of misspecification of the bivariate covariance model and against

possible deviations from the Gaussian distribution. Specifically, we consider bivariate ran-

dom fields of the chi-square and skew Gaussian type, which have recently been proposed in

the literature (Zhang and El-Shaarawi , 2010; Ma , 2011).

We use an example with real data to illustrate the practical scope of our proposal. The

dataset consists of georeferenced samples from a contaminated area in Utah, USA, in which

the variables of interest are arsenic (As) and lead (Pb). Based on preliminaries exploratory

data analysis, we apply the proposed test to determine if the correlation between As and Pb

is greater than a certain threshold, a particular case of the general hypothesis testing formu-
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lation, given by Clifford et al. (1989) for spatial depdendent sequences. The computation

of the suggested test is implemented using existing R packages, which facilitates the use of

the test in practice.

The paper is organized as follows. In Section 2, we describe the general parametric

class for the bivariate cross-covariance function that is used in the rest of the paper. Section

3 describes the the test based on the asymptotic distribution of the colocated correlation pa-

rameter. In Section 4, we evaluate the performance of the test via Monte Carlo simulations,

using the Clifford et al. test as benchmark, where the power function and the type I error

are used to evaluate the behavior of the tests. In the same section, we evaluate the perfor-

mance of the proposed test against different types of covariance model misspecifications

and against deviations from the Gaussian distribution. The real data example is described in

Section 5. Section 6 presents a discussion, which includes problems to be studied in future

research. Finally in appendix A we give an example of the application of the results of Mar-

dia and Marshall (1984) extended to the bivariate case and in appendix B we give explicit

expressions for the Fisher information matrix in the separable and nonseparable case.

2 Parametric bivariate covariance models

For the remainder of the paper, we denote using Z(s) = {(Z1(s), Z2(s))
T }, a BGRF with

continuous spatial index s ∈ Rd. The assumption of Gaussianity implies that the first and

second moments determine uniquely the finite dimensional distributions. In particular, we

shall suppose weak stationarity throughout, so that the mean vector µ = E(Z) is constant,

and because in the Gaussian distribution the covariance estimation is not affected by the

mean, we assume µ = (0, 0)T without loss of generality. The covariance function between

Z(s1) and Z(s2), for any pair s1, s2 in the spatial domain, is represented by a mapping
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C : Rd →M2×2 defined through

C(h) = [Cij(h)]2i,j=1 = [cov (Zi(s1), Zj(s2))]
2
i,j=1 , h = s1 − s2 ∈ Rd. (1)

The functionC(h) is called bivariate covariance function. Here,M2×2 is the set of squared,

symmetric and positive definite matrices. The functions Cii(h) i = 1, 2 are the marginal

covariance functions of the Gaussian random fields Zi(s), i = 1, 2 , while C12(h) is called

cross covariance function between Z1(s) and Z2(s) at the spatial lag h ∈ Rd. The mapping

R : Rd →M2×2 defined throughR(h) = [Rij(h)]2i,j=1 with

Rij(h) =
Cij(h)√

Cii(0)Cjj(0)

is called bivariate correlation function, Rii(h) being the marginal correlation functions of

the Gaussian random fields Zi(s), i = 1, 2, R12(h) being the cross correlation function

between the fields Z1(s) and Z2(s) and R12(0) expressing the marginal correlation be-

tween the two components. The mapping C (and, consequently, R) must positive definite,

which means that, for a given realization Z = (Z(s1)
T , . . . ,Z(sn)T )T , the (2n) × (2n)

covariance matrix Σ := [C(si − sj)]ni,j=1 is positive definite.

We shall assume throughout that the mapping C comes from a parametric family of

bivariate covariances {C(·;θ),θ ∈ Θ ⊆ Rp}, with Θ an arbitrary parametric space. Re-

cent literature has been engaged on offering new models for bivariate covariances and for a

through review the reader is referred to Genton and Kleiber (2014) with their exhaustive list

of references. One of them is the linear model of coregionalization, that has been popular

for over thirty years (Wackernagel, 2003). It consists of representing the bivariate Gaussian

field as a linear combination of q independent univariate fields, with q = 1, 2. The resulting

bivariate covariance function takes the form:

C(h;θ) =

[
q∑

k=1

ψikψjkRk(h,ψk)

]2
i,j=1

, (2)
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withA := [ψlm]2,ql,m=1 being a 2×q dimensional matrix with full rank, and withRk(h; ·) be-

ing a univariate parametric correlation model. Clearly, we have θ = (vec(A)T ,ψ1
T , . . . ,ψq

T )T .

Note that when q = 2, the marginal correlation is given by a nonlinear function of the pa-

rameters, i.e. R12(0;θ) = ψ11ψ21+ψ12ψ22√
(ψ2

11+ψ
2
12)(ψ

2
21+ψ

2
22)

. A criticism expressed about this model by

Gneiting et al. (2010) is that, when ψik 6= 0 for each i, k, the smoothness of any component

defaults to that of the roughest latent process.

Another general parametric class, called separable, is obtained through the following

bivariate covariance function:

C(h,θ) = [ρijσiσjR(h,ψ)]2i,j=1 , ρii = 1, |ρ12| < 1, (3)

where R(h;ψ) is a univariate parametric correlation model, θ = (σ21, σ
2
2,ψ

T , ρ12)
T , σ2i >

0 , i = 1, 2 are the marginal variances and ρ12, the colocated correlation parameter, ex-

presses the marginal correlation between Z1(s) and Z2(s).

This type of construction assumes that the two components of the BGRF share the

same correlation structure. Therefore, the model is not able to capture different spatial

dependences and/or the smoothness of each of the component fields. A generalization of

(3), that here we call nonseparable, which allows to overcome this drawback is:

C(h,θ) =
[
ρijσiσjR(h;ψij)

]2
i,j=1

, ρii = 1. (4)

where θ = (σ21, σ
2
2,ψ

T
11,ψ

T
12,ψ

T
22, ρ12)

T . In this general approach, the difficulty lies in

deriving conditions on the model parameters that result in a valid multivariate covariance

model. For instance Gneiting et al. (2010) proposed the model (4) with R(h, .) equal to the

Matérn correlation model :

R(h;ψ) =
21−ν

Γ(ν)

(
h

β

)ν
Kν
(
h

β

)
, (5)

where ψ = (β, ν)T , β > 0 is the scale parameter and ν > 0 indexes differentiability at
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the origin. The authors find necessary and sufficient conditions on the colocated correlation

parameter ρ12 in order the model (4) to be valid. Another example of the model (4) can be

found in Daley et al. (2014), where R(h; .) is a compactly supported correlation model of

the Wendland type (Wendland, 1995):

R(h;ψ) =

(
1 + (ν + 1)

h

β

)(
1− h

β

)ν+1

+

(6)

with β > 0 and ν > (d+1)
2 +2 . In this case, the authors provide sufficient conditions for the

parameter ρ12 for the validity of the model. A comparison in terms of flexibility between

(2) and (3) or (4) can be found in Bevilacqua et al. (2015).

A benefit of the general class (3) or (4) with respect to (2) is that the colocated correla-

tion parameter express the marginal correlation between the components, that is,R12(0;θ) =

ρ12 so when ρ12 = 0, the components of the bivariate random field are independent; hence,

the colocated correlation parameter can be used to build a test of independence or, in gen-

eral, to assess the significance of the correlation between the components of the random

field. This problem is addressed in the next section.

3 A parametric test

Since we are assuming that the state of truth is represented by some parametric family of

bivariate covariances {C(·;θ),θ ∈ Θ ⊆ Rp}, we may use the abuse of notation Σ(θ) for

the covariance matrix Σ, in order to emphasize the dependence on the unknown parameters

vector. Specifically we assume that the parametric bivariate covariance model is of the type

(3), or (4) so θ = (σ21, σ
2
2,ψ

T , ρ12)
T or θ = (σ21, σ

2
2,ψ

T
22,ψ

T
11,ψ

T
12, ρ12)

T depending if

a separable or a nonseparable bivariate covariance model is considered. For a realization

from a BGRF, the log-likelihood, up to an additive constant, can be written as

ln(θ) = −1

2
log |Σ(θ)| − 1

2
Z ᵀ[Σ(θ)]−1Z.
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Consequently, θ̂n := argmaxθ∈Θln(θ) is the maximum likelihood estimator of θ. Mardia

and Marshall (1984) provide conditions for the univariate case for the consistency and the

asymptotic normality of the ML estimator. Under these conditions, θ̂n is consistent and

asymptotically normal, with covariance matrix equal to the inverse of the Fisher Information

matrix, with the following expression:

Fn(θ) =

[
1

2
tr
(

Σ(θ)−1
dΣ(θ)

dθi
Σ(θ)−1

dΣ(θ)

dθj

)]p
i,j=1

. (7)

That is, θ̂n
p→ θ and θ̂n ≈ N (θ, Fn(θ)−1) as n −→∞.

In Appendix A, we extend the conditions of Mardia and Marshall (1984) to the bivariate

case. In general, it is not easy to check such conditions because they are based on the

eigenvalues of the covariance matrix and its derivatives. Despite this, we show in Appendix

A that these conditions are verified for a bivariate separable exponential model. The model

is later used in the numerical example presented in Section 4.

Then testing the independence or assessing the strength of correlation between the two

components of a BGRF with covariance (3) or (4), leads to the following hypothesis testing

problems:

H0 : ρ12 = 0 versus H1 : ρ12 6= 0, (8)

H0 : ρ12 ≤ k versus H1 : ρ12 > k, (9)

where k belongs to the feasible parameter space of the bivariate correlation model. Given

the maximum likelihood estimate θ̂n = (σ̂21, σ̂
2
2, ψ̂

T
, ρ̂12)

T or θ̂n = (σ̂21, σ̂
2
2, ψ̂

T

11, ψ̂
T

12, ψ̂
T

22, ρ̂12)
T

these tests are based on the asymptotic null distribution:

ρ̂12 − ρ12
se(ρ̂12)

≈ N (0, 1), (10)

where se(ρ̂12) denotes the standard error of ρ̂12 given by se(ρ̂12) =

√
Fn(θ̂n)−1ρ12 , and

ρ12 = 0 or ρ12 = k, depending on whether test (8) or (9) is considered. Here, Fn(θ̂n)−1ρ12 is
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the element on the diagonal of Fn(θ̂n)−1 associated to the colocated correlation parameter.

We consider bivariate covariance model (4) in an increasing order of complexity:

(A) A separable model that is a bivariate model with covariance model (3). In this case,

the Fisher information has a simple form (see Appendix B, separable case), and it is

possible to calculate explicitly the inverse of F−1n (θ). Then, the asymptotic distribu-

tion of ρ̂12 is as in (10) with se(ρ̂12) =

√
(ρ̂212−1)2

n . It is interesting to note that in

this case, the asymptotic distribution does not depend on the spatial correlation struc-

ture, i.e., on the choice of R(h, ·) but only on the estimated colocated correlation

parameter and n.

(B) A nonseparable model that is a bivariate model with covariance model (4) with the

constraints ψ12 = f(ψ11,ψ22) where f is a differentiable function. In this case,

the cross parameters are assumed to be functions of the marginal parameters. This

constraint is assumed to reduce the number of parameters to be estimated and for sim-

plifying the model. For instance, Gneiting et al. (2010) assumes ν12 = ν11 + ν22 for

the smoothness parameter of a Bivariate Matérn covariance, which they call parsimo-

nious bivariate model. Apanasovich and Genton (2010) in their multivariate Gneiting

model consider different types of such constraints as, for example, the following one

on the scale parameter: β12 = β11+β22
2 . We consider the latter in our simulation

study. It turns out from the expression of the Fisher information matrix obtained in

Appendix B that the asymptotic variance of the correlation parameter depends on the

spatial dependence (see Appendix B, nonseparable case: constrained version).

(C) A nonseparable model that is a bivariate model with covariance model (4). Note that

when ρ12 = 0, ψ12 cannot be estimated. From a Fisher information perspective,

it means that the Fisher information matrix is singular. For this reason, under this

setting, the test (8) is not feasible and the test (9) can be considered only for k 6= 0.
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In this case, if the covariance parameters are assumed known, se(ρ̂12) is equal to case

B (see Appendix B, nonseparable case: full version).

4 Simulation study

In this section, we investigate the performance of the proposed test using the Clifford et

al. test as a benchmark. Specifically we report finite-sample simulation results to compare

the actual probability of type I error with the nominal and power functions for both tests.

Overall, we consider three different levels for the nominal value of the Type I Error and for

the power function (α = 0.01, 0.05, 0.1). In our simulations, we consider a spatial regular

grid on the unit square equally spaced by 1/17 such that the total number of locations sites

is 324, with a total of 648 observations.

We first consider the performance of the proposed test under the standard setting where,

by a standard setting, we mean that for a BGRF with a given covariance model of the type

(3) or (4), we perform the test using the correct model. Then, we explore the performance

of the test under different types of misspecification of the covariance model and under de-

viations from the Gaussian distribution. Under the standard setting and covariance model

misspecification, we consider both hypothesis (8) and (9), while in the case of deviations

from the Gaussian distribution, we only considered the test of independence (8). The Clif-

ford et al. test has been used as a benchmark only when testing hypothesis (8).

4.1 Standard setting

Here, we investigate the performance of the proposed test for a BGRF with bivariate co-

variance model of type (3) or (4). The first bivariate covariance model considered is the

following:

Cij(h,θ) = ρijσiσje
−3 ||h||

βij , ρii = 1, i, j = 1, 2. (11)
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This model is obtained by choosing in (4) an R(h, ·) equal to the Matérn model (5) with

νij = 0.5 for i, j = 1, 2. In this case, θ = (σ21, σ
2
2, β11, β12, β22, ρ12)

>. Note that the

bivariate covariance model is parametrized in terms of marginal practical ranges, that is,

Cii(h,θ) < 0.05 when ‖h‖ > βii. The hypothesis (8) was tested under the separable

(case A) and nonseparable (case B) cases, while the hypothesis (9) was tested under the

nonseparable case (case C). To accomplish this, we consider the following scenarios:

1. For specification A, we considered the hypothesis (8) and simulated 2000 instances

of zero mean BGRF setting σ2i = 1, β = βij = 0.2 for i, j = 1, 2, and we performed

ML estimations, obtaining θ̂ = (σ̂21, σ̂
2
2, β̂, ρ̂12)

>. Then, we rejected H0 if |ρ̂12|
se(ρ̂12)

>

q1−α
2

where qγ is the upper quantile of order γ of the standard normal distribution.

The number of times that H0 is rejected divided by the number of simulations gives

the empirical probability of the type I error. In addition, to evaluate the power of the

test, we simulated 2000 zero mean BGRF instances under H1, i.e., under dependence

between the two components of the BGRF. Specifically, we simulated and estimated

under the same previous setting but with increasing correlation values between the

random fields, ρ12 = 0.05, 0.15, 0.25. The results are shown in Table 1.

For this scenario, we also considered the hypothesis (9) with k = 0.15. Specifically,

we simulated, under H0 (ρ12 = 0.15), 2000 zero mean BGRF instances under the

same previous simulation setting and using the ML method. We then rejected H0

if ρ̂12−k
se(ρ̂12)

> q1−α. To evaluate the power of the test, a BGRF was simulated, and

the corresponding probability was computed under H1. We simulated, under the

same setting, 2000 zero mean BGRF instances but using increasing correlation values

between the components of the random field, ρ12 = 0.2, 0.3, 0.4. Then, we applied

our tests in the same way as before. The results are shown in Table 3.

2. For specification B, we considered the hypothesis (8), and we simulated, under H0

12
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(ρ12 = 0) and under H1 (ρ12 = 0.05, 0.15, 0.25), 2000 zero mean BGRF instances

setting σ21 = σ22 = 1, β11 = 0.2, β22 = 0.1. We performed ML estimations using

the constraint β12 = 0.5(β11 +β22), obtaining θ̂ = (σ̂21, σ̂
2
2, β̂11, β̂22, ρ̂12)

>. We then

applied the proposed test as explained previously to estimate the probability of the

type I error and the power. The results are shown in Table 2.

Additionally, the hypothesis (9) was considered with k = 0.15. Specifically, under

the same simulation setting, we simulated under H0 (ρ12 = 0.15) and then under H1

(ρ12 = 0.2, 0.3, 0.4), 2000 zero mean BGRF instances, and then, for each iteration,

we applied the proposed test as explained before in order to estimate the probability

of the type I error and the power. The results are shown in Table 4.

3. For specification C, we considered only the hypothesis (9) with k = 0.15. In partic-

ular, we simulated, under H0 (ρ12 = 0.15) and then under H1 (ρ12 = 0.2, 0.3, 0.4),

2000 zero mean BGRF instances setting σ21 = σ22 = 1, β11 = 0.2, β22 = 0.1, β12 =

0.15. We performed ML estimations, obtaining θ̂ = (σ̂21, σ̂
2
2, β̂11, β̂12, β̂22, ρ̂12)

>. We

applied the proposed test as explained previously in order to estimate the probability

of the type I error and the power. The results are shown in Table 5.

We replicated the same simulation study used previously (points 1, 2, and 3) with the

model:

Cij(h,θ) = ρijσiσj

(
1 + 5

||h||
βij

)(
1− ||h||

βij

)5

+

, ρii = 1, i, j = 1, 2, (12)

which was obtained from (4), choosing R(h, ·) as the Wendland model (6) with ν = 4.

We used the same parameter settings for the variances, the colocated parameter and the

compact support parameters. The results are displayed in Tables 1, 2, 3, 4 and 5.

Some comments are in order. When considering the test of independence (8) for sce-

narios 1 and 2 (Tables 1 and 2), a comparison of our test with the Clifford et al. test shows

13
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that the estimates of the probability of type I error are very close to the true values for both

scenarios and for both the exponential and Wendland bivariate covariance models. More-

over, in both cases, the estimated power function of the new test is greater than that of the

Clifford et al. test, highlighting the quality of our proposal in this regard. Note that in the

separable case described in Table 1, the probability of type I error and the power across the

two covariance models considered are very similar. This is not surprising because, in this

case, the asymptotic distribution of the colocated parameter does not depend on the choice

of the covariance model. On the other hand, in the nonseparable case, scenario B (Table

2), the test applied using the Wendland model performs slightly better than the exponential

model in terms of power. Similar comments can be formulated when considering test (9)

(Tables 3, 4 and 5). Recall that in this case, the comparison with the Clifford et al. test is

not feasible.

4.2 Bivariate covariance model misspecification

Because the proposed test is based on the assumption that the bivariate parametric covari-

ance model is of type (3) or (4), it is of interest to investigate, through numerical examples,

the robustness of the test against possible covariance model misspecifications. In particular,

we consider three types of covariance model misspecifications.

• A first source of misspecification is when the true covariance model and the model

used in the test belong to the class (4) but with different levels of specification. For in-

stance, the true model can be of the type (4) with specification B, but specification A

is used to perform the test. To investigate the performance of the test, under this kind

of misspecification and when considering hypothesis (8), we used the 2000 BGRF

instances simulated under the previously described scenario 2, that is, a bivariate

nonseparable covariance exponential model. We applied the proposed test consider-

ing the model used in scenario 1 (a bivariate separable covariance exponential). As
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before, we considered the cases H0 (ρ12 = 0) and H1 (ρ12 = 0.05, 0.15, 0.25) to

estimate the probability of the type I error and the power of the proposed test. The

performance of the test of independence (8) using the wrong covariance model is

shown in Table 6 (top) (These results must be compared with the results in Table 2

(top)). It is observed in this case that the estimation of the type I error is quite rea-

sonable, and as expected, there is a small loss in terms of power with respect to the

standard setting. Nevertheless, the proposed test performs better than the Clifford et

al. test.

We also explored the performance of the test when considering the hypothesis (9)

with k = 0.15 under this kind of misspecification. We used the 2000 BGRF in-

stances simulated under scenario 2 under H0 (ρ12 = 0.15) and then under H1 (ρ12 =

0.2, 0.3, 0.4) to estimate the probability of the type I error and the power of the pro-

posed test. The performance of test (9) when using the wrong covariance model is

shown in table 7 (top). (These results must be compared with the results in Table 4

(top)). Also in this case, there is a small loss of power, as expected, with respect to

the standard setting.

• A second source of misspecification is when the true covariance model is of type (3)

or (4) with R(h, ·) as parametric correlation model and the test is applied using the

covariance model of type (3) or (4) but using a different parametric correlation model.

Given this kind of misspecification, hypothesis (8) was considered. We simulated

2000 BGRF instances with a separable Wendland model under scenario 1, and we

applied the proposed test using the separable exponential model. Consequently, we

considered the cases H0 (ρ12 = 0) and H1 (ρ12 = 0.05, 0.15, 0.25) to estimate the

probability of the type I error and the power of the proposed test. The results regarding

the performance of test (8) using the wrong covariance model are shown in Table 6
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(middle), and they must be compared with the results in Table 1 (bottom). There is

a small loss of power with respect to the standard setting, as expected, when the the

type I error is kept constant under the nominal level. Nevertheless the test performs

better than the Clifforf et al. test in terms of power.

We also explored the performance of the test when considering the hypothesis (9),

with k = 0.15, under this kind of misspecification. We simulated 2000 BGRF in-

stances from a separable Wendland model under the scenario 1, and we applied the

proposed test using the separable exponential model. The cases H0 (ρ12 = 0.15)

and H1 (ρ12 = 0.2, 0.3, 0.4) were considered to estimate the probability of the type I

error and the power of the proposed test. The results are shown in Table 7 (middle)

and they must be compared with the results in Table 3 (bottom). In this case, there

is a slight overestimation of the probability of I type error and a small loss in power

with respect to the standard setting.

• A third type of misspecification is when the true covariance model and the covari-

ance model used in the test are different. Here, we consider a setting where the true

model is the linear model of coregionalization given in equation (2), but a model of

the type (3) is used in the test. Precisely, in (2), R1(h) = e
−3 ||h||2

c1 and R2(h) =

c2
20.371||h|| sin(20.371||h||c2

) (Wackernagel, 2003), with c1 = 0.2 , c2 = 0.15, ψii =

√
1− x, and ψ12 = ψ21 =

√
x, with x = 0, 0.00063, 0.00566, 0.01588. Under

this parameter setting, the BGRF has unit variances, with marginal practical ranges

equal to 0.2 and 0.15, and R12(0;θ) is approximatively equal to 0, 0.05, 0.15, 0.25

respectively. To evaluate the empirical probability of the type I error associated with

the test (8), we simulated 2000 zero mean BGRF instances under H0 (x = 0). The

proposed test was applied assuming that the true model in its separable form is as

in equation (11). In addition, to evaluate the power of the test, we simulated 2000
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BGRF instances under H1 (x = 0.00063, 0.00566, 0.01588). For each iteration, the

proposed test was applied in the same way as described before.

We also investigated the performance of the test when considering the hypothesis (9)

under this kind of misspecification. The previous coregionalization covariance struc-

ture with the same parameter setting was used for x = 0.00566, 0.0101, 0.023, 0.04175,

which corresponds to a BGRF with unit variances and R12(0;θ) approximatively

equal to 0.15, 0.2, 0.3, 0.4 respectively. To evaluate the empirical type I error prob-

ability of test (9) with k = 0.15, we simulated 2000 BGRF instances under H0

(x = 0.00566). In each iteration, we applied the proposed test assuming (11) as the

true model in its separable form. Moreover, to evaluate the power of the test, we

simulated 2000 BGRF instances under H1 (x = 0.0101, 0.023, 0.04175). In each

iteration, we applied the proposed test using the wrong model, as described before.

The results are shown in Tables 6 and 7 (bottom). For the hypothesis of independence

(8), the test using the wrong covariance model performs better than the Clifford et al.

test in terms of power and keeps the type I error below the nominal level (Table 6 bot-

tom),and for hypothesis (9), the results are quite reasonable in terms of type I error

and power (Table 7 bottom).

4.3 Non-Gaussian distribution

Finally, we investigated the performance of the test under deviations from the Gaussian

distribution in two examples. First, we considered a bivariate random field whose marginal

distribution is chi-square with p degrees of freedom, where p ≥ 1 is a positive integer.

Following Ma (2011), let Y(s) = (Y1(s), Y2(s))
T be a bivariate random field defined as

Y(s) =
∑p

k=1 Zk(s)◦Zk(s), where ◦ denotes the Hadamard product between two vectors

and for k = 1, . . . , p, Zk(s) are independent copies of Z(s) = (Z1(s), Z2(s))
T , a BGRF

with CZij(h) as a generic element of the bivariate covariance function.
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For each s and i = 1, 2 fixed, Yi(s)/C
Z
ii (0) is a chi square random variable with p

degrees of freedom and the bivariate covariance function of Y(s) depends on that of the

underlying BGRF, that is, CY (h) =
[
2p(CZij(h))2

]2
i,j=1

. Then, assuming the parametric

model in equation (11) in its separable form for CZij(h), the bivariate covariance model of

Y(s) is given by:

CY (h,θ, p) =

[
2pρ2ijσ

2
i σ

2
j e
−6 ||h||

β

]2
i,j=1

, (13)

and RY12(0,θ, p) = ρ212. We simulate 2000 chi-squared bivariate random fields with differ-

ent degrees of freedom (p = 1, 15) for a bivariate covariance model (13), fixing the same

parameters as in scenario 1 but with ρ12 = 0. Our goal is to estimate the empirical probabil-

ity of the type I error and to evaluate the power of the test for ρ12 =
√

0.05,
√

0.15,
√

0.25.

For each iteration, we assume a BGRF with covariance model (11). The estimation pro-

cess is carried out using the ML method obtaining θ̂ = (σ̂21, σ̂
2
2, β̂, ρ̂12)

>. Consequently,

we apply the test of independence and the Clifford et al. test, obtaining for p = 1, 15 the

results that are displayed in Table 8. When p = 1, both tests underestimate the probability

of type I error, especially when α = 0.05, 0.1. This drawback disappeared, as expected,

when p = 10. In this case, our test performs better than the Clifford et al. test. This result

is in agreement with the fact that when increasing the degrees of freedom, the chi-square

distribution (rescaled by the degrees of freedom) converges to a Gaussian distribution.

As a second example, we consider a bivariate version of the skew Gaussian random field

proposed in Zhang and El-Shaarawi (2010) . Let Y(s) = (Y1(s), Y2(s))
T be a bivariate

random field defined as:

Yi(s) = ψi|Xi(s)|+ σiZi(s), i = 1, 2, (14)

where ψi,∈ R is the asymmetry parameter of the i − th random field and σi > 0. Here,

we are assuming that Z(s) = (Z1(s), Z2(s))
T is a BGRF separable parametric covariance
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model of the type:

CZ(h,θ) = [ρijR(h,ψ)]2i,j=1 , ρii = 1, |ρ12| < 1, (15)

where θ = (ψT , ρ12)
T . Xi(s), i = 1, 2 is a zero mean unit variance Gaussian random field

with R(h,ψ) as a correlation model. We also assume that Xi(s) ⊥ Zj(s) for i, j = 1, 2

and X1(s) ⊥ X2(s), where ⊥ denotes independence between random components. In this

framework, it is straightforward to show that the covariance function of a bivariate skew

Gaussian random field Y(s) is given by:

CY (h,θ, τ ) =
[
CYij (h,θ, τ )

]2
i,j=1

(16)

where CYii (h,θ, τ ) =
2ψ2
i
π g(R(h,ψ)) + σ2iR(h,ψ) for i = 1, 2 and CY12(h,θ, τ ) =

σ1σ2ρ12R(h,ψ). Here, τ = (σ1, σ2, ψ1, ψ2)
T and g(b) =

√
1− b2 + b arcsin(b) − 1,

|b| < 1. Thus,

RY12(0,θ) =
σ1σ2ρ12√

σ21 + ψ2
1(1− 2/π)

√
σ22 + ψ2

2(1− 2/π)
. (17)

Under this construction, if the asymmetry parameters increase, the possible range of marginal

correlation between the two random fields decreases.

We simulate 2000 skew Gaussian bivariate random field instances choosing R(h,ψ) =

e
−3 ||h||

β and setting σ1 = σ2 = 1, ψ1 = ψ2 = ψ = 1, β = 0.2, and ρ12 = 0, 0.06816901,

0.204507, 0.3408451. Under this setting, RY12(0,θ) is equal to 0, 0.05, 0.15, 0.25 respec-

tively. In each iteration, we assume a BGRF with covariance model (11), and our test of

independence was applied. We then increased the level of asymmetry by setting ψ1 =

ψ2 = ψ = 2.775 and ρ12 = 0, 0.1899127, 0.5697382, 0.982, obtaining RY12(0,θ) =

0, 0.05, 0.15, 0.25, respectively, and our tests were applied again. The results are shown

in Table 9. As expected, when the level of asymmetry increases (ψ = 2.775), the test de-

livers a worse performance. In this case, the Clifford et al. test slightly outperforms our
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test in terms of power. Decreasing the asymmetry parameter (ψ = 1), that is, approaching

the Gaussian case, our test performs better than the Cliffordet al. test, as expected. In both

cases, the estimation of the probability of type I error is quite reasonable.

5 A Real Data Example

Georeferenced data have been selected for illustrative purposes in this example. The dataset

consists of soil samples collected in and around the vacant industrially contaminated Murray

smelter site (Utah, USA). This area was polluted by airborne emissions and the placement of

waste slag from smelting processes. A total of 253 locations were included in the study, and

soil samples were taken from each location. Each georeferenced sampling quantity is a pool

composite of four closely adjacent soil samples, for which the heavy metals arsenic (As) and

lead (Pb) were measured. A complete description of the Murray smelter site dataset can be

found in Griffith (2002) and Griffith and Paelinck (2011). The locations and attributes As

and Pb for each location are shown in Figure 1.

Figure 1: Bubble plots for As (left) and for Pb (right).
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Figure 2: Codispersion coefficient between x=As and y=Pb for the lag distance range from
0 to 2700 m.

The modified t test described in (Clifford et al., 1989) was used to test the absence

of spatial association between the variables As and Pb. The R package SpatialPcak

stipulates F = 81.9490, the degrees of freedom 1 and 154.0617 for the numerator and

denominator, respectively, of the F distribution, the p-value < 0.0001 and the sample

correlation coefficient r = 0.5893. Thus, the null hypothesis of no spatial association

between the processes is rejected with a 5% level of significance. In addition, the code

summary(murray.ttest) provides the upper boundaries for each of the thirteen (de-

fault) bins used in the computation of the modified t-test, and for each class, the Moran

coefficient is also given for both variables (As and Pb).

From Figure 2, it can be emphasized that the values of the codispersion coefficient are

in most cases greater than 0.5 (this value has been selected for illustration purposes only).

However, it is well known (Rukhin and Vallejos, 2008) that the codispersion coefficient for

several spatial models can be written as a constant depending on the spatial parameters of
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the models times the correlation coefficient between the stochastic errors of each marginal

process. Even though the correlation coefficient and the codispersion coefficient are related

for a wide class of models, from Figure 2, it is not possible to infer if there is enough

evidence in favor of a correlation coefficient greater than a certain value, in this case, 0.5.

In practice, it is not simple to test such hypothesis due to the existing spatial dependence in

the data. In fact, Clifford et al. test was constructed for this purpose.

An alternative solution to this problem is to assume the data as a realization from a

BGRF with a bivariate covariance model of type (4) and perform the following test:

H0 : ρ12 ≤ 0.5 versus H1 : ρ12 > 0.5

In particular, we consider the model in equation (11) with an increasing level of complexity

as the specifications A, B and C described in Section 3. Specifically, for illustration purposes

we consider the following:

1. A separable model with a common scale parameter β = β11 = β12 = β22.

2. A non-separable model with β12 = β11+β22
2 .

3. A non-separable model without constraints on the parameters.

Table 10 shows the ML estimates of the three models and the corresponding standard errors

(in brackets) obtained using the square root of the diagonal entries of the inverse of the

Fisher information matrix given in Appendix B for the three cases.

The estimates of the colocated correlation parameter are, respectively, 0.465, 0.488 and

0.517 for specifications A, B, and C. The values of the test statistics ρ̂12−0.5se(ρ̂12)
are, respectively,

−0.700,−0.250, 0.374, and the corresponding respective p-values are 0.77, 0.599, 0.35.

For the three model specifications, the null hypothesis is not rejected considering a signifi-

cance level of 5%. Even though the codispersion coefficient between As and Pb is greater
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than 0.5 for most of the values displayed in Figure 2, there is not enough evidence to claim

that the correlation between As and Pb is significantly greater than 0.5.

The analysis and the simulation study were carried out using an upcoming release of

the R package CompRandFld (Padoan and Bevilacqua, 2015) and the package SpatialPack

(Osorio et al., 2014), which are both available on CRAN (http://cran.r-project.org/).

6 Concluding remarks

In this paper, we introduced and discussed a new approach to assess the significance of the

correlation between the components of a BGRF. The procedure relies on the maximum like-

lihood asymptotic distribution of the colocated correlation parameter of a parametric class

of bivariate covariance models. One advantage of the test is that the asymptotic variance has

a very simple closed form, facilitating the use of the test in practice. The empirical evidence

collected from the simulation study using bivariate Matérn and Wendland models in Sec-

tion 4 highlighted the quality of our proposal with respect to the Clifford et al. test when the

true model follows a BGRF. In the simulation study, we also investigated the robustness of

the test against possible types of misspecification of the covariance structure. As expected,

the results show a small loss in power in this case, but in general, the test is robust against

possible misspecification and always performs better than the Clifford et al. test. Moreover,

we investigated the behaviour of the test under deviations from the Gaussian distribution.

In particular, we considered bivariate random fields of the chi-square and skew Gaussian

type. The results of our examples show that strong deviations from Gaussianity can affect

the performance of the test, but in general, the test is robust against small deviations from

the Gaussian distribution and always performs better than the Clifford et al. test.

The real dataset analyzed in Section 5 indicated that the new test is an interesting alterna-

tive to the existing methods and that it provides a new framework to assess the significance
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between two spatial variables.

The proposed test is based on the distribution asymptotic of the colocated correlation

parameter under an increasing domain asymptotic framework. Under an infill asymptotic

framework, in the univariate spatial case, it is difficult to derive general results on the asymp-

totic distribution of the maximum likelihood estimator (see Chen et al. , 2000; Zhang , 2004;

Loh , 2005), and no results are available for the bivariate case. It would be interesting to

study the asymptotic distribution of the colocated correlation parameter, under infill asymp-

totic, at least for the separable case. As shown in this paper, under an increasing domain

asymptotic framework, the asymptotic distribution is not affected by the spatial dependence,

and we believe that this result is still valid under an infill asymptotic framework.

A drawback of the proposed test is the computational cost involved in the maximum

likelihood estimation when dealing with large datasets. In this case, likelihood approxi-

mations such as a composite likelihood approximation (Varin et al., 2011; Bevilacqua and

Gaetan , 2014) could be used to build a test with a good balance between computational

complexity and performance of the test. This topic is to be investigated in future research.
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P(Type I Error)
Power

R12(0) = 0.05 R12(0) = 0.15 R12(0) = 0.25
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.011 0.057 0.113 0.057 0.146 0.228 0.577 0.777 0.856 0.977 0.997 0.999
C 0.012 0.050 0.101 0.023 0.096 0.171 0.260 0.480 0.611 0.722 0.891 0.941

P(Type I Error)
Power

R12(0) = 0.05 R12(0) = 0.15 R12(0) = 0.25
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.012 0.057 0.112 0.054 0.143 0.224 0.577 0.779 0.855 0.977 0.997 0.998
C 0.008 0.055 0.107 0.032 0.010 0.177 0.298 0.540 0.652 0.796 0.921 0.958

Table 1: Empirical probability of the type I error and power of the parametric test (P) and
Clifford’s test (C) when testing hypothesis (8) for a separable bivariate exponential model
(top) and a separable bivariate Wendland model (bottom) (scenario 1).

P(Type I Error)
Power

R12(0) = 0.05 R12(0) = 0.15 R12(0) = 0.25
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.011 0.055 0.107 0.052 0.138 0.219 0.583 0.789 0.864 0.978 0.996 0.999
C 0.010 0.047 0.093 0.038 0.109 0.188 0.412 0.653 0.766 0.928 0.981 0.994

P(Type I Error)
Power

R12(0) = 0.05 R12(0) = 0.15 R12(0) = 0.25
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.010 0.045 0.109 0.059 0.156 0.248 0.649 0.846 0.904 0.994 1 1
C 0.012 0.047 0.090 0.037 0.140 0.201 0.512 0.745 0.841 0.975 0.996 0.997

Table 2: Empirical probability of the type I error and power of the parametric test (P)
and Clifford’s test (C) when testing hypothesis (8) for a nonseparable bivariate exponential
model (top) and a nonseparable bivariate Wendland model (bottom) (scenario 2).

29



Assessing the correlation between two spatial processes

P(Type I Error)
Power

R12(0) = 0.20 R12(0) = 0.30 R12(0) = 0.40
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.012 0.057 0.104 0.090 0.241 0.359 0.711 0.881 0.930 0.996 1 1

P(Type I Error)
Power

R12(0) = 0.20 R12(0) = 0.30 R12(0) = 0.40
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.011 0.056 0.105 0.092 0.239 0.360 0.723 0.886 0.931 0.996 1 1

Table 3: Empirical probability of the type I error and power of the parametric test (P) when
testing hypothesis (9) with k = 0.15, for a separable bivariate exponential model (top) and
a separable bivariate Wendland model (bottom) (scenario 1).

P(Type I Error)
Power

R12(0) = 0.20 R12(0) = 0.30 R12(0) = 0.40
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.010 0.051 0.109 0.061 0.160 0.249 0.645 0.824 0.892 0.995 1 1

P(Type I Error)
Power

R12(0) = 0.20 R12(0) = 0.30 R12(0) = 0.40
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.009 0.048 0.097 0.100 0.244 0.367 0.782 0.924 0.966 0.999 1 1

Table 4: Empirical probability of the type I error and power of the parametric test (P) when
testing hypothesis (9) with k = 0.15, for a nonseparable bivariate exponential model (top)
and a nonseparable bivariate Wendland model (bottom) (scenario 2).

P(Type I Error)
Power

R12(0) = 0.20 R12(0) = 0.30 R12(0) = 0.40
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.011 0.052 0.106 0.082 0.215 0.345 0.564 0.807 0.890 0.987 0.999 1

P(Type I Error)
Power

R12(0) = 0.20 R12(0) = 0.30 R12(0) = 0.40
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.010 0.048 0.104 0.093 0.239 0.374 0.735 0.893 0.949 0.998 1 1

Table 5: Empirical probability of the type I error and power of the parametric test (P) when
testing hypothesis (9) with k = 0.15, for a nonseparable bivariate exponential model (top)
and a nonseparable bivariate Wendland model (bottom) (scenario 3)
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P(Type I Error)
Power

R12(0) = 0.05 R12(0) = 0.15 R12(0) = 0.25
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.010 0.047 0.094 0.046 0.137 0.217 0.561 0.770 0.857 0.976 0.996 0.999

P(Type I Error)
Power

R12(0) = 0.05 R12(0) = 0.15 R12(0) = 0.25
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.019 0.067 0.121 0.058 0.170 0.255 0.573 0.767 0.840 0.991 0.967 0.995

P(Type I Error)
Power

R12(0) = 0.05 R12(0) = 0.15 R12(0) = 0.25
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.009 0.050 0.098 0.053 0.154 0.231 0.594 0.798 0.870 0.981 0.999 1
C 0.011 0.050 0.093 0.043 0.152 0.228 0.517 0.743 0.840 0.969 0.994 0.998

Table 6: Empirical probability of the type I error and power of the parametric test (P) when
testing hypothesis (8) under covariance misspecification of the first type (top), the second
type (middle) and the third type (bottom) .

P(Type I Error)
Power

R12(0) = 0.20 R12(0) = 0.30 R12(0) = 0.40
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.010 0.048 0.107 0.053 0.151 0.230 0.611 0.810 0.876 0.994 0.999 1

P(Type I Error)
Power

R12(0) = 0.20 R12(0) = 0.30 R12(0) = 0.40
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.015 0.061 0.119 0104 0.260 0.364 0.713 0.875 0.92 0.991 0.999 1

P(Type I Error)
Power

R12(0) = 0.20 R12(0) = 0.30 R12(0) = 0.40
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.012 0.055 0.106 0.096 0.262 0.370 0.764 0.907 0.955 0.997 1 1

Table 7: Empirical probability of the type I error and power of the parametric test (P) when
testing hypothesis (9) with k = 0.15, under covariance misspecification of the first type
(top), the second type (middle) and the third type (bottom).
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P(Type I Error)
Power

R12(0) = 0.05 R12(0) = 0.15 R12(0) = 0.25
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.011 0.038 0.074 0.100 0.183 0.262 0.450 0.650 0.715 0.863 0.929 0.953
C 0.009 0.037 0.074 0.093 0.182 0.245 0.456 0.605 0.690 0.823 0.909 0.938

P(Type I Error)
Power

R12(0) = 0.05 R12(0) = 0.15 R12(0) = 0.25
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.012 0.049 0.096 0.054 0.151 0.232 0.556 0.774 0.855 0.976 0.997 0.999
C 0.013 0.044 0.096 0.047 0.136 0.219 0.486 0.725 0.818 0.950 0.991 0.997

Table 8: Empirical probability of the type I Error and power of the parametric test (P) and
Clifford’s test (C) when testing hypothesis (8) for a bivariate chi-square random fields with
p = 1 (top) and p = 15 (bottom) degrees of freedom.

P(Type I Error)
Power

R12(0) = 0.05 R12(0) = 0.15 R12(0) = 0.25
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.008 0.047 0.093 0.028 0.108 0.182 0.402 0.624 0.745 0.919 0.975 0.989
C 0.006 0.047 0.087 0.032 0.121 0.205 0.429 0.684 0.780 0.941 0.986 0.993

P(Type I Error)
Power

R12(0) = 0.05 R12(0) = 0.15 R12(0) = 0.25
α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
P 0.009 0.048 0.098 0.042 0.132 0.209 0.464 0.701 0.806 0.954 0.987 0.995
C 0.007 0.054 0.102 0.029 0.104 0.180 0.305 0.549 0.674 0.837 0.947 0.971

Table 9: Empirical probability of the type I Error and power of the parametric test (P) and
Clifford’s test (C) when testing hypothesis (8) for a a bivariate skew Gaussian random fields
with ψ1 = ψ2 = 2.775 (top) and ψ1 = ψ2 = 1 (bottom).
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Parameters (A) (B) (C)
ρ12 0.465 0.488 0.517

(0.049) (0.047) (0.047)
σ21 1.028 0.981 0.978

(0.096) (0.089) (0.090)
σ22 0.885 0.922 0.885

(0.082) (0.095) (0.088)
β 98.03 − −

(12.30)
β11 − 61.338 78.997

(12.959) (13.710)
β22 − 129.20 124.36

(20.490) (22.452)
β12 − − 143.978

(18.886)

Likelihood −644.38 −639.09 −630.01

Table 10: Maximum likelihood parameter estimates with associated standard errors (in
brackets) for the bivariate covariance model in equation (11) under settings 1, 2, and 3.
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Caption of Figure 1

Bubble plots for As (left) and for Pb (right).

Caption of Figure 2

Codispersion coefficient between x=As and y=Pb for the lag distance range from 0 to

2700 m.
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