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Abstract. Insoluble particles in ice cores record signatures of
past climate parameters like vegetation dynamics, volcanic
activity, and aridity. For some of them, the analytical detec-
tion relies on intensive bench microscopy investigation and
requires dedicated sample preparation steps. Both are labori-
ous, require in-depth knowledge, and often restrict sampling
strategies. To help overcome these limitations, we present a
framework based on flow imaging microscopy coupled to a
deep neural network for autonomous image classification of
ice core particles. We train the network to classify seven com-
monly found classes, namely mineral dust, felsic and mafic
(basaltic) volcanic ash grains (tephra), three species of pollen
(Corylus avellana, Quercus robur, Quercus suber), and con-
tamination particles that may be introduced onto the ice core

surface during core handling operations. The trained net-
work achieves 96.8 % classification accuracy at test time. We
present the system’s potential and its limitations with respect
to the detection of mineral dust, pollen grains, and tephra
shards, using both controlled materials and real ice core sam-
ples. The methodology requires little sample material, is non-
destructive, fully reproducible, and does not require any sam-
ple preparation procedures. The presented framework can
bolster research in the field by cutting down processing time,
supporting human-operated microscopy, and further unlock-
ing the paleoclimate potential of ice core records by provid-
ing the opportunity to identify an array of ice core particles.
Suggestions for an improved system to be deployed within a
continuous flow analysis workflow are also presented.
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1 Introduction

Ice cores provide some of the most valuable continu-
ous records of the Earth’s past climate. While the oldest
Antarctic and Greenland cores date back, respectively, to
800 000 and 125 000 years ago and register variability in cli-
mate parameters at hemispheric scales (North Greenland Ice
Core Project members, 2004; EPICA community members,
2004), ice stored in glaciers and small ice caps located at
lower latitudes typically contains fingerprints of local to re-
gional climate changes on centennial to millennial timescales
(Schwikowski, 2004). The analytical detection of impurities
contained in the ice matrix allows the production of past cli-
mate records at various spatial and temporal scales. Along-
side gas bubbles and soluble chemical compounds, the ice
matrix stores insoluble particulate matter, hereafter referred
to as “particles”. Among the types of particles is mineral
dust, the glass component of volcanic ash, pollen grains, and
other biological matter, as well as microfossils sourced from
oceans or lakes, such as diatoms and foraminifera. Each par-
ticle type carries its own climate significance, and its con-
centration depends on factors such as the source strength and
emission mechanisms, the relative distance between core site
and source region, and parameters controlling atmospheric
transport and deposition.

By far the most abundant particle type in ice cores is min-
eral dust particles that are sourced from continental surfaces
and are transported and dry- or wet-deposited onto ice sheets
and glaciers (Legrand and Mayewski, 1997). The detection
of dust is fundamental for investigating the extent of arid ar-
eas in the past, the paleo–atmospheric circulation, and to as-
sess the role of mineral dust aerosol in Quaternary climate
changes (Petit et al., 1999; Lambert et al., 2008). Thanks to
its preservation, dust records can be used to synchronize deep
ice cores in the absence of other proxies, thus supporting ice
core dating (e.g., Bohleber et al., 2018; Eichler et al., 2000;
Dome Fuji Ice Core Project Members, 2017). Dust measure-
ments are routinely carried out while melting ice cores in
continuous flow analysis setups (CFA; Bigler et al., 2011)
using optical systems such as the laser-based Klotz Abakus
sensor. As the abundance of dust particles is orders of magni-
tude higher than other insoluble particles, Abakus measure-
ments are commonly associated with dust, despite the instru-
ment actually being insensitive to the type of particle enter-
ing the detector. Additionally, Abakus values require an ac-
curate calibration with an independent technique, typically
the Coulter counter (CC), which is an electrical-based ana-
lyzer that operates in discrete mode and cannot be run on
CFA setups (Petit et al., 1981). The mismatch and calibra-
tion between the Abakus and the CC impurity detection is
an active research topic within the ice core community (Si-
monsen et al., 2018). The higher accuracy of the CC comes
at the expense of its discrete mode of use; moreover, it is also
particle insensitive.

Volcanic ash deposits in ice cores can contain volcanic
minerals, rock fragments, and volcanic glass shards. Across
the spectrum of volcanic material, in this work we target
cryptotephras and glass shards from individual eruptions that
can form stratigraphically distinct deposits in ice cores and
in marine and terrestrial sediments that are invisible to the
naked eye (e.g., Lowe and Hunt, 2001; Turney et al., 1997).
The identification of volcanic glass (hereafter referred to as
“tephra”) provides direct evidence of past volcanic activity
(Abbott and Davies, 2012; Sigl et al., 2015) and provides a
crucial tool to date and synchronize paleorecords (ice, ma-
rine, and lake) and therefore to establish absolute and syn-
chronized chronologies (Lowe, 2011). The analytical detec-
tion of tephra layers in ice cores is typically carried out ei-
ther by using different methods or in combination. Potential
volcanic layers can be identified by electrical conductivity
or sulfate concentration measurements during CFA analyses
(e.g., Wolff et al., 1995) at high resolution. Not all tephra
layers, particularly cryptotephras, however, correspond to
acidity or sulfate peaks, and vice versa, given the differ-
ent emission, transport, and deposition of gaseous species
and particulate volcanic material (Legrand and Mayewski,
1997; Davies et al., 2010). For example, in the glacial period,
tephra-rich deposits consistently lack coeval chemostrati-
graphic peaks, partially due to signal neutralization by dust
(Bourne et al., 2015). Manual discrete subsampling of such
selected intervals of interest is also carried out to maximize
tephra layer identification. During this method, ice samples
are individually processed and manually inspected using op-
tical bench microscopy (e.g., Bourne et al., 2015; Cook et al.,
2018). If the presence of cryptotephra is confirmed, then the
glass shards are individually counted. This makes the iden-
tification of tephra extremely time-consuming and in some
cases serendipitous. While attempts have been made to au-
tomate particle detection (e.g., Van der Bilt et al., 2021, in
sediment records), the methodology for investigating tephra
in ice cores typically requires a huge time commitment by
tephra experts.

Pollen analyses from snow and ice records provide in-
formation on past vegetation and atmospheric circulation
changes (Bourgeois, 2000). Over relatively short timescales,
pollen records with springtime maxima associated with vege-
tation blooms can also be used as a dating method (Nakazawa
et al., 2004; Festi et al., 2021). Like tephra, pollen analyses
need several and laborious preprocessing steps in which dis-
crete ice samples are cut, melted, and pre-concentrated (e.g.,
Festi et al., 2015, and references therein). Finally, the pres-
ence and the number of pollen grains are manually evaluated
by palynologists via optical bench microscopy. In summary,
the extraction and detection of climate-relevant ice core par-
ticles is extremely laborious.

Over the last 10 years, neural networks and in particu-
lar convolutional neural networks (CNNs) have become the
state-of-the-art methods in digital image classification tasks.
Since the proposed architecture of Krizhevsky et al. (2012),
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the field experienced rapid growth that spawned a major
breakthrough and optimization of a number of aspects, in-
cluding increasing model depth (Simonyan and Zisserman,
2014), understanding the dynamics of internal layers (Zeiler
and Fergus, 2014), and facilitating the gradient flow (He
et al., 2016). In the ImageNet classification challenge (Deng
et al., 2009), CNN-based architectures have surpassed human
accuracy (He et al., 2015). Despite the advances of such tech-
niques, their application to environmental studies has lagged
behind to very few and recent examples (Kerr et al., 2020;
Viertel and König, 2022).

In this work we investigate the extent to which au-
tonomous and simultaneous detection and classification of
ice core particles can be achieved with deep neural networks.
In our setup, to generate the ice particle imagery, we rely
on a flow imaging microscopy instrument (the FlowCam;
Fig. A1) able to produce images of particles captured within
a liquid stream continuously pumped through the instrument.
We develop a mixed convolutional and fully connected neu-
ral network to classify the imagery into six classes of par-
ticles, namely mineral dust, tephra (basaltic and felsic), and
three pollen grains potentially present in alpine ice records,
i.e., Corylus avellana, Quercus robur, and Quercus suber.
An additional seventh class of contamination/blurry particles
is included as a control channel for the model to be able to
identify those particles that do not provide climate informa-
tion.

2 Methods

2.1 The FlowCam: settings and image and feature
extraction

The FlowCam instrument (Yokogawa/Fluid Imaging Tech-
nologies; VS-IV model) located at the Earth Surface Sedi-
ment Laboratory (EARTHLAB; University of Bergen, Nor-
way) is used to capture images of particles in ultrapure wa-
ter or ice meltwater samples. The FlowCam is a benchtop
flow imaging cytometer equipped with a visible range op-
tical camera. The liquid sample is injected into the system
by manual pipetting, and it is drawn by a syringe pump to a
quartz flow cell. Alternatively, connection tubing can allow
sampling from discrete sample vials or from a continuous
flow system (Appendix A). The flow cell used in our setup
(depth = 80 µm; width= 570 µm) allows the flow of parti-
cles up to 80 µm in diameter in the maximum dimension. A
1.0 mL volume syringe pump is set to operate at a flow rate
of 0.02 mL min−1. While passing through the flow cell, the
sample is imaged by a camera equipped with a 20× magnifi-
cation objective. The camera flash duration is set to 65 µs and
is operated at the maximum 22 frames per second. With the
aforementioned settings, the imaged sample volume, i.e., the
percentage of volume imaged by the camera, is 41.8 %. This
parameter is determined by the combination of camera frame

rate, pump speed, and flow cell geometry. The system optics
determine a calibration factor of 0.2752 µm per pixel in the
resulting monochrome 1280× 960 pixels 8 bit TIFF images.

The mechanics of particle image creation is performed by
the native FlowCam software (VisualSpreadsheet v3.4). All
camera image frames captured during analyses are compared
to a calibration image acquired prior to the analysis (Fig. A1).
In every image, the pixels are considered to be signal (i.e., set
to 1) if their intensities are higher or lower than their inten-
sities in the calibration image by a threshold value. If the
pixel intensity differences do not exceed the threshold, then
they are considered to be background and set to 0. Once the
signal–background binary image is created, the single parti-
cle images are extracted by segmenting out the pixels flagged
as signal (Fig. A1). Each created image thus represents one
particle. The threshold value, set to 18, and the camera focus
are optimized by acquiring images of spherical polystyrene
25 µm beads and by minimizing the standard deviation of the
resulting size distribution (Fig. S1 in the Supplement). For
each acquired particle image, the FlowCam software calcu-
lates a number of numerical features, hereafter also referred
to as “metadata”, mostly reflecting the geometrical proper-
ties of the particles. These numerical features are calculated
by classic computer vision algorithms. In this work we use
n= 34 metadata (Appendix B).

2.2 Training dataset

The classification model is based on a supervised learning
approach. The training dataset consists of images and related
metadata for seven classes of particles, i.e., mineral dust,
tephra (basaltic and felsic), three pollen species of Corylus
avellana, Quercus robur, and Quercus suber, and an addi-
tional class that consists of contamination particles that are
found on the external surface of ice cores (Table 1; Figs. C1–
C7). Each item in the training dataset consists of a particle
image and the corresponding array of 34 numerical metadata.
The training dataset of each class (except for the contamina-
tion class) is created by preparing and measuring samples
that contain only one type of particle, so that each acquisi-
tion yields a purely one-class batch. The samples are cre-
ated by preparing solutions in ultrapure water, and multiple
acquisitions are repeated until several thousand images are
collected. Every image in the training dataset is visually in-
spected and validated by the human eye.

– The training dataset of dust particles is created by mea-
suring the water solutions of FD066 (Linsinger et al.,
2019; Table 1; Fig. C1), an aluminum oxide powder
containing particles with a mean size distribution of
2.5 µm and rarely exceeding 6 µm (Table 2). Such a dust
training set is therefore suited to mimic dust found in in-
land Antarctic and Greenland ice cores, typically below
4 µm (e.g., Delmonte et al., 2002; Ruth et al., 2003).
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Table 1. Training dataset.

Class Sample type Sample origin Approximate No. of
size range training items

(1) Dust Conundrum powder (Al2O3) Standard Reference Material (ERM-FD066) < 10 µm 8000
(2) Felsic tephra Campanian Ignimbrite Southeastern Romania (43–44◦ N, 23–24◦ E) (8, 80) µm 7125
(3) Basaltic tephra Grímsvötn (Iceland) Kirkjubæjarklaustur (Iceland; 63.78◦ N, 18.09◦W) (8, 80) µm 6271
(4) Pollen C. avellana Pollen Austria (47◦16′14.31′′ N, 11◦22′29.22′′W) (10, 40) µm 47 223
(5) Pollen Q. robur Pollen Portugal (41.476–41.155◦ N, 8.701–8.563◦W) (10, 40) µm 35 276
(6) Pollen Q. suber Pollen Portugal (41.155–41.151◦ N, 8.565–8.660◦W) (10, 40) µm 31 745
(7) Contamination/blurry Outer-core ice samples GRIP ice core external layer (5, 80) µm 11 439

– Two tephra classes, felsic and basaltic, are included
in the training dataset, primarily because of their de-
tectable color differences that result from a differ-
ent geochemistry. Felsic (silica-rich) tephras are typi-
cally lighter in color, while basaltic ash is darker. The
felsic tephra training dataset consists of Campanian
Ignimbrite volcanic ash from the 39.3± 0.1 ka Phle-
graean Fields eruption (Fedele et al., 2003; Table 1;
Fig. C2). The phonolitic–trachytic (∼ 60 wt % SiO2)
ash was sampled ∼ 1000 km from its source (Veres
et al., 2013). Our basaltic tephra consists of volcanic ash
from the Icelandic Grímsvötn 2011 eruption (Table 1;
Fig. C3). Ash samples were collected on 22 May 2011
in the town of Kirkjubæjarklaustur, about 70 km south-
west of the Grímsvötn caldera. After collection, sam-
ples were dried and stored in plastic beakers. Ashes of
both types were dry-sieved at 63 µm to limit the maxi-
mum dimension and fit the max. 80 µm size constraint
(min. ∼ 8 µm) of the flow cell. This range (8–80 µm) is
consistent with the size that is typically considered dur-
ing cryptotephra manual counting by bench microscopy
(Gow and Meese, 2007; Narcisi et al., 2012; Abbott and
Davies, 2012; Plunkett et al., 2020). It is important to
note that, for both tephra classes, only those tephra im-
ages that could be clearly validated by an experienced
tephra analyst were included in the training dataset. This
resulted in discarding a very large fraction of blurry im-
agery. This decision was adopted to drive the model to
yield clearer tephra predictions and reduce ambiguous
predictions (i.e., for tephra, purity is prioritized over ef-
ficiency).

– Three pollen species are included in the training dataset,
i.e., C. avellana, Q. robur, and Q. suber (Table 1;
Figs. C4, C5, and C6). C. avellana branches were col-
lected near Innsbruck (Austria) in February 2019 from
multiple trees within a radius of 500 m. The inflores-
cence was matured in the lab, and the samples were
prepared by mixing together pollen from different trees.
Both Quercus species were collected in Portugal and
treated similarly. Occasionally, if pollen grains flow at
the boundary of the camera field of view, they result in
being partially captured. We decided to keep fractional

pollen images to increase the sensitivity of the model
to correctly classify pollen, even when grains are only
partially visible.

– The seventh class (contamination/blurry) consists of
two types of particles. The first includes contamination
particles from the GRIP ice core external surface (Ta-
ble 1; Fig. C7). The ice core surface typically contains
particles from the core drilling, cutting, and handling
operations such as paper wrap, glove clothing fibers,
and graphite from the pencil used to mark the core sec-
tions. The second type of particle added to this class in-
cludes relatively large and poor-quality images, i.e., out
of focus. The particles collected for this class are ob-
tained from GRIP sample measurements followed by
offline manual validation and labeling. While blurry im-
ages are an intrinsic limitation of this methodology, the
contamination/blurry class serves the purpose of an im-
portant controlled channel for the model to be able to
identify particles that do not carry climate significance.

2.3 Model

2.3.1 Hybrid deep neural network

The developed model is a hybrid network that supports
mixed data inputs (Fig. 1). It is composed of two branches,
a convolutional neural network (CNN), and a multilayer per-
ceptron (MLP), fed, respectively, by particle images and the
corresponding 34-dimensional (34-d) numerical feature vec-
tors (metadata). The CNN consists of ResNet-18 architec-
ture (He et al., 2016). This network is composed of multiple
convolution layers that progressively increase the number of
filters while decreasing the feature map size. Batch normal-
ization (BN) layers are placed right after each convolution
layer and before ReLU (rectified linear unit) activations. The
network ends with an average pooling layer and a final FC
(fully connected) layer that compresses the image into a 64-
d embedding. This vector is concatenated to the output of the
MLP, formed by two series of FC-BN-ReLU dropout lay-
ers followed by a final FC layer that produces a 32-d rep-
resentation. Following the concatenation of the two network
branches, a first FC-BN-ReLU stack is placed before the final
FC layer that precedes a sigmoid activation.
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Figure 1. Model architecture. The top branch of the network is a ResNet-18 CNN (He et al., 2016). BN, ReLU layers, and skip connections
are omitted for clarity. The bottom branch operates on the numerical features and consists of three-layer multilayer perceptron. The separate
outputs of the two branches are concatenated into a final classification branch. Indicated in parentheses are the input and output shapes of
some layers along the network.

2.3.2 Data preprocessing and augmentation

All images are reshaped by linear interpolation to 128×
128 pixels. The downside of reshaping compared to zero-
padding (i.e., increasing the image size by adding zeros to the
borders) is that warping effects are introduced in images with
large height-to-width differences and the fact that the size in-
formation is lost. However, zero-padding to the largest im-
age size would largely increase the computational complex-
ity. We also argue that the size information is retained by the
model in the metadata branch that includes multiple features
related to the geometry and the size of the particles. A per-
image normalization to zero mean and unit variance is used
to preprocess the images. Data augmentation during training
consists of random rotations (p = 0.5), as either horizontal,
vertical, or both horizontal and vertical flips. All metadata are
also normalized by scaling to zero mean and unit variance.

2.3.3 Model training, validation, and test

The data are split into three separate datasets, namely train-
ing, validation, and test. Both the validation and test datasets
consist of a random subset of 500 items per class, for a to-
tal of 3500 items. A transfer learning approach is adopted
for the convolutional branch of the network, as the CNN pre-
trained on the ImageNet dataset is found to train faster. The
whole network is trained on mini batches of 512 items us-

ing a binary cross-entropy loss. The training dataset size of
each class is indicated in Table 1. Since the training dataset
is unbalanced, a weighted loss is implemented by enforcing
a different weight w for each class c as follows (Eq. 1):

wc =

max
c

size(c)

size(c)
,c ∈ classes. (1)

Underfitting and overfitting is checked after every epoch (a
cycle of training the network) by monitoring the loss and the
accuracy of the validation dataset. Adaptive AdamW is used
as optimizer (Loshchilov and Hutter, 2017), with a learning
rate of 10−4, betas= (0.9, 0.999), a weight decay of 0.01,
and a dedicated scheduler that imposes a learning rate decay
of 0.1 every 5 epochs. The best hyperparameters (dropout
probabilities and number and dimensionality of FC layers)
are found by random search by maximizing the accuracy on
the validation dataset. The final best model is evaluated on
the test dataset.

The model converges to an average 96.8 % accuracy across
all classes in 15 epochs (Fig. 2). Dust and C. avellana im-
ages are classified with very high accuracy. Slightly lower
accuracy is found among the two tephra classes, with on av-
erage 1 % particles classified as the wrong tephra class and
some 1 %–2 % misclassified as contamination. The Quer-
cus species are identified with an accuracy of ∼ 90 %–95 %,
with the remaining fraction being misclassified mostly as the
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Figure 2. (a) Model loss (dashed) and accuracy (solid) evaluated during training (black) and validation (gray). (b) Confusion matrix of the
best model evaluated on the test dataset. The accuracy across all classes is 96.8 %. Most misclassifications occur within the two Quercus
classes.

wrong Quercus. No misclassification is found between the
three pollen types and all other classes.

3 Results and discussion

The following discussion is divided into three sections. In
Sect. 3.1, we investigate the FlowCam’s ability to correctly
detect dust, with particular focus on the reconstruction of the
size distribution and the mass concentrations, followed by the
comparison with the Coulter counter on a number of alpine
ice core samples. In Sect.3.2, we discuss pollen and the repre-
sentativeness of their training datasets. In Sect. 3.3, the model
is deployed on Greenland ice core samples containing known
volcanic ash horizons.

3.1 Dust

3.1.1 Standard Reference Material: size
reconstruction, limits of detection (LOD), and
mass concentrations

The certified reference material ERM-FD066 aluminum ox-
ide powder is used to evaluate the performance of the system
as a dust detector. We measure a solution containing FD066
powder, run the model on the acquired images and metadata,
and evaluate the area-based diameter distribution (ABD; Ap-
pendix B). All particles are classified as dust by the model.
The number-weighted ABD distribution percentiles are con-
sistent within 1σ to the certified values (Table 2; Fig. S2).

The mass concentration of a sample can be calculated by
summing the particles’ ABD-based volumes, dividing by the
imaged volume of the sample, and multiplying by the den-

sity. The aluminum oxide density is 3.96 g cm−3. An alterna-
tive metric to the ABD is the equivalent spherical diameters
(ESDs; Appendix B), a measure of an object size based on its
orientation. However, we find that ESD volume quantifica-
tions are not consistent with the expected volume distribution
of FD066 samples (not shown), in agreement with previous
studies that found that ESD tends to overestimate volumes of
particles with extended parts and appendages (Karnan et al.,
2017; Kydd et al., 2018). Our results show that the ABD met-
ric can therefore be considered appropriate for reconstructing
the size of dust particles with a distribution similar to that of
the FD066 material and of spheres (Fig. S1).

Given the low dust concentrations in ice core records, it is
crucial to investigate the blank levels of the analytical sys-
tem and the impurity content of the used glassware. We de-
fine “system blank” as the instrumental response to ultrapure
water (UPW; 18.2 M� cm−1) directly injected into the sys-
tem. The system blanks can be thought of as the blank level
of a CFA system, in which no discrete vials are used, and
the sample stream directly feeds the FlowCam from the melt
head (although a tubing connection would be needed). We
define “procedural blanks” as the instrumental response to
UPW stored in sterile, ultra-clear polypropylene VWR cen-
trifuge tubes (model 21008-216) prewashed five times with
UPW. No acids are used. A set of n= 91 system blanks
and n= 63 procedural blanks are investigated (Fig. 3). The
model classifies the totality of particles in both the system
and procedural blanks as dust, with diameters rarely exceed-
ing 3 µm (Fig. 3). The limits of detection (LOD) are calcu-
lated as the median plus 3 standard deviations. The mass
concentration and number concentration LOD of the sys-
tem blanks are, respectively, 6 ppb (parts per billion) and
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Table 2. Comparison between the FD066 ABD size distributions certified by scanning electron microscopy (SEM; Linsinger et al., 2019)
and calculated using the FlowCam (this study).

FD066 ABD size ABD (µm, ±1σ ) certified by ABD (µm) reconstructed
distribution percentiles SEM (Linsinger et al., 2019) by FlowCam (this study)

x5,0 1.07± 0.23 1.14
x10,0 1.28± 0.24 1.06
x25,0 1.71± 0.28 2.07
x50,0 2.4± 0.4 2.5
x75,0 3.3± 0.4 3.3
x90,0 4.4± 0.4 4.5
x95,0 5.1± 0.4 5.1

Figure 3. Analysis of n= 91 system blanks (black; a, b, and c) and n= 63 procedural blanks (red; d, e, and f). Panels (a) and (d) show the
median mass concentrations of 1.0± 1.6 ppb (parts per billion; 1σ ) and 2.4± 2.8 ppb (1σ ) result in a 3σ LOD of 6 ppb for system blanks and
11 ppb for procedural blanks, respectively. Panels (b) and (e) show the number concentration distributions and respective LOD. Panels (c)
and (f) indicate the size distributions of blank particles in system (c; N = 2864) and procedural (f; N = 3945) blanks, rarely exceeding 3 µm.
All particles are classified as dust by the model. The mass concentrations are calculated assuming a density of 2.5 g cm−3.

1200 no. mL−1 (no. mL−1 is the number or particles per unit
of sample volume). The mass concentration and number con-
centration LOD of the procedural blanks are, respectively,
11 ppb and 3400 no. mL−1. In comparison, the LOD of the
CC is reported as 2 ppb (Ruth et al., 2008). The lowest dust
concentrations in ice records are found in Antarctica dur-
ing interglacial periods, with levels of about 10 ppb over the
plateau (Lambert et al., 2008) and a few ppb towards high ac-
cumulation coastal sites (Vallelonga et al., 2004). The Flow-
Cam LOD thus allows quantification of dust in all sites glob-
ally, except for coastal Antarctic interglacial records. It is
likely possible to further lower the instrument LOD by op-
erating the FlowCam inside a clean room.

We next evaluate the quantification of dust mass concen-
trations, by comparing the FlowCam to the Coulter counter.
Discrete dust samples for FlowCam analyses are prepared
by diluting a known mass of FD066 material (weighted on

a 10−6 g accuracy scale) in ultrapure water and subsequent
dilutions using VWR centrifuge tubes. The concentration of
the final samples ranged from 44 ppb to 14 ppm (parts per
million; Fig. 4). All acquired particle images are classified as
dust by the model. The ABD-based volumes are converted to
mass using the FD066 density of 3.96 g cm−3. Similarly pre-
pared samples are measured by a Coulter counter (CC), at the
University of Milano-Bicocca, by adopting the same analyt-
ical steps as described in (Baccolo et al., 2021). The LOD of
the CC, calculated as 3 standard deviations above the aver-
age of n= 7 UPW samples, is 10 ppb. For both the Flow-
Cam and CC experiments, the blank levels are subtracted
from the concentration values of the samples. The FlowCam
mass concentrations are consistent with the expected values,
and a good linear agreement is found across the investigated
range (Fig. 4), spanning from the low Antarctic to high mid-
latitude glacier dust levels. The residual distribution (mean
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Figure 4. Comparison between nominal and measured concentra-
tions of FD066 dust samples using the FlowCam and the Coulter
counter. An orthogonal distance regression on the FlowCam data
(black line with 3σ confidence interval in gray) shows good lin-
earity over 3 orders of magnitude. The red line refers to the linear
fit on the CC data. The y error bars reflect 1 standard deviation of
multiple repetitions of the same sample. All x errors are estimated
as 10 % of the FD066 prepared concentrations and account for the
uncertainties in the dilutions and plastic adsorption effects. Both in-
sets refer to the FlowCam measurements. The top inset shows the
relative standard deviation (RSD) distribution, and the bottom in-
set shows the distribution of the residuals, defined as the difference
between the expected and measured concentrations. The top bars
indicate the approximate ranges of dust concentration in polar and
mid-latitude records.

of 0.7 %; 1σ = 14 %) suggests an accurate combination of
camera focus and particle volume estimation and no system-
atic uncertainty in the volume quantification. The precision is
evaluated by multiple repetitions of the same samples (typi-
cally 3 to 5, shown as the error bars on the points and in the
relative standard deviation (RSD) distribution) and averages
19 % (1σ = 11 %). The CC measurements also show good
linearity (q = 0.001± 0.002; m= 1.05± 0.05). This experi-
ment shows that both instruments yield accurate size and vol-
ume reconstructions for the irregularly shaped FD066 parti-
cles.

Figure 5. Mass concentration cumulative distribution function
(CDF) ratios between the CC and the FlowCam as a function of a
size cutoff. The best agreement is found at a cutoff value of 10 µm.
If larger particles are included in the quantification of the concentra-
tion, then the FlowCam concentrations are consistently lower than
the CC.

3.1.2 Ice core dust mass concentrations

The FlowCam and the CC mass concentration reconstruc-
tions are compared by analyzing n= 24 ice samples from
the Quelccaya Ice Cap (Peru; Reis et al., 2022). Since the CC
is particle insensitive for this comparison, the classifier cou-
pled to the FlowCam is switched off. Two aliquots for each
sample are measured by CC (Milan, Italy) and by FlowCam
(Bergen, Norway). The CC is operated with a 2–60 µm cap-
illary to accommodate the large particles common in alpine
records. Each sample quantification results from the average
of three measurements. In the calculations of the mass con-
centrations, a density of 2.5 g cm−3 is assumed.

The samples exhibit a very large size distribution, with
particle sizes extending to 60 µm and a volume-weighted size
distribution centered between 10 and 20 µm. The dust con-
centrations (we here refer to the total insoluble content as
dust for simplicity) range from 1 to 15 ppm and have a me-
dian of 2 ppm. The comparison of the two instruments across
the batch of 24 samples reveals that the FlowCam mass
concentrations are systematically lower than those measured
by CC. In particular, the cumulative distribution function
of the mass concentration, CDF(x)=

∫ x
0 conc(z)dz, reveals

that fewer big particles are captured by the FlowCam com-
pared to the CC, explaining the lower values of the FlowCam
(Fig. S3).

We argue that the causes are 2-fold. First, the FlowCam
images a very low amount of volume (the highest efficiency
achievable in our setup, 41.8 %, is reached by minimizing
the pump rate, 0.02 mL min−1, and maximizing the camera
shutter to 22 frames per second). For example, for a 3 min
analysis, only 0.025 mL of the sample is imaged, compared
to 0.5 mL on the CC. The low statistics have a notable effect
in the estimation of the mass concentration, since big parti-
cles are rare and provide a large contribution to the volume.
The underestimation of large (≥ 50 µm) particle concentra-
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tions using the FlowCam compared to manual microscopy
has been previously reported (Kydd et al., 2018). A possi-
ble second cause for the FlowCam undershoot is the discrete
mode of analysis. During manual sample injection into the
FlowCam, big particles quickly flow through the instrument
by gravitational settling, while smaller particles remain more
easily suspended in the solution and are continuously de-
tected throughout the analysis time. We argue that the fast
gravitational separation of particles of different sizes leads to
underestimated concentrations, especially for a high analysis
time. It may be possible to reduce the gravitational separation
by using a continuous-flow injection system with the tubing
placed horizontally, as in an ice core CFA melting system, or
by operating in discrete mode using sample agitation equip-
ment.

We investigate to which extent (in terms of particle size)
the concentrations of the CC and the FlowCam can be com-
pared. For each method, we calculate the concentration of
all 24 samples by only considering particles smaller than a
certain value, progressively increasing from 3 to 60 µm. The
comparison is quantified by evaluating the slope of an or-
thogonal distance linear regression between the concentra-
tion cumulative distribution functions (CDFs) with respect
to the size cutoff (Fig. 5). The best agreement is found
if only particles up to ca. 10 µm are accounted for (m=
0.86± 0.16). For bigger particle sizes, the FlowCam under-
estimates the CC concentrations by up to ∼ 3. This analysis
is consistent with the good match previously found when us-
ing the small-sized FD066 material (Fig. 4).

From the two FlowCam–CC comparisons carried out on
the small-sized FD066 dust and on alpine samples, we con-
clude that, in the experimental conditions of our setup (dis-
crete mode of operation, 80 µm flow cell, and 20×magnifica-
tion), the FlowCam is to be used for evaluating mass concen-
trations of particles up to only∼ 10 µm. For samples contain-
ing larger particles, the mass (and number) and the FlowCam
mass (and number) concentrations will be underestimated by
up to ∼ 3. To improve the accuracy, the statistics at high par-
ticle sizes can be increased by (i) increasing the efficiency of
the instrument using larger volume cells and (ii) increasing
the measurement time alongside sample agitation equipment.

3.2 Pollen

Given the similarity of pollen grains, we investigate the rep-
resentativeness of the three training datasets used to clas-
sify these types of particles. The analysis is carried out by
training the model using slightly different training datasets
and by evaluating the classification accuracy on controlled
samples of specific types. Five different C. avellana types
were made available for this experiment, labeled A, B, C,
D, and E, and they reflect samples collected from different
trees within the same sampling region. We built three train-
ing datasets, i.e., type A, type B, and type “mix”, with the
last one prepared by mixing all five types together. We then

train the model four times, separately, using type A, type
B, type mix, and all of them together (A+B+mix), and
each time we evaluate the pollen predictions of a pure type-
B dataset. The training datasets of all the other classes are
kept fixed. In particular, the Q. robur and Q. suber datasets
consist of two types for each one mixed together. After each
training session, a validation stage on 500 images of each
type is evaluated for performance and hyperparameter tun-
ing. No substantial change in any hyperparameter is found
to be affecting the accuracy on the validation set, which is
consistently 0.97–0.99 for C. avellana and between 0.90–
0.96 for the two Quercus species. The model trained with
the Corylus A dataset yields only 48 % correct Corylus pre-
dictions when deployed on a Corylus B sample (N = 5 repli-
cates; Table 3). It appears that the Corylus A training dataset
is not fully representative of the Corylus B sample. If the
model is trained with Corylus B, the percentage of Corylus
classification in the Corylus B sample increases to 96 %. If a
Corylus mix training set is used, then the correct accuracies
are 97 %. If the model is trained with all datasets joined to-
gether (A+B+mix), then the correct Corylus predictions
are 98 %. The best result can therefore be achieved if the
model is trained with the widest dataset in terms of particle
variability.

A similar test is carried out for the Q. robur class. The
model is trained separately using a Q. robur A, a Q. robur B,
and a joined Q. robur A+B dataset, and each time it is used
to classify a pure Q. robur B sample (N = 3 replicate mea-
surements). The model is trained by keeping a fixed Corylus
A+B+mix and Q. suber A+B datasets. The results show
that only 2.3 % of the images in the Q. robur B sample are
correctly classified as Q. robur if the model is trained with
the Q. robur A dataset (Table 3). The correct predictions are
91 % if the Q. robur B training dataset is used instead. By
training using a joint Q. robur A+B dataset, the percentage
of correct Q. robur predictions remains similar. Unlike the
Corylus test, no Q. robur mix is available.

The test on the Q. suber type is analogous to the Q. robur
test. The model is trained three times, separately, on a Q.
suber A, a Q. suber B, and on a Q. suber A+B dataset, and
each time it is used to classify a pure Q. suber B sample
(N = 10 measurements). When the model is trained with the
Q. suber A dataset, only 4 % of the pollen in the Q. suber
B sample are correctly classified as Q. suber (Table 3). The
correct classifications rise to 90 % if the model is trained with
either the Q. suber B or with the Q. suber A+B dataset.

From these tests, we conclude that the representative-
ness of the training dataset is crucial to achieve the high-
est pollen classification accuracy. For all three pollen types,
the best classification is achieved with the largest training
datasets. Under this condition, the classification accuracy of
C. avellana, Q. robur, and Q. suber is, respectively, 98± 1 %,
91± 1 % and 90± 3 %, similar to what was previously found
(Fig. 2b). We argue that a further increase in accuracy and
a more general model may be achieved by further increas-
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Table 3. Pollen experiment results. The accuracies are indicated as the average of the N replicates (C. avellana N = 5, Q. robur N = 3, and
Q. suber N = 10). In parentheses, the standard deviation of the replicates are given. Bold font refers to the cases in which the most general
training datasets are used.

Model training dataset
Model inference on a pure C. avellana B sample

Ncor/Npollen (1σ ) Nrob/Npollen (1σ ) Nsub/Npollen (1σ )

C. avellana A (N = 7824)
0.48 (0.03) 0.07 (0.01) 0.45 (0.03)Q. robur A+B (N = 35 276)

Q. suber A+B (N = 31 745)

C. avellana B (N = 13 713)
0.961 (0.007) 0.005 (0.004) 0.034 (0.003)Q. robur A+B (N = 35 276)

Q. suber A+B (N = 31 745)

C. avellana mix (N = 25 186)
0.970 (0.007) 0.006 (0.001) 0.023 (0.006)Q. robur A+B (N = 35 276)

Q. suber A+B (N = 31 745)

C. avellana A+B+mix (N = 47 723)
0.984 (0.004) 0.005 (0.002) 0.012 (0.003)Q. robur A+B (N = 35 276)

Q. suber A+B (N = 31 745)

Model training dataset Model inference on a pure Q. robur B sample

C. avellana A+B+mix (N = 47 723)
0.11 (0.01) 0.023 (0.005) 0.87 (0.01)Q. robur A (N = 10 239)

Q. suber A+B (N = 31 745)

C. avellana A+B+mix (N = 47 723)
0.038 (0.007) 0.910 (0.01) 0.051 (0.003)Q. robur B (N = 24 537)

Q. suber A+B (N = 31 745)

C. avellana A+B+mix (N = 47 723)
0.036 (0.007) 0.914 (0.009) 0.050 (0.005)Q. robur A+B (N = 35 276)

Q. suber A+B (N = 31 745)

Model training dataset Model inference on a pure Q. suber B sample

C. avellana A+B+mix (N = 47 723)
0.47 (0.10) 0.49 (0.09) 0.038 (0.008)Q. robur A+B (N = 35 276)

Q. suber A (N = 10 663)

C. avellana A+B+mix (N = 47 723)
0.07 (0.03) 0.03 (0.01) 0.90 (0.03)Q. robur A+B (N = 35 276)

Q. suber B (N = 20 582)

C. avellana A+B+mix (N = 47 723)
0.07 (0.03) 0.03 (0.01) 0.90 (0.03)Q. robur A+B (N = 35 276)

Q. suber A+B (N = 31 745)

ing the training datasets in both variability and in size. As a
sense of the model-predicting power, it should be noted that
expert palynologists cannot efficiently classify the Q. robur
and Q. suber species by looking at the FlowCam images. The
state-of-the-art classification accuracy between Q. robur and
Q. suber, 98± 2 %, can be achieved by analyzing the dif-
ferent pollen chemical signatures by using Fourier transform
infrared spectroscopy (Muthreich et al., 2020). We also find
that the absolute number of images classified as pollen varies
by just, on average, 0.4 %, suggesting that pollen detection

(irrespective of the pollen class) is largely independent of the
choice of the training dataset.

We finally train a model five times using the largest
datasets, namely C. avellana A+B+mix, Q. robur A+B,
and Q. suber A+B. The model is then used to classify par-
ticles in three samples containing only one type of pollen.
The analysis is performed on 5 aliquots of the C. avellana
sample, 3 aliquots of the Q. robur sample, and 10 aliquots
of the Q. suber sample. Afterwards, the three samples are
mixed together in a 1 : 1 : 1 volume ratio, and the model is
used to classify particles in 10 aliquots of the mixed sam-
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Figure 6. Quantification of pollen concentrations in single-type
samples and in a mixed sample. The model was deployed to clas-
sify and quantify pollen concentrations in three samples contain-
ing purely C. avellana (red), Q. robur (blue), and Q. suber (green)
pollen. The percentages of correct predictions among the three
pollen classes are indicated in the top right axis as a function of
five independent model runs. One-third of the sample pollen con-
centrations (as averages of 5, 3, and 10 aliquots, respectively, for C.
avellana, Q. robur, and Q. suber) are indicated as histogram bars,
along with 1σ error bars displayed with light colors. The model
was also used to classify and quantify pollen in a 1 : 1 : 1 mix of
the original samples (dots and solid colored error bars reflect the
average values and 1σ of 10 aliquots).

ple. As previously found, the model behaves well in classi-
fying the C. avellana pollen, with 98 % of all particles clas-
sified correctly (Fig. 6; red). The classification accuracy for
the Q. robur and Q. suber averages 90 % accuracy (Fig. 6;
blue and green). The concentrations of the pollen species be-
fore mixing (bars) and the concentration of the species as
classified by the model after the mixing agrees (dots) is rea-
sonably consistent for the C. avellana and Q. robur pollen,
while some departure from the expected concentration is
found for the Q. suber class. The results do not show sig-
nificant differences with respect to the model runs, suggest-
ing that the model converges to similar parameters. However,
in all separate runs, a significant spread is found between
the aliquots, particularly with respect to C. avellana classi-
fication (1σ is indicated by the error bars in Fig. 6), which
suggests that robust quantification of pollen concentrations
should be achieved by multiple measurements. The Q. suber
concentration mismatch is tentatively attributed to the cell
being partially clogged, leading to an underestimated con-
centration before mixing.

The pollen experiments suggest that the developed frame-
work is promising for pollen autonomous classification, un-
der the condition that the most-representative datasets are
used for training. Additionally, the representativeness of
fresh pollen as a training dataset for microfossil ice core
pollen should be investigated. We also stress that, in the case
of low concentrations, a similar underestimation of the ab-
solute number of pollen is to be expected, by a factor ∼ 2

(Fig. 5). Intensive analysis of alpine ice core records (where
pollen is expected) is the next logical step.

3.3 Tephra

We deployed the model to investigate the content of 12 sam-
ples from the Greenland Ice Core Project (GRIP) ice core
(Table 4). Specifically, seven of these contain known tephra
deposits, selected from the tephrochronology framework of
Cook et al. (2022), while the remaining five samples are
known to be devoid of tephra grains (i.e., tephra grains were
not observed by bench microscopy).

The seven tephra deposits were resampled by removing a
strip of 55 cm of ice (referred to as a “bag”) using a band
saw. Each bag strip of ice was then cut into three sections,
at resolutions of 20 or 15 cm, using the same depth inter-
vals as Cook et al. (2022), to ensure the same deposits could
be found and thus producing replicate tephra-containing ice
core samples. The five tephra-free samples were derived from
ice adjoining each of the tephra layers, i.e., the remaining
ice per bag. The deposits chosen for this experiment date
back to the Bølling–Allerød/Greenland Interstadial 1 (GI-1)
and Glacial/Greenland Stadial 2 (GS-2) periods and com-
prise tephra of a similar geochemical composition to those
selected for our training dataset, i.e., felsic (rhyolitic), mafic
(basaltic), or a mix thereof. For each selected depth inter-
val, two replicate samples are obtained. The first was ana-
lyzed for tephra by optical bench microscopy (Cook et al.,
2022), and the second one is analyzed by flow microscopy,
followed by our particle classification model. It is important
to note that, although extracted from the same horizon, the
samples dedicated to the two analyses are different, and non-
homogeneity can affect the lateral distribution of insoluble
matter at the same depth interval (Cederstrøm et al., 2021).
Additionally, we note that the samples contain contamination
particles, as the outer surface of the ice core collects impuri-
ties from drilling and processing activities. The samples ded-
icated to tephra investigation have typically been extracted
from these external sections, as the analyst is able to dis-
tinguish tephra from other types of matter using the bench
microscopy.

3.3.1 Optical microscopy for tephra analysis

The seven samples chosen for replicate tephra analysis in this
study were originally identified using optical microscopy,
following the sampling methodology outlined in Cook et al.
(2022). Specifically, the samples were melted, centrifuged,
and evaporated, and the remaining material was embedded
in epoxy resin. Optical microscopy tephra counts range be-
tween 0 to 5000 shards per sample, corresponding to con-
centrations from 0 to 111 shards per milliliter (Table 4). The
counting errors, estimated in Table 4, also incorporate the
uncertainties related to the loss of material during the cen-
trifuge and due to adhesion onto the used plastic tubes. It is
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Table 4. GRIP sample details and tephra counts by manual optical microscopy. The sample ages are derived from the GICC05 chronology.
Note that b2k means before the year 2000. Bølling–Allerød/Greenland Interstadial 1 is GI-1 and Glacial/Greenland Stadial 2 is GS-2.

GRIP sample (age) Sample depth Depth (m) Microscopy ice Microscopy tephra Microscopy tephra
interval (cm) meltwater (mL) counts (±1σ )b concentrations (no. mL−1)

3046 (GI-1b, 13 186 yr b2k)
0–20 1674.75–1674.95 33 0 0

20–40a 1674.95–1675.15 36 1062± 50 30± 1
40–55 1675.15–1675.3 33 16± 1 0.48± 0.03

3136 (GI-1e, 14 191 yr b2k)
0–20a 1724.25–1724.45 45 5000± 3000 111± 67
20–40 1724.45–1724.65 38 57± 5 1.5± 0.1
40–55 1724.65–1724.8 28 0 0

3303 (GS-2.1a, 17 238 yr b2k)
0–20a 1816.1–1816.3 34 18± 1 0.53± 0.03
20–40 1816.3–1816.5 33 0 0
40–55 1816.5–1816.65 28 365± 20 13.0± 0.7

3306 (GS-2.1a, 17 326 yr b2k)
0–20 1817.75–1817.95 33 0 0

20–40 1817.95–1818.15 34 0 0
40–55a 1818.15–1818.3 23 431± 100 19± 4

a Sample that corresponds to the specified age. b The uncertainties are estimated.

worth noting that microscopy counts of tephra are typically
only performed above a size threshold for which the human
operator is confident to differentiate tephra grains from min-
eral dust, i.e., ∼ 8 µm. Replicate counting on the same sam-
ples would be needed to more rigorously quantify the manual
counting errors.

3.3.2 Flow imaging microscopy and particle
classification

The samples dedicated to FlowCam analyses, whose original
volumes were between 28 and 56 mL (Table 5), were con-
centrated by centrifuge down to less than 0.5 mL, following
the same sample processing adopted for optical microscopy
(outlined in Sect. 3.3.1) for the sake of consistency, except for
the embedding in epoxy resin. As an additional step, given
the very high particle concentration that would obstruct the
flow cell, the samples were diluted by adding ultrapure water
between 0.5–1.0 mL in volume. The imaged volume of each
sample was 0.2–0.3 mL. In total, up to hundreds of thousands
of images were collected per sample, for a total of 3 085 063
images (Table 5). As expected, most particles (91 %–98 %
of the total content) are classified as dust by the model. The
remaining fraction is almost fully explained by contamina-
tion/blurry particles (2 %–9 %). Their presence derives from
the nature of the analyzed samples extracted from the core
surface and thus loaded with external impurities. It is pos-
sible that the contamination/blurry predictions contain some
particles of climate significance, but we expect this number
to be very small. A total of n= 921 particles are classified
as pollen (209 C. avellana, 375 Q. robur, and 337 Q. suber;
Table 5). By visually inspecting these particles it is clear that,
due to their blurriness, only few of them can be confidently
identified as pollen (or spores), but the large majority of these

predictions remain dubious (Fig. S5). We note that the three
species of pollen used to train the model do not fit with the
spectrum of pollen species that may be found in Greenland.
A better choice for polar records would be a training dataset
of Betula pollen, which is ubiquitous in Arctic paleoclimate
records. We also argue that very likely a high number of con-
tamination particles are falsely predicted as pollen. The rea-
son for such classification outcome by the model is the round
shape of such particles and their similar size to that of the
three pollen species (Sect. 3.3.4).

A total of n= 1671 particles are classified as tephra (949
basaltic and 722 felsic; Table 5). The tephra concentrations
in the samples, irrespective of the two types, range from 3.3
to 18 no. mL−1 (Table 5; column J). Although of the same
order of magnitude, there are significant sample-to-sample
differences compared to concentrations determined by man-
ual counting (Table 4). It should be noted that the samples
measured using the two techniques are different, and some
non-homogeneities with regard to tephra deposition can be
expected (Pyne-O’Donnell, 2011). We also argue that, while
the model accuracy does not depend on the tephra concentra-
tion, human-operated microscopy is probably more effective
for higher concentrations. This could explain why the mod-
eled concentrations are always above zero. We also note that
the modeled values are expected to be underestimated by a
factor of about 2–3 from the real concentrations (Sect. 3.1.2;
Fig. 5) because the fluidics/loss of material as gravitational
settling preferentially affects large particles.

3.3.3 Human assessment of modeled tephra predictions

To further explore the model predictions and investigate the
mismatch, two tephra experts were asked to assess and clas-
sify, based on the FlowCam images, all (n= 1671) modeled
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tephra predictions in the 12 GRIP samples (irrespective of
whether they are predicted as felsic or basaltic) into three
classes of “yes”, “maybe”, and “no” (Table 5). According
to Human1 (Human2), of all 1671 images, 16 % (2 %) are
positively validated as tephra, 37 % (56 %) are dubious, and
47 % (41 %) are not considered tephra (Fig. S4). Of all the
AI-predicted tephras, Human1 therefore considers 53 % of
them are possible tephras (yes + maybe), while Human2
considers them to be 58 %. It should be noted, however, that
the agreement between the two operators is weak (Fig. S4);
the quality of the FlowCam images often precludes a con-
fident optical assessment of the particles (Figs. 7, S5). It is
worth noting that some tephra shards are positively validated
even in those samples for which no tephra was previously
found using optical microscopy. This is possibly related to
the fact that the network detection accuracy does not vary
with concentration, whereas the human eye is probably more
trained to recognize particles if their number exceeds a cer-
tain threshold. Further analyses would be needed to quanti-
tatively support this hypothesis. However, according to both
analysts, the tephra modeled predictions include a number
of minerals, such as feldspar and quartz, and a few contam-
ination particles. Minerals, closely resembling tephra grains,
are routinely found during manual microscopy assessments
but can be confidently recognized using cross-polarized light
(Lowe, 2011), which allows the analyst to easily distinguish
isotropic non-crystalline tephra from anisotropic minerals. In
our current setup, this key function is not available, but a cir-
cular polarizer should be implemented on the FlowCam for
future studies and will be key for differentiating tephra from
minerals.

The source of minerals inside the FlowCam-measured
samples can be 2-fold; they can derive from active dust
sources proximal to the core site, such as ice-free Iceland
or Greenland (Simonsen et al., 2018), or be introduced arti-
ficially onto the core surface during the laboratory handling
procedure, similar to the source of the contamination par-
ticles. At this stage, it is not possible to further speculate
on the relative importance of these two sources of minerals,
and additional measurements of replicate clean ice samples
would be needed. With respect to the presence of minerals
within the set of tephra predictions in the GRIP samples,
the consulted experts point out that some images of miner-
als are also found within the two tephra training datasets.
Hence, the tendency to classify minerals as tephra is to some
extent embedded in the model. Measurements of clean ice
are also needed to minimize the rate of tephra false posi-
tives from the contamination class (∼ 1 %; Fig. 2). Given the
large prior contamination in the GRIP samples (n= 89 329),
∼ 900 false positives (out of the n=1671 tephra predictions)
could be misclassified as tephras. This further advocates the
need for measuring clean samples in future studies.

Meltwater from the 12 samples run through the Flow-
Cam was subsequently collected and then mounted in epoxy
for tephra identification using optical microscopy and the

methodology outlined in Sect. 3.3.1. This was required to
verify that replicate samples were consistent with those of
Cook et al. (2022). Despite some potential sample loss
through the syringe pump, we found that samples were con-
sistent, and tephra grains, consistent with either basaltic or
rhyolitic grains, were present in seven samples and absent in
five others.

3.3.4 Investigating the network dynamics

To better understand the network dynamics and how the im-
ages are classified into the different classes, we probe the
output of the last FC layer of the convolutional branch of
the architecture (Fig. 1). At this network depth, each original
128×128 image becomes compressed into a 64-d vector rep-
resentation. We inspect such a 64-d space using UMAP, an
unsupervised manifold learning and dimension reduction al-
gorithm (McInnes et al., 2018). We first inject the trained net-
work with a random dataset of 500 items/class from the val-
idation dataset, for a total of 3500 items. We extract the 64-d
representations and let UMAP learn a 2-d embedding space
of the data (Fig. 8). In such a representation the embedded
data appear clustered according to their respective classes,
with a few items being misplaced (basaltic, felsic tephra, and
contamination/blurry) and with some degree of overlap be-
tween the two Quercus classes that evidences the higher dif-
ficulty of the network in distinguishing these types of pollen.
Overall, the high degree of separation between the training
items is well reflected in the confusion matrix (Fig. 2). The
parametric UMAP model generated using the training data is
then applied to the combined dataset of n= 12 GRIP sam-
ples comprising all 3 085 063 images. The images are in-
jected into the network, and the 64-d vectors are extracted
and reprojected onto the learned UMAP space (Fig. 8). Over-
all, the GRIP items are projected on top of the training clus-
ters, with the exception of a secondary smaller cluster of
tephra B, found encompassed within the contamination, and
tephra F clusters, which evidences that some tephra B im-
ages incorporate some features that are common to all three
classes. The Quercus predictions are located at the intersec-
tion of the two respective training clusters. Some C. avellana
predictions are found scattered outside its training cluster,
thus not fully representing the features of the training im-
ages. Figure S5 shows the same plot with the dots replaced
by images. Such a representation also allows us to inspect a
number of features. For example, different light conditions
characterize images located in different areas within the dust
cluster (both the validation and GRIP data). The light from
the camera flash can occasionally be redirected to the camera
shutter if the dust particle is oriented in such a way that the
light becomes significantly backscattered. In such a condi-
tion, the dust particles become white on a darker background.
Different colors are also found within the training tephra B
cluster, mostly consisting of dark particles and fewer brighter
particles located at the margins on the cluster. The tephra B
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Figure 7. A random subset of the AI-predicted tephras in the 3136 0–20 cm GRIP sample assessed by Human1, color-coded according to
the given validation of yes (green), maybe (yellow), or no (red). The particle diameters (ABD) are shown in the bottom-left corners.

GRIP cluster contains a higher proportion of bright particles
compared to its training counterpart. Bright tephra classifi-
cations are more frequently predicted as tephra F, although
a secondary cluster of bright tephra B images is found po-
sitioned at the interface between the tephra F and contam-
ination clusters. The contamination cluster contains a num-
ber of particles that have been introduced during handling
operations, such as long and rod-like particles likely from
glove fabrics. Blurry images are also present in this class (as
the model was trained to do so), and they may or may not
be legitimate ice core particles. Particles classified as pollen
in the GRIP samples are blurrier than those in the training
sets. However, they generally show round shapes and signifi-
cant size ≥ 10 µm. These two features are consistent with the
pollen training images, probably leading to such a classifica-
tion outcome. Similar to tephra, the investigation of pollen
particles should be carried out on clean samples to avoid the
presence of contamination particles being falsely classified
as pollen.

4 Conclusions and perspectives

We developed a framework for the detection, autonomous
classification, and quantification of climate-relevant insolu-
ble particles in ice core samples that can provide support
and complement human-operated optical microscopy. Our
approach is fully reproducible, non-destructive, and does not
require any sample preparation, thus saving time and mate-
rial. It couples flow imaging microscopy to a deep neural
network for image classification. The network is trained on
seven classes of particles, including mineral dust, volcanic
ash or tephra (basaltic and felsic), three species of pollen
grains (C. avellana, Q. robur, and Q. suber) and a class con-
sisting of contamination/blurry particles. The architecture,
comprising a convolutional and a fully connected network,
achieves 96.8 % accuracy on the test set. Training 40 epochs
requires ∼ 30 min on a GeForce RTX 3090. The model op-
erates at ∼ 300 000 images per second at test time and al-
lows online deployment. Some key advantages, disadvan-
tages, and suggested upgrades to the system developed in this
work are outlined in Table 6.
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Figure 8. UMAP 2-d visualization of the network 64-d layer of the CNN branch. In panel (a), UMAP is run on the validation dataset. In
panel (b), the learned UMAP space is used to project all images of the n= 12 GRIP samples. The items are color-coded according to their
predicted class. Gray items represent the validation items.

Figure 9. Diatoms identified in the Quelccaya Ice Core from the acquired FlowCam images. Particle D can be a Centrales diatom (possibly
Cyclotella genus) or an algae. Particle F can possibly be a fungus. All other particles are Pennales diatoms. The particle diameters (ABD)
are indicated in the bottom left corners. The presence of diatoms in this ice record has been previously reported, using SEM, by Fritz et al.
(2015). A promising future application will be to naturally extend the model by incorporating additional training classes, including diatoms.
At this stage, this has not been possible.

The system was investigated as a dust detector. The Flow-
Cam can reconstruct the size distribution of Standard Ref-
erence Material fine-grained (< 10 µm) dust particles within
1σ of the certified values. The mass concentrations can be
replicated within 1 % over a range from a few ppb to 10 ppm,
with an average precision of 19 %. The limit of detection for
dust ranges from 6 to 11 ppb. The comparison of mass con-
centrations with the Coulter counter reveals a good agree-
ment (ratio= 0.86± 0.16) only for particles smaller than
∼ 10 µm. The FlowCam exhibits a drop in efficiency in de-
tecting larger particles that can lead to an underestimated
mass concentration of up to a factor of 3. This drawback af-
fects all types of particles and should be carefully considered.
In the presented setup, the FlowCam offers a valid alternative
to the Coulter counter and to the Abakus as a dust detector

for polar ice cores, with the advantage of it being sensitive to
the particle type.

We tested the classification of freshly collected pollen
grains and found – perhaps unsurprisingly – that the repre-
sentativeness of the training datasets is of exceptional impor-
tance. If the model is trained using the most general pollen
datasets, then Corylus avellana can be classified at ∼ 98 %
accuracy, while Quercus robur and Quercus suber can be
classified at ∼ 90 % accuracy.

We applied the model to 12 GI-1 and GS-2 Greenland ice
core samples, containing known tephra deposits, for a total
of over 3× 106 images. Almost the entirety of the images
is classified as either dust or contamination/blurry particles,
with the latter from the external core surface. A total of 1671
particles are classified as tephra (either felsic or basaltic). In-
spection of such images by two tephra experts suggests that
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Table 6. Advantages, disadvantages, and suggested upgrades to the system presented in this work.

Particle class Advantages Disadvantages Suggested upgrades

Polar dust (< 10 µm) CFA ready. Accurate mass con-
centration reconstruction.

Detection limit close to Antarctic
interglacial values.

Deployment in a clean room.

Alpine dust Accurate mass concentration
reconstruction for dust
< 10 µm.

Underestimation of the > 10 µm
fraction.

Higher-volume cell.

Tephra (volcanic glass) Can support human-operated
bench microscopy. Au-
tonomous, no sample pre-
processing, and CFA ready.

Limited to fraction > 8 µm. Un-
derestimation of particles > 10 µm.
Low statistics. Image quality.

Higher-volume cell. Polarizer.

Pollen Can support human-operated
bench microscopy. Au-
tonomous, no sample pre-
processing, and CFA ready.

Underestimation of particles
> 10 µm. Low statistics.
Image quality.

Required training datasets tai-
lored to the ice core site.
Higher-volume cell.

New particles
(e.g., diatoms)

Autonomous and no sample
preprocessing. Easy to im-
plement by adding training
datasets.

Underestimation of particles
> 10 µm. Low statistics.

Requires specific training
datasets. Higher-volume cell.

only up to ∼ 50 % are possible tephra, with the remaining
∼ 50 % consisting of either contaminations or minerals such
as quartz and feldspar. At this stage, our framework can sup-
port tephra analyses by providing first-order information on
the occurrence of volcanic layers, but we could not quantita-
tively replicate the tephra concentrations obtained by optical
microscopy in Cook et al. (2022).

Building on this work, we envision promising avenues for
further research and upgrades in two main fields, namely data
and hardware.

– The existing training datasets should be extended by in-
cluding other relevant particles that may be found in
ice core records (e.g., diatom frustules, Fig. 9, or Be-
tula pollen). The noise baseline introduced by contam-
ination/blurry particles should be better established by
measuring clean samples. Meaningful integrations be-
tween the data that result from our method and from
human-operated optical microscopy should be outlined.

– Improvements in the hardware should target both the
quality of the imagery (by using the more resolved color
camera featured by the FlowCam 8100 model) and the
statistics (by installing a higher-volume cell alongside a
camera with a faster shutter rate). Importantly, a polar-
izer would be key to separating tephra from anisotropic
minerals. An improved system should be ideally tested
and deployed within a CFA workflow, targeting contin-
uous particle records from ice cores.

https://doi.org/10.5194/tc-17-539-2023 The Cryosphere, 17, 539–565, 2023



556 N. Maffezzoli et al.: Detection of ice core particles via deep neural networks

Appendix A: Segmentation of particle images and
outflow recovery

The instrument is equipped with a syringe pump (in our
case with a 1.0 mL volume) placed downstream of the flow
cell. The syringe pump draws sample fluid until its volume
is filled, and then discharges it through an outlet tubing. In
such a configuration, the sample outflow can be collected
via the outflow tubing while the pump is being discharged.
Such a collection, however, would integrate 1.0 mL of sam-
ple volume, which is not ideal if a fraction of the sample is
needed. Additionally, there is no instrument-continuous out-
flow while the 1.0 mL pump volume is being filled, which is
not compatible with continuous flow analysis setups.

We therefore suggest replacing the default syringe pump
with a peristaltic pump, which ensures (i) a continuous flow
and (ii) full control of the sample outflow collection via,
e.g., a valve switch connected to the outflow tubing. If used
within a CFA setup, the instrument inflow would simply re-
quire replacing the default discrete-mode pipette tip with a
tubing connecting the instrument placed upstream with the
FlowCam flow cell inlet.

Figure A1. The experimental setup (a) is presented alongside the segmentation of particle images (b–e). A calibration image of the camera
view is obtained prior to the analysis when no sample is pumped into the system (b). During the analysis, each frame (c) is compared to the
calibration image, and a pixel-by-pixel difference is calculated (e) and thresholded to extract the single particle images. This procedure is
performed by the FlowCam software.
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Appendix B: Metadata

Table B1. Metadata.

Feature Explanation

(1) Area Number of pixels in the thresholded (binary) grayscale image converted to a measure of area by
use of the calibration factor (real> 0).

(2) Area (filled) The area represented by the particle edge and all the pixels inside the edge (real> 0). In the case
of an opaque particle, area (filled) = area. However, if parts of the particle are transparent, and
therefore do not threshold as particle, then area (filled)> area.

(3) Aspect ratio The ratio of the lengths of the axes of the Legendre ellipse of inertia of the particle. The Leg-
endre ellipse of inertia is an ellipse with its center at the particle’s centroid and with the same
geometrical moments, up to second order, as the original particle area. A circle has the value
1.0, as does a square. Values near zero are for particles that are long and thin (real [0, 1]).

(4) Biovolume (cylinder) Biovolume (cylinder) = (π/4)× geodesic thickness2
× geodesic length.

(5) Biovolume (p. spheroid) Biovolume (spheroid) = (π/6)×Legendre minor2
×Legendre major.

(6) Circle fit Deviation of the particle edge from a best-fit circle, normalized to the range [0,1], where a
perfect fit has a value of 1 (real [0, 1]; 1 is the value for a perfect circle (values near zero are for
particles that are not at all circular).

(7) Circularity A shape parameter computed from the perimeter and the (filled) area. A circle has a value
of 1.0. Circularity is the inverse of compactness. Formula is (4×π × area)/perimeter2. (real
[0,1])= pixel grid= perimeter= best-fit circle= area (filled)

(8) Circularity (Hu) An alternative measure of circularity that often provides a better indication of the circular shape
of a particle than does circularity, especially if the particle is very small or its edge has defects.
A circle has a value of 1.0 (real [0, 1]; Žunić et al., 2010).

(9) Compactness A shape parameter derived from the perimeter and the (filled) area. The more convoluted the
shape, the greater the value. A circle has a value of 1.0. Compactness is the inverse of circularity.
Formula is perimeter2/(4π × area); (real≥ 1).

(10) Convex perimeter An approximation of the perimeter of the convex hull of a particle. Derived from Feret mea-
surements.

(11) Convexity A shape parameter that is computed as the ratio of filled area to the area of the convex hull of
the particle. This property is sometimes called solidity. A circle has a value of 1.0 (real [0, 1]).
(A simple way of thinking of the convex hull is to imagine taking a rubber band and stretching
it around the filled area.)

(12) Diameter (ABD, area-
based diameter)

The diameter based on a circle with an area that is equal to the area (feature no. 1; real> 0).

(13) Diameter (ESD, equivalent
spherical diameter)

The mean value of 36 Feret measurements (real> 0).

(14) Edge gradient Average intensity of the pixels making up the outside border of a particle after a Sobel edge-
detecting convolution filter has been applied to the raw camera image (real [0, 255]).

(15) Elongation The inverse of geodesic aspect ratio (real≥ 1; 1 is the value for a circle or square; larger values
are for elongated particles).

(16) Feret angle max Angle of the largest Feret measurement (real [−90, +90]).

(17) Feret angle min Angle of the smallest Feret measurement (real [−90, +90]).

(18) Fiber curl A shape parameter computed from geodesic length and length. Also known as curl index. For-
mula is (geodesic length / length)−1; (real≥ 0).
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Table B1. Continued.

Feature Explanation

(19) Fiber straightness A shape parameter computed from Geodesic length and length. Formula is length / geodesic
length (real≥ 0).

(20) Geodesic aspect ratio The ratio of geodesic thickness to geodesic length. Elongation is the inverse of this ratio (real
[0, 1])

(21) Geodesic length Values obtained by modeling the particle as a rectangle and computing the length and
thickness by solving the equations of area= geodesic length× geodesic thickness perime-
ter= 2× (geodesic length + geodesic thickness), where area is filled area, and perimeter is the
length of the particle edge not including the lengths of edges of holes in the particle (real> 0).

(22) Geodesic thickness See geodesic length.

(23) Intensity The average grayscale value of the pixels making up a particle (grayscale sum / number of
pixels making up the particle); (real [0, 255]; 255 is most intense).

(24) Length The maximum value of 36 Feret measurements (real> 0).

(25) Particles per chain The number of particles that were grouped into one particle based on the nearest-neighbor
distance (integer> 1; almost always 1 if nearest neighbor distance is 0).

(26) Perimeter The length of the particle edge not including the lengths of edges of holes in the particle
(real> 0).

(27) Roughness A measure of the unevenness or irregularity of a particle’s surface to the ratio of perimeter to
convex perimeter (real≥ 1; 1 is the value for a filled shape with convex perimeter; larger values
are for particles that have interior holes and/or a non-convex perimeter).

(28) Sigma intensity Standard deviation of grayscale values (real≥ 0).

(29) Sum intensity Sum of grayscale pixel values (real> 0).

(30) Symmetry A measure of the symmetry of the particle about its center. If a particle is symmetric about the
center, then the value of symmetry is 1.0. Typically used to locate broken or partial particles
(real [0, 1]).

(31) Transparency 1 − (ABD diameter /ESD diameter) (real [0, 1]; 0 is the value for a filled circle; values near 1
are for an elongated or irregular shape or a shape that has many interior holes).

(32) Volume (ABD) Sphere volume calculated from ABD diameter (real> 0).

(33) Volume (ESD) Sphere volume calculated from ESD diameter (real> 0).

(34) Width The minimum value of 36 Feret measurements (real> 0).
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Appendix C: Training dataset images

Random batches of n= 100 training images of each class.
The images have been reshaped for better visualization. The
particle diameters (ABD) are indicated in the bottom left cor-
ners. Zoom in for the best view.

Figure C1. Dust.
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Figure C2. Felsic tephra.

Figure C3. Basaltic tephra.
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Figure C4. Corylus avellana pollen.

Figure C5. Quercus robur pollen.
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Figure C6. Quercus suber pollen.

Figure C7. Contamination/blurry particles.
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Code and data availability. The training and GRIP datasets will
be deposited on Zenodo (https://doi.org/10.5281/zenodo.7591282,
Maffezzoli, 2023a). The code will be made publicly
available at https://github.com/nmaffe/icelearning (last
access: 1 February 2023) and referenced on Zenodo
(https://doi.org/10.5281/zenodo.7591227, Maffezzoli, 2023b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-17-539-2023-supplement.
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