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a b s t r a c t

We study the problem of estimating the covariance parameters of a one-dimensional
Gaussian process with exponential covariance function under fixed-domain asymptotics.
We show that the weighted pairwise maximum likelihood estimator of the microergodic
parameter can be consistent or inconsistent. This depends on the range of admissible pa-
rameter values in the likelihood optimization. On the other hand, the weighted pairwise
conditional maximum likelihood estimator is always consistent. Both estimators are also
asymptotically Gaussian when they are consistent. Their asymptotic variances are larger
or strictly larger than that of the maximum likelihood estimator. A simulation study
is presented in order to compare the finite sample behavior of the pairwise likelihood
estimators with their asymptotic distributions. For more general covariance functions,
an additional inconsistency result is provided, for the weighted pairwise maximum
likelihood estimator of a variance parameter.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Gaussian processes are widely used in statistics to model spatial data. When fitting a Gaussian field, one has to deal
with the issue of estimating its covariance function. In many cases, it is assumed that this function belongs to a given
parametric model or family of covariance functions, which turns the problem into a parametric estimation problem.
Within this framework, the maximum likelihood estimator (MLE) [45,55] of the covariance parameters of a Gaussian
stochastic process observed in Rd, d ≥ 1, has been deeply studied in the two following asymptotic frameworks.

The fixed-domain asymptotic framework, sometimes called infill asymptotics [16,45], corresponds to the case where
more and more data are observed in some fixed bounded sampling domain (usually a region of Rd). The increasing-domain
asymptotic framework corresponds to the case where the sampling domain increases with the number of observed data.
Furthermore, the distance between any two sampling locations is bounded away from 0. The asymptotic behavior of the
MLE of the covariance parameters can be quite different under these two frameworks [60].
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Under increasing-domain asymptotics, for all covariance parameters, the MLE is consistent and asymptotically normal
under some mild regularity conditions. The asymptotic covariance matrix is equal to the inverse of the Fisher information
matrix [3,33,41].

The situation is significantly different under fixed-domain asymptotics. Indeed, two types of covariance parameters
can be distinguished: microergodic and non-microergodic parameters. A covariance parameter is microergodic if two
Gaussian measures constructed from different values of it are orthogonal, see [26,45]. It is non-microergodic if two
Gaussian measures constructed from different values of it are equivalent. Non-microergodic parameters cannot be
estimated consistently, but misspecifying them asymptotically results in the same statistical inference as specifying
them correctly [42–44,59]. In the case of isotropic Matérn covariance functions with d ≤ 3, [59] shows that only a
reparametrized quantity obtained from the scale and variance parameters is microergodic. The asymptotic normality of
the MLE of this microergodic parameter is then obtained in [30]. Similar results for the special case of the exponential
covariance function were obtained previously in [57].

The maximum likelihood method is generally considered the best option for estimating the covariance parameters of
a Gaussian process (at least in the framework of the present paper, where the true covariance function does belong to the
parametric model, see also [2,4]). Nevertheless, the evaluation of the likelihood function under the Gaussian assumption
requires to solve a system of linear equations and to compute a determinant. For a data set of n observations, the
computational burden is O(n3). This makes maximum likelihood computationally impractical for large data sets. This
fact motivates the search for estimation methods with a good balance between computational complexity and statistical
efficiency. Among these methods, we can mention low rank approximation (see [46] and the references therein for a
review), sparse approximation [24], covariance tapering [21,29], Gaussian Markov random fields approximation [17,38],
submodel aggregation [12,18,25,39,48,50] and composite likelihood (CL).

CL indicates a general class of objective functions based on the likelihood of marginal or conditional events [52]. This
kind of estimation method has two important benefits. First, it is generally appealing when dealing with large data sets.
Second, it can be helpful when it is difficult to specify the full likelihood. In this paper we focus on a specific type of CL
called pairwise likelihood. Examples of the use of pairwise likelihood in the Gaussian and non Gaussian case can be found
in [9,10,20,22,23] to name a few.

The increasing-domain asymptotic properties of various weighted pairwise likelihood estimators in the Gaussian case
can be found in [9]. Under this setting, for all covariance parameters, these pairwise likelihood estimators are consistent
and asymptotically normal under some mild regularity conditions.

There are no results under fixed-domain asymptotics for CL to the best of our knowledge. In this paper we study the
fixed-domain asymptotic properties of the pairwise likelihood estimation method. A one-dimensional Gaussian process
with exponential covariance model is considered. This covariance model is particularly amenable to theoretical analysis of
the MLE. Indeed, its Markovian property yields an explicit (matrix-free) expression of the likelihood function [57]. Thus,
the MLE for this model has been studied in [14,15,57], and also in higher dimension in [1,51,58].

Under the parametric model given by the one-dimensional exponential covariance function, the microergodic param-
eter is the product of the variance and the scale (see [57] and Section 2). Under the same setting as in [57], we study
the consistency and asymptotic normality of the weighted pairwise maximum likelihood estimator (WPMLE) and of the
weighted pairwise conditional maximum likelihood estimator (WPCMLE) of the microergodic parameter. Our results show
that the WPMLE is inconsistent if the range of admissible values for the variance parameter is too large compared to that
for the scale parameter (Theorem 1, (i) and (iii)). Conversely, they show that the WPMLE is consistent if the range of
admissible values for the variance parameter is restricted enough compared to that for the scale parameter (Theorem 1,
(ii) and (iv)). In contrasts, we prove that the WPCMLE is consistent regardless of the ranges of admissible values for the
scale and variance (Theorem 2). Both estimators are also asymptotically Gaussian in the cases where they are consistent
(Theorem 3). The asymptotic variance of these estimators is no smaller than that of the MLE. Furthermore, it is strictly
larger for equispaced observation points, when non-zero weights are given to pairs of non successive observation points.

The proofs of the asymptotic results rely on Lemma 1. This lemma expresses the weighted pairwise (conditional)
likelihood criteria as combinations of full likelihood criteria for subsets of the observations. This enables to exploit the
asymptotic approximations obtained by [57] for the full likelihood. The consistency results are then obtained similarly as
in [57]. The inconsistency results are obtained by a careful analysis of the limit weighted likelihood criterion, together
with results on extrema of Gaussian processes (see the proof of Theorem 1). Finally, the asymptotic normality results are
obtained by means of a central limit theorem for weakly dependent variables, together with the use of Lemma 1 and of
the approximations in [57].

It turns out that a suitable choice of the symmetric weights used in the pairwise likelihood is crucial for improving the
asymptotic statistical efficiency of the method. In particular, the choice of compactly supported weights with a specific
cut-off generally decreases the asymptotic variance. As a special case, if the pairwise likelihood is constructed only from
adjacent pairs, then the asymptotic efficiency of the MLE is attained.

These results are consistent with the increasing-domain setting. Indeed, it has been shown, via simulation, that
weighting schemes downweighting observations that are far apart in time and/or in space, are preferable to the pairwise
likelihood involving all possible pairs [9,27,53]. A simulation study compares the finite sample properties of the weighted
pairwise likelihood estimators with their asymptotic distributions, using the MLE as a benchmark. Finally, we provide
an additional inconsistency result for the WPMLE of a variance parameter, when the correlation function is known and
allowed to be significantly more general than the exponential one.
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The paper falls into the following parts. In Section 2, pairwise (conditional) likelihood estimation is introduced.
In Section 3, the consistency and inconsistency results are provided. In Section 4, the asymptotic normality results
are provided, together with the analysis of the asymptotic variance. In Section 5, the numerical results are discussed.
Concluding remarks are given in Section 6. The proofs are postponed to Appendix A. The more general inconsistency
result of the WPMLE is provided in Appendix B.

2. Pairwise (conditional) likelihood estimation

In the following, we will consider a stationary zero-mean Gaussian process Z = {Z(s), s ∈ [0, 1]}, with covariance
function given by, for s, t ∈ R,

cov{Z(s), Z(t)} = σ 2
0 e

−θ0|s−t| (1)

for fixed θ0, σ 2
0 ∈ (0,∞).

For θ, σ 2
∈ (0,∞), let ψ = (θ, σ 2)⊤, call σ 2 the variance parameter and call θ the scale (inverse of correlation

decay) parameter. Let ψ0 = (θ0, σ 2
0 )

⊤. Throughout this paper, θ and σ 2 denote candidate covariance parameters, at which
likelihood or pairwise likelihood criteria can be evaluated (see (2) and (3)), while θ0 and σ 2

0 are the true covariance
parameters, that provide the true covariance function of Z through (1).

The Gaussian process Z is known as the stationary Ornstein–Uhlenbeck process. Let
(
s(n)i

)
n∈N,i∈{1,...,n} be a triangular

array of observations points in [0, 1]. For n ∈ N, let {s1, . . . , sn} = {s(n)1 , . . . , s
(n)
n } for simplicity and assume without loss

of generality that s1 < · · · < sn. The observation vector can thus be written as Zn = (Z(s1), . . . , Z(sn))⊤.
For s, t ∈ [0, 1], we let

ℓs,t (ψ) = 2 ln(σ 2) + ln(1 − e−2θ |s−t|) +
1
σ 2 Z(s)

2
+

{Z(t) − e−θ |s−t|Z(s)}2

σ 2(1 − e−2θ |s−t|)

be the log-likelihood criterion associated to the bivariate random vector (Z(s), Z(t))⊤. The quantity ℓs,t (ψ) is −2 times the
logarithm of the probability density function of the vector (Z(s), Z(t))⊤, when considering that Z has covariance function
given by (1) with ψ0 replaced by ψ .

We also let

ℓt|s(ψ) = ln(σ 2) + ln(1 − e−2θ |s−t|) +
{Z(t) − e−θ |s−t|Z(s)}2

σ 2(1 − e−2θ |s−t|)
be the conditional log-likelihood criterion of Z(t) given Z(s). The quantity ℓt|s(ψ) is −2 times the logarithm of the
conditional probability density function of Z(t) given Z(s), when considering that Z has covariance function given by
(1) with ψ0 replaced by ψ .

We let (w(n)
i,j )n∈N,i,j∈{1,...,n},i̸=j be a triangular array of weights in [0,∞). We let w(n)

i,j = wi,j for simplicity. Then, define
the weighted pairwise log-likelihood function pℓn as

pℓn(ψ) =

n−1∑
i=1

n∑
j=i+1

wi,jℓsi,sj (ψ) (2)

and the weighted pairwise conditional log-likelihood function pcℓn as

pcℓn(ψ) =

n∑
i=1

n∑
j=1
j̸=i

wi,jℓsj|si (ψ). (3)

Finally, for J ⊂ (0,∞)2, define the WPMLE as

ψ̂pℓ = argmin
ψ∈J

pℓn(ψ) (4)

and the WPCMLE as

ψ̂pcℓ = argmin
ψ∈J

pcℓn(ψ). (5)

We remark that the WPMLE and WPCMLE are two distinct estimators, which will be shown in Section 3 to have
significantly different behaviors under fixed-domain asymptotics.

In the rest of the paper, we will consider the case where the weights (w(n)
i,j ) are so that for any n ∈ N and i, j ∈

{1, . . . , n}, i ̸= j, wi,j = w|i−j| with (wk)k∈N a fixed sequence of non-negative numbers, not all of which being zero. We let
K = max{i ∈ N;wi ̸= 0}, where we allow for K = +∞ if (wk)k∈N has infinitely many non-zero elements. The quantity
K is fixed independently of n and K < +∞ if an only if the sequence (wk)k∈N has finitely many non-zero elements. We
remark that K ≥ 1 since (wk)k∈N is not the zero sequence.

In the following lemma, convenient expressions are given for the weighted pairwise log-likelihood and weighted
pairwise conditional log-likelihood functions.
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Lemma 1. Let, for k ∈ {1, . . . , n − 1} and a ∈ {0, . . . , k − 1}, x(k,a)j = s1+a+jk, for j ∈ N so that 1 + a + jk ≤ n. Then, with
⌊x⌋ the largest integer that is smaller or equal to x, and with the convention that

∑b
i=a ri = 0 if b < a,

pℓn(ψ) =

n−1∑
k=1

wk

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j ,x(k,a)j+1
(ψ) (6)

and

pcℓn(ψ) =

n−1∑
k=1

wk

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

{
ℓx(k,a)j+1 |x(k,a)j

(ψ) + ℓx(k,a)j |x(k,a)j+1
(ψ)

}
. (7)

The benefit of Lemma 1 is that the rightmost sum in (7) can be expressed as a (full) log likelihood for a subset (that
depends on k and a in (7)) of {s1, . . . , sn} (see Lemma 1 in [57]). Similarly, the rightmost sum in (6) can be expressed
conveniently as a function of this (full) log likelihood. We refer to the proofs of Theorems 1–3 for details.

3. Consistency and inconsistency

It is well-known that, in the case of the exponential covariance model given in (1), the parameters σ 2 and θ are
non-microergodic and only the parameter σ 2θ is microergodic [57,59]. Hence, we study the consistency, inconsistency
and asymptotic normality for the estimators θ̂pℓσ̂ 2

pℓ and θ̂pcℓσ̂
2
pcℓ of σ

2
0 θ0 given in (4) and (5).

In the next theorem, let J be of the form [a, b]×[c, d], [a, b]×(0,∞) or (0,∞)×[c, d]. The next theorem characterizes,
as a function of J , the cases where the WPMLE is consistent and those where it is inconsistent.

Theorem 1. Assume that K < +∞, that J ⊂ (0,∞)2 and that there exists (θ̃ , σ̃ 2) in J so that θ̃ σ̃ 2
= θ0σ

2
0 . Then, for fixed

0 < a ≤ b < +∞ and 0 < c ≤ d < +∞,

(i) If J = [a, b] × [c, d] with ad > θ0σ
2
0 or bc < θ0σ

2
0 , then θ̂pℓσ̂

2
pℓ does not converge in probability to θ0σ 2

0 ;
(ii) If J = [a, b] × [c, d] with ad ≤ θ0σ

2
0 and bc ≥ θ0σ

2
0 , then θ̂pℓσ̂

2
pℓ converges to θ0σ

2
0 almost surely;

(iii) If J = [a, b] × (0,∞) then θ̂pℓσ̂ 2
pℓ does not converge in probability to θ0σ 2

0 ;
(iv) If J = (0,∞) × [c, d] then θ̂pℓσ̂ 2

pℓ converges to θ0σ
2
0 almost surely.

Remark 1. In Theorem 1, the parameter set J always contains a pair (θ̃ , σ̃ 2) so that θ̃ σ̃ 2
= θ0σ

2
0 , where we recall that θ0σ 2

0
is the unknown microergodic parameter. Thus, in the framework of Theorem 1, the parameter θ0σ 2

0 is always consistently
estimable, and indeed Theorem 2 shows that there exists an estimator, namely the WPCMLE, that is consistent. This does
not mean that all the estimators of θ0σ 2

0 are consistent, and indeed Theorem 1 shows that the WPMLE can be inconsistent.

Theorem 1 can be interpreted as follows: The pairwise likelihood criterion can be decomposed as

pℓn(ψ) = S1(σ 2) + S2(θ, σ 2),

where S1(σ 2) is the first triple sum in (A.1) in the proof of Theorem 1 and S2(θ, σ 2) is the second one. The minimizer
of the random function S2 of θ and σ 2 would yield a consistent estimator of θ0σ 2

0 . However, the random function S1 has
random fluctuations that do not become negligible as n → ∞. The consequence of these fluctuations is that the WPMLE
of θ0σ 2

0 is inconsistent if the range of possible values for σ 2 is too large compared to that for θ (cases (i) and (iii)). On
the contrary, if the range of possible values for θ is large enough compared to that for σ 2, then the WPMLE θ̂pℓ is able
to compensate, so to speak, the non-negligible fluctuations of S1. More precisely, independently of the value of σ̂ 2

pℓ, in
the cases (ii) and (iv), because of the good behavior of S2, the value of θ̂pℓ will be so that θ̂pℓσ̂ 2

pℓ does converge to θ0σ 2
0 .

This discussion is the basis of the proof of Theorem 1, to which we refer for more details. We remark that this discussion
applies to the WPMLE, and not to the WPCMLE which is a different estimator and is always consistent, see Theorem 2.

It should be mentioned that, under increasing-domain asymptotics, the WPMLE of (θ0, σ 2
0 ), and thus of θ0σ 2

0 , is
consistent, independently of the form of J , provided J contains (θ0, σ 2

0 ) (see the general results given in [9]). It can indeed
be checked that S1(σ 2) has random fluctuations that are typically asymptotically negligible under increasing-domain
asymptotics. Hence, we have an additional illustration of the important qualitative differences that can appear when
comparing fixed and increasing-domain asymptotics (see also [60]).

From a practical standpoint, Theorem 1 provides a warning when using the WPMLE. In particular, a situation that often
occurs in practice is the case (iii), where θ has a compact range of allowed values and where for any fixed θ , the value
of σ 2 that optimizes the pairwise likelihood (without restriction) can be computed explicitly. This case (iii) is a case of
inconsistent estimation of the microergodic parameter. Furthermore, in Appendix B, we provide another inconsistency
result for the WPMLE, for more general covariance functions and when a single variance parameter is estimated.

The following theorem gives the consistency of the WPCMLE for the microergodic parameter, for all the cases for
J under investigation in Theorem 1. Hence, Theorems 1 and 2 jointly provide an incentive to use pairwise conditional
likelihood rather than pairwise (unconditional) likelihood in practice.
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Theorem 2. Assume that K < +∞. Let 0 < a ≤ b < +∞ and 0 < c ≤ d < +∞ be fixed. Let J = [a, b] × [c, d] or
J = [a, b] × (0,∞) or J = (0,∞)× [c, d] and assume that there exist θ̃ , σ̃ 2 in J so that θ̃ σ̃ 2

= θ0σ
2
0 . Then, θ̂pcℓσ̂

2
pcℓ converges

to θ0σ 2
0 almost surely.

4. Asymptotic normality

Throughout this section, we assume that maxi∈{1,...,n−1}(si+1 − si) → 0 as n → ∞. In order to express the asymptotic
variance, in the asymptotic normality result in Theorem 3, let us define, for i ∈ N and k ∈ N, with i ≥ 1 and i + k ≤ n,

W 2
i,i+k =

{
Z(si+k) − e−θ0(si+k−si)Z(si)

}2
σ 2
0 (1 − e−2θ0(si+k−si))

.

Let us also define

τ 2n =
1
n
var

{
n−1∑
i=1

min{K ,n−i}∑
k=1

wk
(
W 2

i,i+k − 1
)}
. (8)

Lemma 2 provides an asymptotic approximation of τ 2n when K < +∞.

Lemma 2. Assume that K < +∞. Let, for 1 ≤ i < j ≤ n and 1 ≤ k < ℓ ≤ n, bi,j,k,ℓ be defined by bi,j,k,ℓ = bk,ℓ,i,j and, for
i ≤ k,

bi,j,k,ℓ =

⎧⎪⎨⎪⎩
0 if j ≤ k,

(sj−sk)2

(sj−si)(sℓ−sk)
if k ≤ j ≤ ℓ,

sℓ−sk
sj−si

if k ≤ ℓ ≤ j.
(9)

We have as n → ∞

τ 2n =

⎛⎝2
n

n−1∑
i=1

min(n,i+K )∑
j=i+1

n−1∑
k=1

min(n,k+K )∑
ℓ=k+1

wj−iwℓ−kbi,j,k,ℓ

⎞⎠+ o(1). (10)

In Lemmas 3 and 4, we show that τ 2n is lower and upper bounded as n → ∞.

Lemma 3. Assume that K < +∞. Then lim infn→∞τ
2
n ≥ 2(

∑K
k=1wk)2.

Lemma 4. Assume that K < +∞. Then lim supn→∞τ
2
n < +∞.

Then, the following theorem establishes the asymptotic normality of the WPMLE (in the cases where it is consistent)
and of the WPCMLE (in all the cases) of the microergodic parameter.

Theorem 3. Under the cases (ii) and (iv) of Theorem 1, and under the same conditions as in this theorem,
√
n(
∑K

k=1wk)
τnσ

2
0 θ0

(σ̂ 2
pℓθ̂pℓ − σ 2

0 θ0)
D

−→ N (0, 1) . (11)

Furthermore, under the same conditions as in Theorem 2,
√
n(
∑K

k=1wk)
τnσ

2
0 θ0

(σ̂ 2
pcℓθ̂pcℓ − σ 2

0 θ0)
D

−→ N (0, 1) . (12)

Because of Lemmas 3 and 4, the rate of convergence is n1/2 in Theorem 3. Furthermore, it is shown in [57] that
the asymptotic variance of the MLE of θ0σ 2

0 is 2(θ0σ 2
0 )

2. Hence, from Lemma 3, the WPMLE and WPCMLE have a larger
asymptotic variance than the MLE, which is in agreement with the fact that the MLE is generally considered to be the
most efficient statistically. Also, the asymptotic variance of the WPMLE and WPCMLE depends on the triangular array
of observation points (see Lemma 2), while that of the MLE does not. A similar conclusion was obtained in [6] when
considering a cross validation estimator in the same context.

Remark 2. It can be shown, from Lemma 1 and from Lemma 1 in [57], that the WPMLE and WPCMLE asymptotically
coincide with the MLE when K = 1 (that is when w1 > 0 and wk = 0 for k ≥ 2) and under the conditions of Theorem 3.
When K = 1, it is easily seen from (8) that τ 2n = 2w2

1 + o(1) so that, indeed, the WPMLE and WPCMLE have the same
asymptotic variance as the MLE.

The following lemma shows that for equispaced observation points, the asymptotic variance of the WPMLE and
WPCMLE is strictly larger than that of the MLE when one of the wk, k ≥ 2 is non-zero.
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Lemma 5. If si = i/n for all n ∈ N and i ∈ {1, . . . , n} and if 2 ≤ K < +∞, then lim infn→∞τ
2
n > 2

(∑K
i=1wk

)2
.

Remark 3. The sequence of weights {w1, 0, . . .} with w1 > 0 provides the smallest asymptotic variance because of the
fact that, in this case, the log-likelihood function is asymptotically equal to a sum of pairwise conditional log likelihoods
for consecutive observation points (see Lemma 1 in [57]). This is specific to the exponential covariance function in (1).
For more general families of covariance function, it is possible that it is more efficient to use other weight configurations
than {w1, 0, . . .}.

Remark 4. The log likelihood criterion can be evaluated with a O(n) computational cost (see Lemma 1 in [57]). Hence,
here the WPMLE, WPCMLE and MLE have the same computational cost but in general, the likelihood evaluation cost is
O(n3) in time and O(n2) in storage, while this cost remains O(n) for weighted pairwise likelihood criteria (when K < +∞)
irrespectively of the covariance function.

Remark 5. In Sections 3 and 4, we have provided consistency and asymptotic normality results under fixed-domain
asymptotics. As discussed after Theorem 1, some of the conclusions obtained differ from those arising from an increasing-
domain asymptotic analysis. Hence, given a finite set of observation points and observed values, the question of whether
to consider increasing-domain or fixed-domain asymptotics as most relevant is important.

Let us discuss this question in the general setting of a stationary isotropic Gaussian random field on Rd. Let us consider
the correlation distance ∆ ≥ 0, such that the correlation for two points at distance more than ∆ is expected to be less
than a given threshold, for instance 0.05. Let us also consider that there are n observation points s1, . . . , sn, and consider
the diameter D = maxi,j∈{1,...,n} ∥si − sj∥ of the point cloud. Then, a first rule of thumb is to consider that fixed-domain
asymptotics is relevant when n is large compared to (D/∆)d. Conversely, increasing-domain asymptotics is relevant if
n is comparable to (D/∆)d. Hence, fixed-domain asymptotics is more relevant when D decreases and ∆ increases and
conversely for increasing-domain asymptotics. We also remark that when n is large compared to (D/∆)d and D/∆ is
large, that is the observation domain is large and the observation points are dense in this domain, then a third asymptotic
setting called mixed-domain asymptotics [14] can be most relevant, although less theory is available in this case.

Beyond this rule of thumb, the reference [60] is, to the best of our knowledge, the only one that provides a
quantitative comparison of the approximations of finite sample situations, brought by fixed-domain and increasing-
domain asymptotics. The authors focus on maximum likelihood estimation of covariance parameters, and consider
settings where two asymptotic distributions of the estimators can be obtained from both asymptotic frameworks. In
simulations, they show that the fixed-domain asymptotic distributions are closer to the finite sample distributions than
the increasing-domain ones, especially for the microergodic covariance parameters.

We can also mention other specific settings where fixed-domain asymptotics is more relevant. When studying the
properties of sequential procedures, like in optimization [7,54], fixed-domain asymptotics is more natural because the
definition domain of the Gaussian process is fixed, and more and more observation points are added sequentially.
Similarly, Gaussian processes conditioned by inequality constraints (for instance boundedness or monotonicity) can be
studied under fixed-domain asymptotics [5,32], but much less so under increasing-domain asymptotics, because the
probability that a Gaussian process, defined on an unbounded domain, satisfy these types of constraints is generally zero.

Hence, generally speaking, it seems that fixed-domain asymptotics is perhaps more often relevant than increasing-
domain asymptotics, as pointed out in the reference book [45]. On the other hand, the obtained theoretical results
can be significantly more general, in terms of types of covariance functions and observation point locations, under
increasing-domain asymptotics. Thus the joint study of both these frameworks is justified.

Finally, an ideal scenario is when both the increasing and fixed-domain asymptotic frameworks yield practical
procedures that coincide, on fixed finite data sets. For instance, in [35], the asymptotic normal approximation given by the
Fisher information matrix is used to derive efficient sampling schemes for covariance parameter estimation and prediction.
Here, the Fisher information matrix is computed from finite sample data sets, so that the algorithm is motivated by both
the increasing and fixed-domain frameworks. In this example, in order to be robust to the type of asymptotic setting used,
we recommend to indeed compute the finite sample Fisher information matrix, rather than its theoretical limit under a
given asymptotic framework.

5. Numerical experiments

The main goal of this section is to compare the finite sample behavior of the WPMLE and WPCMLE of the microergodic
parameter of the exponential covariance model in (1) with the asymptotic distributions given in Theorem 3, using the
MLE as a benchmark.

In a first simulation study we consider a set of points in [0, 1] defined by si+1 = si + 0.02/L with s1 = 0 and sn = 1.
We let L = 1, 2, 4, 8, 16, that is we consider n = 51, 101, 201, 401, 801 points.

For each L, with the Cholesky decomposition, we simulate 5000 realizations of a zero mean Gaussian process with
covariance (1) setting σ 2

0 = 1 and θ0 = 15. For each simulation we estimate with MLE, WPMLE and WPCMLE choosing
the ‘optimal’ weights w1 = 1 and wk = 0 if k ≥ 2.
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Table 1
Sample quantiles, mean, variance and kurtosis of (

√
n/Cy)

(
σ̂ 2
i,y θ̂i,y/σ

2
0 θ0 − 1

)
, i ∈ {1, . . . , 5000} for y = WPMLE, WPCMLE, MLE when n =

51, 101, 201, 401, 801, compared with the associated theoretical values of the standard Gaussian distribution.
Method n 5% 25% 50% 75% 95% mean var Kur

WPMLE

51 −1.6186 −0.7006 0.0264 0.8950 2.3767 0.1703 1.5644 1.6348
101 −1.5899 −0.6864 0.0278 0.8043 2.0501 0.1075 1.2520 0.2967
201 −1.5733 −0.6702 −0.0029 0.7400 1.8353 0.0497 1.0862 0.0933
401 −1.6121 −0.6767 0.0171 0.7275 1.7956 0.0419 1.0635 −0.0321
801 −1.6275 −0.6728 0.0099 0.7229 1.7001 0.0303 1.0350 −0.0133

WPCMLE

51 −1.6186 −0.7006 0.0264 0.8950 2.3767 0.1703 1.5644 1.6348
101 −1.5899 −0.6864 0.0278 0.8043 2.0501 0.1075 1.2520 0.2967
201 −1.5733 −0.6702 −0.0029 0.7400 1.8353 0.0497 1.0862 0.0933
401 −1.6121 −0.6767 0.0171 0.7275 1.7956 0.0419 1.0635 −0.0321
801 −1.6275 −0.6728 0.0099 0.7229 1.7001 0.0303 1.0350 −0.0133

MLE

51 −1.5540 −0.7043 −0.0585 0.6733 1.8372 0.0197 1.0891 0.3874
101 −1.5556 −0.7173 −0.0289 0.6759 1.8059 0.0215 1.0687 0.0327
201 −1.5702 −0.7038 −0.0476 0.6478 1.7007 −0.0034 1.0062 0.0316
401 −1.6194 −0.6909 −0.0254 0.6770 1.7012 0.0048 1.0288 −0.0607
801 −1.6226 −0.6886 −0.0074 0.6880 1.6634 0.0052 1.0195 −0.0049

N (0, 1) −1.6448 −0.6745 0.0000 0.6745 1.6448 0 1 0

Fig. 1. Comparison of the histogram of (
√
n/Cy)

(
σ̂ 2
i,y θ̂i,y/σ

2
0 θ0 − 1

)
, i ∈ {1, . . . , 5000} for y = WPMLE, WPCMLE, MLE (from left to right) with the

standard Gaussian distribution when n = 801.

Optimization was carried out using the R [36] function optim with the method ‘‘L-BFGS-B’’ [11] which allows
box constraints, that is each variable can be given a lower and/or upper bound. Specifically we set [a, b] × [c, d] =

[0.01, 2500]×[0.01, 5]. From Theorems 1 and 2, under this setting, both the WPMLE andWPCMLE are consistent. Using the
asymptotic distributions stated in Theorem 3, Table 1 compares the sample quantiles of order 0.05, 0.25, 0.5, 0.75, 0.95,
mean, variance and kurtosis of the vector for i ∈ {1, . . . , 5000}

√
n

Cy

(
σ̂ 2
i,yθ̂i,y

σ 2
0 θ0

− 1

)
,

where y =MLE, WPMLE and WPCMLE with the associated theoretical values of the standard Gaussian distribution. Here
C2
MLE = 2 and C2

WPMLE = C2
WPCMLE = τ̂ 2n /(

∑K
k=1wk)2 where τ̂ 2n is computed using the approximation in (10), i.e.,

τ̂ 2n =
2
n

n−1∑
i=1

min(n,i+K )∑
j=i+1

n−1∑
k=1

min(n,k+K )∑
ℓ=k+1

wj−iwℓ−kbi,j,k,ℓ.

Under the optimal weights setting and following Remark 1 we have C2
WPMLE = C2

WPCMLE ≈ 2 as in the MLE case.
It is apparent from Table 1 that the asymptotic distribution given in Theorem 3 is a satisfactory approximation of

the sample distribution, visually improving when increasing n. It can be appreciated that the speed of convergence is
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Table 2
Asymptotic variance versus sample variance of the WPMLE, WPCMLE and MLE of the microergodic parameter when
increasing n and K .

K n = 51 n = 101 n = 201 n = 401 n = 801

Sample variance MLE * 10.0650 4.8688 2.2809 1.1523 0.5749
Asymptotic variance 8.8230 4.4554 2.2388 1.1221 0.5618

Sample variance WPMLE 1 13.5326 5.5227 2.4197 1.1905 0.5807
Sample variance WPCMLE 13.5326 5.5227 2.4197 1.1905 0.5807
Asymptotic variance 8.6505 4.4113 2.2277 1.1193 0.5611

Sample variance WPMLE 10 33.5086 17.9724 7.9901 3.6650 1.7723
Sample variance WPCMLE 33.1477 17.7529 7.9465 3.6605 1.7720
Asymptotic variance 22.2798 12.3865 6.5138 3.3382 1.6895

Sample variance WPMLE 20 36.1910 24.7919 15.0243 7.1731 3.3934
Sample variance WPCMLE 35.9582 24.4611 14.8164 7.1312 3.3894
Asymptotic variance 32.9936 20.7760 11.5892 6.0239 3.0823

Sample variance WPMLE 30 36.6338 26.7294 19.7646 10.8759 5.1132
Sample variance WPCMLE 36.4643 26.4491 19.4406 10.7569 5.0969
Asymptotic variance 36.4154 25.3444 16.0245 8.6089 4.4547

slightly faster for MLE and that the asymptotic behavior of the WPMLE and WPCMLE is similar. Fig. 1 depicts a graphical
comparison when n = 801.

In a second simulation study we focus only on the asymptotic variance n−1(σ 2
0 θ0Cy)2 and we compare it with the

sample variance of the WPMLE, WPCMLE and MLE of the microergodic parameter, under the same setting as in the first
numerical experiment. In this case we consider increasing values of both K and n that is we consider also non optimal
weights. The results are depicted in Table 2. For fixed K it can be appreciated that, as expected, the difference between
the sample and theoretical variance is reduced when increasing n. On the other hand, for fixed n, both asymptotic and
simulated variances increase when increasing K . Overall, as expected, the asymptotic variance slightly underestimates the
simulated variance. Finally note that when K ̸= 1 then the speed of convergence for the WPCMLE is slightly faster than
for the WPMLE.

Let us conclude this section with a remark. For a fixed θ , the global minimizer of pℓn(θ, σ 2) and of pcℓn(θ, σ 2), over
σ 2

∈ (0,+∞), can be expressed explicitly. Hence, from a computational point of view, it is possible to compute explicitly
minσ2∈(0,+∞)pℓn(θ, σ 2) and minσ2∈(0,+∞)pcℓn(θ, σ 2). These two latter functions can be minimized numerically over θ only,
which is computationally beneficial. However, this case corresponds to the case (iii) in Theorem 1 so the WPMLE would
be inconsistent in this setting.

6. Conclusions

In this paper, we provide, to the best of our knowledge, the first fixed-domain asymptotic properties of weighted
pairwise likelihood estimators. We consider the exponential covariance function in dimension one. This enables us to
exploit the results of [57]. By means of these results, and of specific new proof techniques, the following conclusions are
obtained. The WPMLE can be inconsistent, if the range of allowed values for the variance is too large. This is in contrast
with the increasing-domain asymptotic situation, and allows us to issue a warning for practical use. On the other hand,
the WPCMLE is always consistent. In case of consistency, both these estimators are asymptotically Gaussian distributed,
with an asymptotic variance that is larger than or equal to that of the MLE. This variance depends on the observation
point locations and on the weight configurations.

Some of the conclusions obtained in this paper are specific to the exponential family of covariance functions. In
particular, the MLE is here asymptotically equal to a WPCMLE based only on pairs of consecutive observation points. On
the other hand, the inconsistency of the WPMLE that we have pointed out is not specific to the exponential covariance
function. Indeed, Appendix B provides inconsistency results for the WPMLE for general covariance functions.

It would be interesting to study the consistency of the WPCMLE and its asymptotic normality for more general families
of covariance functions than the exponential one, and in dimension larger than one. The present paper constitutes a first
step in this more general direction. We remark that, in the maximum likelihood case, general results on fixed-domain
asymptotics and for d = 1, 2, 3 can be found in [30] and [59] for the Matérn model and in [8] for the GeneralizedWendland
model.

As a referee pointed out, other types of CL functions have been proposed in the literature for the estimation of the
covariance functions of Gaussian processes [19,28,47]. [31] highlights that, for a given estimation problem, the choice of a
suitable CL function should be driven by statistical and computational considerations. In this paper we focused only on CL
based in pairs since, from our perspective, there is a clear computational advantage when considering CL based only on
pairs of observations. Moreover CL methods based on pairs are more robust (in the sense of [52] and [56]) with respect to
other types of CL functions. Indeed, they require only the correct specification of bivariate random vectors. Nevertheless,
we believe that for a one dimensional Gaussian process with exponential covariance function, the results in our paper
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and in [57] are the starting points to study the consistency and the asymptotic distribution of other types of CL estimators
under fixed-domain asymptotics.

Finally, it would be interesting to study the fixed-domain asymptotic properties of CL counterparts of the model
selection criteria of [13], that are based on the full likelihood.
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Appendix A. Proofs for Sections 2 to 4

In the proofs, we let 0 < Cinf < +∞ and 0 < Csup < +∞ be generic constants, which values can change from line to
line.

Proof of Lemma 1. The principle of the proof is a change of indexation of the pairs of the form si, sj, i < j. Instead of
indexing such a pair by i and j, we index it by j − i and by the remainder and quotient of the Euclidean division of i by
j − i. We have

pℓn(ψ) =

n−1∑
i=1

n∑
j=i+1

wi,jℓsi,sj (ψ) =

n−1∑
k=1

n−1∑
i=1

wk1i+k≤nℓsi,si+k (ψ)

=

n−1∑
k=1

wk

k−1∑
a=0

n∑
j=0

11+a+jk+k≤nℓs1+a+jk,s1+a+jk+k (ψ) =

n−1∑
k=1

wk

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j ,x(k,a)j+1
(ψ).

The proof of (7) is the same, after observing that
n∑

i=1

n∑
j=1
j̸=i

wi,jℓsj|si (ψ) =

n−1∑
i=1

n∑
j=i+1

wi,j
{
ℓsj|si (ψ) + ℓsi|sj (ψ)

}
. □

Lemma 6. Let m and M be fixed with −∞ ≤ m < M ≤ +∞. Then, we have, with probability Pr > 0 (not depending on n),

∀t ∈ [0, 1],m ≤ Z(t) ≤ M.

Proof. The lemma is a special case of Lemma A.3 in [32]. □

Proof of Theorem 1. Let us first consider the case (i). We have, from Lemma 1

pℓn(ψ) =

n−1∑
k=1

wk

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j ,x(k,a)j+1
(ψ)

=

K∑
k=1

wk

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

(
ln(σ 2) +

1
σ 2 Z

(
x(k,a)j

)2)
+

K∑
k=1

wk

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j+1 |x(k,a)j
(ψ). (A.1)

We observe that, for any k ∈ {1, . . . , K } and a ∈ {0, . . . , k−1} the points x(k,a)0 , . . . , x(k,a)nk,a , with nk,a = ⌊(n−1−a−k)/k⌋ =

(n/k)(1 + o(1)) satisfy the conditions of the setting of [57] (they have increasing two-by-two distinct values and are
restricted to [0, 1]). Furthermore, the set {k ∈ {1, . . . , K }, a ∈ {0, . . . , k − 1}} is finite with cardinality not depending on
n. Hence it can be seen that the proof of Theorem 1 in [57] (see in particular the offline equation at the top of Page 289
and Lemma 4) leads to

K∑
k=1

wk

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j+1 |x(k,a)j
(ψ) −

K∑
k=1

wk

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j+1 |x(k,a)j
(ψ̄)

=

[
K∑

k=1

wk

k−1∑
a=0

(n/k)
{
θ0σ

2
0

θσ 2 −
θ0σ

2
0

θ̄ σ̄ 2
+ ln(θσ 2) − ln(θ̄ σ̄ 2)

}]
+ r1,ψ,ψ̄ ,



10 F. Bachoc, M. Bevilacqua and D. Velandia / Journal of Multivariate Analysis 174 (2019) 104534

where ψ̄ = (θ̄ , σ̄ 2) and where supψ̄,ψ∈J |r1,ψ,ψ̄ | = o(n) almost surely. Furthermore, since Z is almost surely continuous
on [0, 1], we have almost surely

K∑
k=1

wk

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

(
ln(σ 2) +

1
σ 2 Z

(
x(k,a)j

)2)
= n

{
K∑

k=1

wk

(
ln(σ 2) +

1
σ 2

1
n

n∑
i=1

Z(si)2
)}

+ r2,ψ,ψ̄ ,

where supψ̄,ψ∈J |r2,ψ,ψ̄ | = o(n) almost surely. Hence, almost surely, as n → ∞, we have

pℓn(ψ) − pℓn(ψ̄) = n

(
K∑

k=1

wk

){
θ0σ

2
0

θσ 2 −
θ0σ

2
0

θ̄ σ̄ 2
+ ln(θσ 2) − ln(θ̄ σ̄ 2)

+ ln(σ 2) +
1
σ 2

(
1
n

n∑
i=1

Z(si)2
)

− ln(σ̄ 2) −
1
σ̄ 2

(
1
n

n∑
i=1

Z(si)2
)}

+ r3,ψ,ψ̄ ,

where supψ̄,ψ∈J |r3,ψ,ψ̄ | = o(n) almost surely. Let g(u) = (θ0σ 2
0 )/u + ln(u), S = (1/n)

∑n
i=1 Z(si)

2 and gS(u) = ln(u) + S/u.
We have

pℓn(ψ) − pℓn(ψ̄) = n

(
K∑

k=1

wk

){
g(θσ 2) − g(θ̄ σ̄ 2) + gS(σ 2) − gS(σ̄ 2)

}
+ r3,ψ,ψ̄ . (A.2)

We have

0 < Cinf ≤ inf
u∈[ac,bd]

g(u) ≤ sup
u∈[ac,bd]

g(u) ≤ Csup < ∞.

Consider now the subcase of (i) where ad > θ0σ
2
0 . Let ϵ > 0, and consider θ, σ 2 so that |θσ 2

− θ0σ
2
0 | ≤ ϵ. We have

σ 2
≤
θ0σ

2
0

θ
+
ϵ

θ
≤
θ0σ

2
0

a
+
ϵ

a
.

Hence, for ϵ > 0 small enough there exists a fixed d′ < d so that, for |θσ 2
− θ0σ

2
0 | ≤ ϵ we have σ 2

≤ d′. It follows that,
with ψ1 = (b, d), from (A.2)

1

n
∑K

k=1wk
lim infn→∞

{
infψ∈J;|θσ2−θ0σ

2
0 |≤ϵpℓn(ψ) − pℓn(ψ1)

}
≥ Cinf + ln(c) +

1
d′
S − Csup − ln(d) −

1
d
S

=

(
1
d′

−
1
d

)
S + Cinf − Csup + ln(c) − ln(d).

From Lemma 6, we can show that, with probability Pr > 0 (not depending on n)

inf
t∈[0,1]

Z2(t) ≥ 2
−Cinf + Csup − ln(c) + ln(d)

1
d′ −

1
d

.

Hence, with probability Pr > 0 we have, for fixed ϵ > 0

1

n
∑K

k=1wk
lim infn→∞

{
inf

ψ∈J;|θσ2−θ0σ
2
0 |≤ϵ

pℓn(ψ) − pℓn(ψ1)

}
> 0. (A.3)

This implies that θ̂pℓσ̂ 2
pℓ does not converge in probability to θ0σ 2

0 in the case where ad > θ0σ
2
0 .

Let us now consider the subcase of (i) where bc < θ0σ
2
0 . Let ϵ > 0, and consider θ, σ 2 so that |θσ 2

− θ0σ
2
0 | ≤ ϵ. We

have

σ 2
≥
θ0σ

2
0

θ
−
ϵ

θ
≥
θ0σ

2
0

b
−
ϵ

a
.

Hence, for ϵ > 0 small enough there exists a fixed c ′ > c so that, for |θσ 2
− θ0σ

2
0 | ≤ ϵ we have σ 2

≥ c ′. One can check
that the function gS in (A.2) has a second derivative which is negative for t ≥ 2S. Hence, if ϵ ≤ c ′/4 and S ≤ c ′/4 we
have, since σ 2

≥ c ′

gS(σ 2) − gS(σ 2
− ϵ) ≥ ϵ inf

t∈[c′−ϵ,d]
g ′

S(t) ≥ ϵg ′

S(d) ≥ ϵ

(
1
d

−
S
d2

)
≥

ϵ

2d

if we further assume that S ≤ d/2. Also, we have (still considering |θσ 2
− θ0σ

2
0 | ≤ ϵ)⏐⏐g(θσ 2) − g(θ (σ 2

− ϵ))
⏐⏐ ≤ b ϵ sup

t∈[θ0σ
2
0 +ϵ,θ0σ

2
0 −ϵ−bϵ]

|g ′(t)| = b ϵ sup
t∈[θ0σ

2
0 +ϵ,θ0σ

2
0 −ϵ−bϵ]

⏐⏐⏐⏐1t
(
1 −

σ 2
0 θ0

t

)⏐⏐⏐⏐ ≤ Asupϵ
2
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when ϵ ≤ ν, where Asup < ∞ and ν > 0 can be chosen so as to depend only on θ0, σ 2
0 , b. Hence, we have, for ϵ ≤ c ′/4,

ϵ ≤ ν, S ≤ c ′/4 and S ≤ d/2,

g(θσ 2) − g(θ{σ 2
− ϵ}) + gS(σ 2) − gS(σ 2

− ϵ) ≥
ϵ

2d
− Asupϵ

2.

From Lemma 6, we can show that with probability Pr > 0, not depending on n, we have supt∈[0,1] Z2(t) ≤ min(c ′/4, d/2).
Hence, we can choose ϵ > 0, not depending on n so that, from (A.2), with probability Pr > 0

1

n
∑K

k=1wk
lim infn→∞

[
infψ∈J;|θσ2−θ0σ

2
0 |≤ϵpℓn(ψ) − pℓn{(θ, σ

2
− ϵ)}

]
> 0. (A.4)

This implies that θ̂pℓσ̂ 2
pℓ does not converge in probability to θ0σ 2

0 in the case where bc < θ0σ
2
0 . Hence, the proof of the

case (i) is concluded. The displays (A.3) and (A.4) also imply the case (iii).
Let us now address the case (ii). Let σ̃ 2 be defined as

σ̃ 2
=

⎧⎨⎩
S if S ∈ [c, d]
c if S ≤ c
d if S ≥ d.

Let θ̃ = (θ0σ 2
0 )/σ̃

2 and observe that by assumption

θ̃ ∈

[
θ0σ

2
0

d
,
θ0σ

2
0

c

]
⊂

[
ad
d
,
bc
c

]
= [a, b].

Then, from (A.1), from the last display of the proof of Theorem 1 in [57] and from similar arguments as before, we have
for ϵ > 0, almost surely, with ψ̃ = (θ̃ , σ̃ 2) ∈ J with θ̃ σ̃ 2

= θ0σ
2
0 ,

1

n
∑K

k=1wk
lim infn→∞ inf

|θσ2−θ̃ σ̃2 |≥ϵ

(θ,σ2)∈J

{
pℓn(ψ) − pℓn(ψ̃)

}
≥ inf

|θσ2−θ̃ σ̃2 |≥ϵ

(θ,σ2)∈J

{
g(θσ 2) − g(θ0σ 2

0 ) + gS(σ 2) − gS(σ̃ 2)
}

≥ inf
|θσ2−θ̃ σ̃2 |≥ϵ

(θ,σ2)∈J

{
g(θσ 2) − g(θ0σ 2

0 )
}
> 0.

This concludes the proof for the case (ii).
Consider now the case (iv) where J = (0,∞)× [c, d]. Let σ̃ and θ̃ be defined as in the proof for the case (ii). From the

offline equation after (2.23) in the proof of Theorem 1 in [57], we have, with the notation and arguments in (A.1),

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j+1 |x(k,a)j
(ψ) −

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j+1 |x(k,a)j
(ψ̃) ≥

n
θ

(
θ0σ

2
0

2d

)
+

1
θ
r4,ψ,ψ̃ , (A.5)

where supθ≤ρ,c≤σ2≤d |r4,ψ,ψ̃ | = o(n) almost surely, where ρ > 0 is a constant depending only on θ0, σ 2
0 , c, d. Also, from

(2.26) in the proof of Theorem 1 in [57], we have

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j+1 |x(k,a)j
(ψ) −

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j+1 |x(k,a)j
(ψ̃) ≥ νn + r5,ψ,ψ̃ , (A.6)

where supθ≥B,c≤σ2≤d |r5,ψ,ψ̃ | = o(n) almost surely, where ν > 0 and B < ∞ can be chosen as functions of θ0, σ 2
0 , c, d only.

Finally, as shown for obtaining (A.2),

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j+1 |x(k,a)j
(ψ) −

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j+1 |x(k,a)j
(ψ̃) = n

{
g(θσ 2) − g(θ0σ 2

0 )
}

+ r6,ψ,ψ̃ , (A.7)

where supρ≤θ≤B,c≤σ2≤d |r6,ψ,ψ̃ | = o(n) almost surely. We have for ϵ > 0 inf
|θσ2−θ0σ

2
0 |≥ϵ g(θσ

2)− g(θ0σ 2
0 ) > 0. Hence, there

exists a constant Ainf > 0, not depending on n, so that, from (A.1) and (A.5)–(A.7)

inf θ∈(0,∞),σ2∈[c,d]
|θσ2−θ̃ σ̃2 |≥ϵ

pℓn(ψ) − pℓn(ψ̃) ≥n

(
K∑

k=1

wk

){
Ainf + gS(σ 2) − gS(σ̃ 2)

}
+ r7,ψ,ψ̃ ,≥ n

(
K∑

k=1

wk

)
Ainf + r7,ψ,ψ̃ ,

where sup0<θ<∞,c≤σ2≤d|r7,ψ,ψ̃ | = o(n) almost surely. This concludes the proof for the case (iv). □

Proof of Theorem 2. Let nk,a = ⌊(n− 1− a− k)/k⌋, R(k,a)
ψ = [σ 2e−θ |x(k,a)i −x(k,a)j |

]0≤i,j≤nk,a+1 and Z (k,a)
= (x(k,a)0 , . . . , x(k,a)nk,a+1)

⊤.
We have for ψ ∈ J , from Lemma 1, by writing Gaussian likelihoods as products of conditional likelihoods, forward and
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backward, and by using the Markovian property of Z (Lemma 1 in [57]),

pcℓn(ψ) =

K∑
k=1

wk

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

{
ℓx(k,a)j+1 |x(k,a)j

(ψ) + ℓx(k,a)j |x(k,a)j+1
(ψ)

}

=

K∑
k=1

wk

k−1∑
a=0

(
ln(|R(k,a)

ψ |) + (Z (k,a))⊤R−1
ψ Z (k,a)

− ln(σ 2) −
1
σ 2 Z(x

(k,a)
0 )2

+ ln(|R(k,a)
ψ |) + (Z (k,a))⊤R−1

ψ Z (k,a)
− ln(σ 2) −

1
σ 2 Z(x

(k,a)
nk,a+1)

2
)

=

K∑
k=1

wk

k−1∑
a=0

⎡⎣⎧⎨⎩2
⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j+1 |x(k,a)j
(ψ)

⎫⎬⎭+ ln(σ 2) +
1
σ 2 Z(x

(k,a)
0 )2 − ln(σ 2) −

1
σ 2 Z(x

(k,a)
nk,a+1)

2

⎤⎦
=2

K∑
k=1

wk

k−1∑
a=0

⌊
n−1−a−k

k ⌋∑
j=0

ℓx(k,a)j+1 |x(k,a)j
(ψ) +

K∑
k=1

wk

k−1∑
a=0

1
σ 2

(
Z(s1+a)2 − Z(s1+a+k(nk,a+1))2

)
.

Hence, we conclude the proof in the case J = [a, b] × [c, d] or J = (0,∞) × [c, d] from (A.5)–(A.7). In the case
J = [a, b] × (0,∞), we can express σ̂ 2(θ ) = argminσ2∈(0,∞) pcℓn(θ, σ 2) explicitly, and conclude using similar techniques
as in [57] and similar arguments as in (A.1). We skip the details. □

Proof of Lemma 2. We have that for 1 ≤ i < j ≤ n and 1 ≤ k < ℓ ≤ n,

cov(W 2
i,j − 1,W 2

k,ℓ − 1) = 2cov(Wi,j,Wk,ℓ)2.

One can show, by computing explicitly the covariances cov(Wi,j,Wk,ℓ), by distinguishing the different cases in (9), and by
considering Taylor expansions, that we have for 1 ≤ i < j ≤ min(n, i + K ) and 1 ≤ k < ℓ ≤ min(n, k + K ),

cov(Wi,j,Wk,ℓ)2 = bi,j,k,ℓ + ri,j,k,ℓ(smax(i,j,k,ℓ) − smin(i,j,k,ℓ)),

where

sup n∈N
i,j,k,ℓ∈{1,...,n}
i+1≤j≤i+K
k+1≤l≤k+K

|k−i|≤K

|ri,j,k,ℓ| = O(1) and ri,j,k,ℓ = 0 if |k − i| > K .

In the multiple sum
n−1∑
i=1

min(n,i+K )∑
j=i+1

min(n,i+K )∑
k=max(1,i−K )

min(n,k+K )∑
ℓ=k+1

(smax(i,j,k,ℓ) − smin(i,j,k,ℓ))

one can see that for any a ∈ {2, . . . , n}, ∆a = sa − sa−1 appears less than 4K 4 times. Hence, this sum is a O
(∑n

a=2∆a
)
.

This concludes the proof. □

Proof of Lemma 3. We have, for n ≥ K + 1,

τ 2n =

⎧⎨⎩2
n

K∑
k=1

K∑
ℓ=1

wkwℓ

⎛⎝ n−k∑
i=1

n−ℓ∑
j=1

bi,i+k,j,j+ℓ

⎞⎠⎫⎬⎭+ o(1).

Let k, ℓ ∈ {1, . . . , K } be fixed. Without loss of generality, assume that ℓ ≤ k. We have, for i ∈ {1, . . . , n − k}
n−ℓ∑
j=1

bi,i+k,j,j+ℓ ≥

i+k−ℓ∑
j=i

bi,i+k,j,j+ℓ =

i+k−ℓ∑
j=i

sj+ℓ − sj
si+k − si

≥
si+ℓ − si
si+k − si

+

i+k−ℓ∑
j=i+1

sj+ℓ − sj+ℓ−1

si+k − si
=

si+k − si
si+k − si

= 1.

Hence
∑n−k

i=1
∑n−ℓ

j=1 bi,i+k,j,j+ℓ ≥ n − k. This concludes the proof. □

Proof of Lemma 4. The lemma follows from Lemma 2, because, with the notation there, each bi,j,k,ℓ is in [0, 1] and, for
any fixed i, there are less than 2K 3 values of (j, k, ℓ) in (10) for which bi,j,k,ℓ is non-zero. □

Proof of Theorem 3. Because of the consistency results in Theorems 1 and 2, it is sufficient to consider the case where
J = [a, b] × [c, d]. Furthermore, we only write the proof of (11), since the proof of (12) is similar.
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Let

ω(ψ) =
∂

∂θ
pℓn(ψ).

From (6), we can write

ω(ψ) =

K∑
k=1

wk

k−1∑
a=0

⌊
n−a−1−k

k ⌋∑
j=0

∂

∂θ
ℓsjk+a+1,s(j+1)k+a+1 (ψ).

From (3.11) in [57] , we can write, with supψ∈[a,b]×[c,d]|ri,ψ | = Op(1) for i ∈ {1, 2, 3},

ω(ψ) =

⎧⎨⎩−

K∑
k=1

wk

k−1∑
a=0

σ 2
0 θ0

σ 2θ2

⌊
n−a−1−k

k ⌋∑
j=0

(
W 2

jk+a+1,(j+1)k+a+1 +

(
⌊
n − a − 1 − k

k
⌋

)
1
θ

)⎫⎬⎭+ r1,ψ (A.8)

=

⎧⎨⎩
K∑

k=1

wk

k−1∑
a=0

⌊
n−a−1−k

k ⌋∑
j=0

(
−σ 2

0 θ0

σ 2θ2
W 2

jk+a+1,(j+1)k+a+1 +
1
θ

)⎫⎬⎭+ r2,ψ

=

{
n∑

i=1

min{K,n−i}∑
k=1

wk

(
−
σ 2
0 θ0

σ 2θ2
W 2

i,i+k +
1
θ

)}
+ r3,ψ .

Now σ̂ 2
∈ [a, b] and by Theorem 1, σ̂ 2

pℓθ̂pℓ
a.s

−→ θ0σ
2
0 and in view of (A.8), we obtain

Op(1) =

n∑
i=1

min{K ,n−i}∑
k=1

wk

(
−σ 2

0 θ0W
2
i,i+k + σ̂ 2

pℓθ̂pℓ

)
and

Op(1) =

n∑
i=1

min{K ,n−i}∑
k=1

wk
{
−σ 2

0 θ0
(
W 2

i,i+k − 1
)}

+

n∑
i=1

min{K ,n−i}∑
k=1

wk(σ̂ 2
pℓθ̂pℓ − σ 2

0 θ0).

Then

√
n

(
K∑

k=1

wk

){
1 + op(1)

} (
σ̂ 2
pℓθ̂pℓ − σ 2

0 θ0

)
=

{
σ 2
0 θ0
√
n

n∑
i=1

min{K,n−i}∑
k=1

wk
(
W 2

i,i+k − 1
)}

+ op(1).

For i ∈ {1, . . . , n} and k ∈ {1, . . . ,min(K , n − i)}, let (W 2
i,i+k − 1) = T(i−1)K+k. Then we can write

√
n

(
K∑

k=1

wk

)(
σ̂ 2
pℓθ̂pℓ − σ 2

0 θ0

)
=
σ 2
0 θ0
√
n

(
n∑

i=1

min{K ,n−i}∑
k=1

wkT(i−1)K+k

)
+ op(1). (A.9)

Since Ti is independent of Tj for |i − j| ≥ K (K + 1) we can apply Theorem 2.1 in [34] for weakly dependent variables and
we can establish a central limit theorem for {(

√
n
∑K

k=1wk)/(τnσ 2
0 θ0)}

(
σ̂ 2
pℓθ̂pℓ − σ 2

0 θ0

)
.

Let us assume
√
n(
∑K

k=1wk)
τnσ

2
0 θ0

(
σ̂ 2
pℓθ̂pℓ − σ 2

0 θ0

)
D↛ N (0, 1).

By Lemmas 3 and 4, we can extract a subsequence n′
→ ∞ so that τ 2K ,n′ → τ 2K ∈ (0,∞) as n′

→ ∞ and so that
√
n(
∑K

k=1wk)
τK ,n′σ 2

0 θ0

(
σ̂ 2
pℓθ̂pℓ − σ 2

0 θ0

)
D↛ N (0, 1). (A.10)

The triangular array (Ti) satisfies the conditions of Theorem 2.1 in [34], thus we obtain

1
√
n′

n′∑
i=1

min{K ,n′
−i}∑

k=1

wkT(i−1)K+k
D

−→ N (0, τ 2K ).

Hence from (A.9) and Slutsky’s lemma we are in contradiction with (A.10). This concludes the proof. □



14 F. Bachoc, M. Bevilacqua and D. Velandia / Journal of Multivariate Analysis 174 (2019) 104534

Proof of Lemma 5. From the proof of Lemma 3, it suffices to show that for any 2 ≤ k ≤ K ,

lim infn→∞

1
n

n−k∑
i=1

n−k∑
j=1

bi,i+k,j,j+k > 1.

We have from (9), since si = i/n for all n ∈ N and i ∈ {1, . . . , n − k}
n−k∑
j=1

bi,i+k,j,j+k ≥ 1 + bi,i+k,i+1,i+k+1 = 1 +
(k − 1)2

k2
.

Hence

1
n

n−k∑
i=1

n−k∑
j=1

bi,i+k,j,j+k ≥ 1 +
(k − 1)2

k2
+ o(1). □

Appendix B. An inconsistency result for variance estimation by weighted pairwise log-likelihood, for general
correlation functions

In this section, we extend the inconsistency results (i) and (iii) of Theorem 1 for the WPMLE, to more general covariance
functions than the exponential ones as in (1). Furthermore, the input space of the Gaussian process under consideration
is [0, 1]d, where the dimension d is allowed to be larger than one. We consider the estimation of a variance parameter,
where the correlation function is known.

We consider a stationary correlation function C : Rd
→ R on Rd, with d ∈ N. We make the following assumptions on

C .

Assumption. The function C is continuous. Let dC (x, x′) =
√
2C(0) − 2C(x − x′). Let N([0, 1]d, dC , ρ) be the minimum

number of balls with radius ρ (w.r.t. the distance dC ), required to cover [0, 1]d. We have∫
∞

0

√
ln{N([0, 1]d, dC , ρ)} dρ < ∞. (B.1)

Furthermore, the Fourier transform Ĉ of C satisfies

∃ P < ∞ so that as ∥w∥ → ∞, Ĉ(w)∥w∥
P

→ ∞. (B.2)

Finally, C(0) = 1 and C(x) < 1 for x ̸= 0.

Many stationary correlation functions satisfy the above assumption. The condition (B.1) holds when C is Hölder
continuous and the condition (B.2) holds when C belongs to the Matérn class of covariance functions [45]. We refer
to the discussion after Condition A.1 in [32] for more insight on the above assumption.

We now consider a zero-mean Gaussian process Y on [0, 1]d with covariance function σ 2
0 C with an unknown fixed

σ 2
0 ∈ (0,∞). We assume that C is known. Consider a triangular array of weights {w

(n)
i,j }n∈N,1≤i<j≤n in [0,∞) and let

w
(n)
i,j = wi,j. Assume that for all n ∈ N, not all wi,j are zero. Consider also a sequence (xi)i∈N of observation points on

[0, 1]d. Then, the pairwise log likelihood is

ℓC,xi,xj (σ
2) = 2 ln(σ 2) + ln(1 − C(xi − xj)2) +

1
σ 2 Y (xi)

2
+

{Y (xj) − C(xi − xj)Y (xi)}2

σ 2(1 − C(xi − xj)2)

and the weighted pairwise log likelihood criterion is

pℓC,n(σ 2) =

n−1∑
i=1

n∑
j=i+1

wi,jℓC,xi,xj (σ
2).

We can then define the WPMLE σ̂ 2
C,pℓ of σ

2
0 as the solution of

pℓC,n(σ̂ 2
C,pℓ) = min

σ2∈(0,∞)
pℓC,n(σ 2).

The next theorem gives the general inconsistency result for the WPMLE. It is proved at the end of Appendix B.

Theorem 4. Assume that the above assumption holds. Then σ̂ 2
C,pℓ does not converge to σ 2

0 in probability as n → ∞.

Because of its generality, Theorem 4 reinforces the warning given in (i) and (iii) of Theorem 1 against the WPMLE under
fixed-domain asymptotics. Indeed, the estimation of a single variance parameter σ 2

0 , with a known correlation function
C , is arguably one of the most favorable one for covariance parameter estimation. For instance it is well-known that the
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MLE of σ 2
0 is n1/2-consistent in the setting of Theorem 4 (provided the matrix [C(xi − xj)]i,j∈{1,...,n} is invertible for all n).

Thus, it would not be a surprise if the WPMLE was shown to be inconsistent under fixed-domain asymptotics, in more
general cases than in Theorem 4, where several covariance parameters have to be estimated, for instance a variance and
d spatial correlation lengths [37].

In the next theorem, we show that, for some specific structures of the weights and of the observation points, the
WPMLE of σ 2

0 converges to a non-constant random variable (that is given explicitly in the proof of this theorem).

Theorem 5. Assume that the above assumption holds. Let g : [−1, 1]d → R+ be a continuous non-zero function satisfying
g(x) = g(−x) for x ∈ [0, 1]d. Assume that wi,j = g(xj − xi) for n ∈ N, i, j ∈ {1, . . . , n}. Assume also that there exists δ ∈ (0, 1]
and a ∈ (0,∞) so that 1− C(t) = a∥t∥δ + o(∥t∥δ) as t → 0. Let the observation points (xi)i∈N be random, i.i.d. with bounded
probability distribution function f on [0, 1]d, with (xi)i∈N independent of Y . Then there exists a non-negative random variable
σ̂ 2

∞
with non-zero variance so that E(σ̂ 2

∞
) = σ 2

0 and so that, almost-surely, σ̂ 2
C,pℓ →n→∞ σ̂ 2

∞
.

We remark that the WPMLE of σ 2
0 is thus an example of an estimator that is consistent under increasing-domain

asymptotics and that is inconsistent and converges to a non-degenerate distribution under fixed-domain asymptotics.
This type of behavior is also analyzed in [60].

Proof of Theorem 4. We can show that

pℓC,n = ln(σ 2)

⎛⎝2
n−1∑
i=1

n∑
j=i+1

wi,j

⎞⎠+

n−1∑
i=1

n∑
j=i+1

wi,j ln(1 − C(xj − xj)2)

+
1
σ 2

n−1∑
i=1

n∑
j=i+1

wi,j
Y (xi)2 + Y (xj)2 − 2C(xj − xj)Y (xi)Y (xj)

1 − C(xj − xj)2
.

Hence, it follows that

σ̂ 2
C,pℓ =

1

2
∑n−1

i=1
∑n

j=i+1wi,j

n−1∑
i=1

n∑
j=i+1

wi,j
Y (xi)2 + Y (xj)2 − 2C(xj − xj)Y (xi)Y (xj)

1 − C(xj − xj)2
(B.3)

=
1∑n−1

i=1
∑n

j=i+1wi,j

n−1∑
i=1

n∑
j=i+1

wi,j

{
Y (xi) − Y (xj)

}2
2(1 − C(xi − xj)2)

+
1∑n−1

i=1
∑n

j=i+1wi,j

n−1∑
i=1

n∑
j=i+1

wi,j
2 − 2C(xj − xj)

2(1 − C(xj − xj)2)
Y (xi)Y (xj).

Let r(t) = 1 − C(t). Then r(t) = o(1) as t → 0. Hence

∆ := inft∈[−1,1]d
2 − 2C(t)

2(1 − C(t)2)
= inft∈[−1,1]d

2r(t)
2(2r(t) − r(t)2)

> 0, (B.4)

where we have used the continuity of C and the fact that C(t) < 1 for t ∈ [−1, 1]d\{0}. Hence we have, if inft∈[0,1]dY (t) ≥

0,

σ̂ 2
C,pℓ ≥ ∆inft∈[0,1]dY (t)

2. (B.5)

From Lemma A.3 in [32], we have

inft∈[0,1]Y (t)2 ≥
2σ 2

0

∆

with probability Pr > 0 where Pr does not depend on n. Hence, from (B.5), σ̂ 2
C,pℓ does not converge to σ 2

0 in probability. □

Proof of Theorem 5. From (B.3), we have

σ̂ 2
C,pℓ =

1∑n
i,j=1 g(xj − xi)

n∑
i,j=1

g(xj − xi)

{
Y (xi) − Y (xj)

}2
2(1 − C(xi − xj)2)

+
1∑n

i,j=1 g(xj − xi)

n∑
i,j=1

g(xj − xi)
2 − 2C(xi − xj)

2(1 − C(xi − xj)2)
Y (xi)Y (xj)

=
1

1
n2
∑n

i,j=1 g(xj − xi)
1
n2

n∑
i,j=1

F (xi, xj) +
1

1
n2
∑n

i,j=1 g(xj − xi)
1
n2

n∑
i,j=1

G(xi, xj),
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by defining F (xi, xj) and G(xi, xj) appropriately. In the above display, F and G are random functions from [0, 1]d×[0, 1]d to
R. From (B.4), and since Y has continuous realizations almost surely [49] and g is continuous, G is a bounded continuous
function almost surely. Also, F is continuous on [−1, 1]d\{0} almost surely. From [49], for α < δ, almost surely, there
exists A < ∞ for which, for any x, y ∈ [0, 1]d, |Y (x) − Y (y)| ≤ A∥x − y∥

α/2. Hence, almost surely, F (x, y) ≤ B∥x − y∥
α−δ

with B < ∞. The function (x, y) → ∥x − y∥
α−δ has a finite integral on [−1, 1]d for α close enough to δ. Hence, almost

surely,∫
[0,1]d

∫
[0,1]d

F (x, y)f (x)f (y)dxdy < ∞.

Hence, for almost all the realization functions of Y (with respect to the distribution of Y ), we can use Theorem A in
Section 5.4 of [40] to obtain that

σ̂ 2
C,pℓ →n→∞

1∫
[0,1]d

∫
[0,1]d g(y − x)f (x)f (y)dxdy

∫
[0,1]d

∫
[0,1]d

g(y − x)
{Y (x) − Y (y)}2

2(1 − C(x − y)2)
f (x)f (y)dxdy

+
1∫

[0,1]d
∫

[0,1]d g(y − x)f (x)f (y)dxdy

∫
[0,1]d

∫
[0,1]d

g(y − x)
2 − 2C(x − y)

2(1 − C(x − y)2)
Y (x)Y (y)f (x)f (y)dxdy.

The above limit is a random variable that we write σ̂ 2
∞

and that is almost surely finite (the integrals are defined in the
L2 sense, see [45]). One can show that the mean value of σ̂ 2

∞
is σ 2

0 . Finally, the variance of σ̂ 2
∞

is non-zero because of
Theorem 4. □
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