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Abstract

Nowadays the information extracted from data should be the key to
good policy, therefore, analysts must make the best possible use of all
available information. However, data availability often is limited by cost
or for other reasons. Consequently, there is the need to use data from
different sources. Our goals are to develop hierarchical models and to
demonstrate their ability to improve inferences about quantities for which
there are meager data. When a hierarchical model can be found to rep-
resent the situation properly, analysis of that model often can be used to
extract most or all of the relevant information and so provide the best
possible estimates. The application considered will include small area
estimation in the context of the EU Statistics on Income and Living Con-
ditions. In developing the hierarchical model, we use together survey data
and population registers. As for the implementation of the hierarchical
model, we propose to use Bayesian methodology assisted by Monte Carlo
Markov Chain.

Keywords— poverty mapping, population register, multilevel modelling

1 Introduction

The main goal of this work is to propose a hierarchical model that is able to use
data at a different level of aggregation and that come from different sources in
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order to make inference on the Foster et al. (1984) poverty measures (FGT) at
small area level.

In particular we make use of survey data and administrative data, which are
collected for many different porpoises, therefore they are available at different
level of aggregation. Often, administrative data are aggregated following ad-
ministrative subdivision of the country, Italy in our application. Italy is divided
into 5 repartitions (NUTS 1 level according to the EU nomenclature), 20 re-
gions (NUTS 2), 107 provinces (NUTS 3/LAU 1) and about 8000 municipalities
(LAU 2). The goal of our application is the estimation of FGT indexes at the
provincial level, in particular poverty incidence. Nevertheless, domains different
from administrative boundaries are possible under the proposed framework, e.g.
provinces by age class and gender.

The combined use of administrative data and survey data fits the new
register-based paradigm of many national statistical offices, where administra-
tive data play a central role in the production of official statistics. This new
paradigm requires appropriate models to exploit all the data available in order
to produce sound statistics at the small area level.

2 Target paramters and data

Our goal is to obtain FGT indexes at the province level in Italy. Let wijkl be
a wealth variable in region i = 1, . . . , R, province j = 1, . . . , Di, municipality
k = 1, . . . ,Mij and household l = 1, . . . , Nijk and t be a fixed national threshold
that classified poor and non poor households. Then, FGT poverty measure at
provincial level is defined as follows:

FGT (t)ij,α =
1

∑Mij

k=1Nijk

Mij∑

k=1

Nijk∑

l=1

( t− wijklt
t

)α
I(wijkl < t),

where α = {0, 1, 2} define poverty incidence, intensity and severity respectively.
As wealth variable we use the equivalised household income, which is computed
as the total available household income divided by the equivalised household size
according to the OECD modified scale that assign weight 1 to the first adult,
0.5 to other adults and 0.3 for children (age less than 14).

The equivalised household income is available from the EU Statistics on
Income and Living Conditions (SILC) survey, which is conducted yearly by
Istat and represent the reference source in the EU for comparative statistics
on income distribution and social exclusion. It surveys personal data, income,
working status, housing, leisure activities. The 2017 Italian EU-SILC survey has
a sample size of about 22 thousand households. It is a two-stage sample design
stratified by region and type of municipality. The PSU are the municipalities
and the SSU are the households. The survey use a rotating panel each 4 year.
More details are available on the Istat website.

Municipalities level data are organised in administrative archives, which are
integrated by Istat under the ARCHIMEDE project. The administrative sources
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used to build ARCHIMEDE microdata are: municipal population registers, tax
return registers, central register of pensioners, social security and fiscal sources,
social security benefit registers and the population census. Italian population
counts about 60 million persons in about 24 million households.

Province level data can be obtained properly aggregating municipality level
data, since municipalities are partitions of provinces. However, some data are
available only at provincial level, such as the labour force data. This information
come the labour force survey (LFS), which is a cross-sectional and longitudinal
household sample survey. It provides information about main labour market
indicators, broken down by socio-demographic variables. The LFS in Italy fol-
lows a rotating sample design where households participate for two consecutive
quarters, then they exit for the next two quarters, and finally come back for
other two quarters (2 in - 2 out - 2 in rotation). The 2017 LFS in Italy has
a sample size of about 250 thousand households, about 600 thousand persons,
which guarantee reliable estimates also at the provincial level for what concern
annual estimates.

Region specific data can be available from other surveys, but are not con-
sidered at this stage in this work.

3 Proposed hierarchical Bayes multilevel model

Hierarchical Bayesian (HB) models have been extensively used in small area
estimation, see for example Rao and Molina (2015) for a general review. They
can accommodate very complex models based on very simple models as building
blocks. Another great advantage of these models is about the estimation of the
standard error of the small area HB estimators, which can be found exactly
without using approximations. In this framework we can obtain credible inter-
vals and useful summaries from the posterior distributions with practically no
additional effort.

In order to obtain reliable estimates of poverty incidence FGT (t)ij,0 at
provincial level, we propose a three-level cross-sectional model. The three levels
are household, municipality and province. Some parameters are defined region
specific. The proposed method require to have a transformation T (w) of the
wealth variable such that y = T (w) is approximately normal. The mode can be
represented as follows:

L.1 yijkl|θijk,βi, σ2
i ∼ N(θijk + aijklβi, σ

2
i )

L.2 θijk|ηij ,γi, τ2i ∼ N(ηij + bijkγi, τ
2
i )

L.3 ηij |ξ,λ, δ2 ∼ N(ξ + cijλ, δ
2),

where θijk is the municipality random effect, aijkl are the household level co-
variates from EU-SILC, ηij is the provincial level random effect, bijk are the
municipality level covariates from ARCHIMEDE, ξ is a fixed effect and cij are
the province level covariates from LFS. As a note, cij covariates are affected by
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sampling error, which is considered negligible in this work, and then they are
treated as true values.

Following Gelman (2015) we use proper informative priors, half-Cauchy for
δ, τi, σi, multivariate normal for γi,βi and normal for ξ,λ.

The household level covariate we use is the household size groups: 1 member,
2 members, 3 members, 4 members, 5 or more members. The municipality level
covariates are the proportion of persons in age classes (13 to 35, 36 to 65, 66 or
more), proportion of male, proportion of persons in 3 type of work contract (de-
pendent, independent, other), median of equivalised taxable income. Note, this
last covariate is different from the median equivalised household income esti-
mated from the EU-SILC survey because of a different taxonomy. The province
level covariate is the unemployment rate, that is the proportion of persons who
don’t work while seeking for a job.

An estimate of the unknown quantity FGTij,α can be obtained as follows:

¯FGT (t, θijk, βi, σi)ij,α =
1

Nij

mij∑

k=1

nijk∑

l=1

E[gα(wijkl)|θijk,βi, σ2
i ]ωijkl,

where

gα(wijkl) =
( t− wijkl

t

)α
I(wijkl < t),

mij are the sampled municipality in province j of region i, ωijkl is the survey weight
for household l in municipality k in province j in region i, nijk is the sample size in
municipality k in province j in region i.

For α = 0,

E[gα(wijkl)|θijk,βi, σ2
i ] =

∫ log t−(θijk+aijkβi)

σi

− θijk+aijkβi
σi

φ(z|θijkl, σi,βi)dz

= Φ
( log t− (θijk + aijkβi)

σi

)
− Φ

(
− θijk + aijkβi

σi

)
,

where φ and Φ are respectively the density function and the distribution function of
the standard normal distribution.

The model parameters are estimated using Gibbs sampling by Monte Carlo Markov
Chain (MCMC). To obtain stable posterior distribution of model parameters we use a
lasso penalty. Let H be the number of MCMC samples after burn-in. Let θijk,h,
βi,h and σi,h denote the hth MCMC draw of θijk, βi and σi, respectively (h =
1, . . . , H). We define the Di × H matrix Fα, where the j, h entry is defined as
F(j,h);α = ¯FGT (t, θijk,h, βi,h, σi,h))ij,α.

According to Lahiri and Suntornchost (2018) the matrix Fα provides samples
generated from the posterior distribution of ¯FGT (t, θijk, βi, σi)ij,α, j = 1 . . . , Di, i =
1, . . . , R and so is adequate for solving a variety of inferential problems in a Bayesian
way. Lahiri and Suntornchost (2018) suggest three different inferential problems: 1.

estimates F̂GT (t)ij,α of FGT (t)ij,α obtained as the posterior mean of F(j,h);α, h =

1, . . . , H, and estimates M̂SE(F̂GT (t)ij,α) of MSE(F̂GT (t)ij,α) obtained as the pos-
terior standard deviation of F(j,h);α, h = 1, . . . , H; 2. identification of provinces that
are out of predefined bounds and 3. identify the worst and best provinces according
to FGT indexes. In this work we focus on point 1 only, with α = 0. As a remark
inference on points 2. and 3. make use of Fα taking advantage of a unique hierarchical
Bayes framework.
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4 Application Results

In this section we show the FGT (t)ij,0 estimates for 27 provinces in three Italian
regions, namely Lombardia, Tuscany and Campania. This choice is due to the avail-
ability of ARCHIMEDE data, which have been available to us under an agreement
between ISTAT and University of Pisa.

We analyse the model parameters estimates through convergence plot.
We compare the direct estimates with the HB estimates (Figure 1 and Figure 2).
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Figure 1: Direct and HB ARPR estimates computed using EU-SILC 2017 at
provincial level (NUTS 3)
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Figure 2: Direct and HB ARPR estimates computed using EU-SILC 2017 at
provincial level (NUTS 3).

Model estimates are more reliable than direct ones, with a clear reduction in their
coefficients of variation (Figure 3).
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Figure 3: Direct and HB ARPR estimates CVs.

5 Conclusions

In this work we have successfully integrate administrative and survey data at different
level of aggregation to obtain posteriors distribution of a multilevel model parameters,
which allow different inferential goals. In particular we focus on the incidence of
relative poverty, one of the main indicators used by policy makers and stakeholders.

In future works the hierarchical Bayes model can be improved by taking into
account the measurement error of auxiliary variables coming from survey data, such as
the unemployment rates coming from LFS. Furthermore, the model can be enriched by
big data coming for example from google trends, twitter text analysis or supermarket
scanner data (which collect price and quantity of retail chains spread across Italy).
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Abstract

One of the main motivations of concern when we apply a small area es-
timation model is to relate individual area estimates with some direct
estimates in a larger area. External and internal benchmarked estima-
tors provide adjusted model-based estimates, in order to agree with that
aggregated results. The use of multiple calibration quantities in the bench-
marking matrix suggests that the underlying “true” model is misspecified
by the actual model equation. We examine the appropriateness of em-
ploying the benchmarking matrix to account for omitted variables in the
model, through an additional regression term.

Keywords— Fay-Herriot model, benchmarking estimators, model misspec-
ification, augmented model

1 Introduction

In the context of small area estimation, benchmarking is justified by the need
for adjusting individual area level estimates to agree with direct estimates of a
larger area. The Eblup estimators do not satisfy the benchmarking property,
and thus, in the last years, many authors studied a variety of benchmarking
techniques, in order to address this issue. In general, these methods rely on
some modification of the Eblup by simple adjustments, as for the ratio and the
difference benchmarking estimators (Steorts and Ghosh, 2013). Otherwise, an
optimal benchmarking estimator that is model unbiased and at the same time
satisfies the design-consistency property was obtained by Wang et al. (2008).
Bell et al. (2013) give a general result for the optimal estimator in case of
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multiple benchmarking constraints, by joining together external and internal
benchmarking using a common relation. Under model misspecification, Wang
et al. (2008) also proposed an augmented model, by inserting a sampling vari-
ance model covariate, adjusted by the proportion of units in the corresponding
area. Simulation experiments has shown that the augmented model estimator
performs well in case of model misspecification, when the omitted variable is
correlated with the augmented covariate. Nevertheless, self-benchmarking as in
the You and Rao (2002) approach generally ensures efficiency in terms of the
MSE, when direct estimates for the larger area suggest a model failure. By
a general approach with multiple benchmarking constraints, this paper intro-
duces a benchmarking linear estimator, assuming a model misspecification by
an omitted variable factor. The underlying assumption is that direct estimates
for the larger area accounts for the true model. Then, we propose an augmented
model that incorporates a tentative approach to the model failure. We show
that misspecification is proportional to the orthogonal projection of the direct
estimate in the subspace of the benchmarking constraints. An application study
is reported, in order to introduce the validity of this approach.

2 Theory

Following the Bell et al. (2013) approach to benchmarking small area estimators,
as regards the application of the Fay-Herriot model, we say that a) θ = Xβ+ u
represents the population area-level parameter model, b) y = θ+e the sampling
model, and, c) t =W ′θ+η, the benchmarking model by an external random data
vector. θ is the m×1 vector of area parameters, X is the m×p covariates design
matrix, β the p× 1 regression parameters, u is the regression error, y the m× 1
vector of sampling estimates, e is the sampling error, with given var(e) = R =
diag(ψ1, ..., ψm). Furthermore, t is the q×1 vector of benchmarking constraints
(q < m) to which the area-level estimates must agree, with η the q × 1 related
sampling errors. W is am×q “benchmarking” matrix, that contains the multiple
constraints that links the small area parameters with t. The model variance for
θ is var(y) = Q = Σu +R, Σu = σ2

uIm. Finally, cov(u, η) = cov(u, e) = 0, with
a chance of a non-zero covariance between sampling errors, i.e. cov(e, η) = C.
Assuming model normality, together with standard Bayesian prior for β, we
know that Σy = σ2

βXX
′ +Q, and, as σ2

β −→ ∞ and by matrix inversion rules,

Σ−1
y = Q−1(I−PX). PX = X(X ′Q−1X)−1X ′Q−1 is the projection matrix onto

the subspace by X in the metric of Q−1.
Knowing σ2

u, and denoting by θ̃y = E(θ|y) the best unbiased linear predictor,

we have that θ̃y = y − RPy, and mse(θ̃y) = var(θ̃y) = R − RPR, with P is
the projection matrix onto the complement of the column space of X in the
metric of Q−1. Assuming the benchmarking model for θ, we get (Bell et al.,

2013) θ̃y,t = E(θ|y, t) as the best linear “adjusted” predictor based on both data
sources (y, t):
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θ̃y,t = E(θ|y, t) = θ̃y + cov(θ, t|y)var(t|y)−1 {t− E(t|y)} , (1)

mse(θ̃y,t) = var(θ̃y)− cov(θ, t|y)var(t|y)−1 {cov(θ, t|y)}′ . (2)

When var(η) = Ση −→ 0, θ̃y,t becomes the “externally” benchmarked predictor

θ̃E = θ̃y+var(θ̃y)W [W ′var(θ̃y)W ]−1[t−W ′θ̃y]. ConsideringW ′θ = t as the pro-
jection of the parameter vector θ onto the subspace ofW , when we have no exter-
nal data t and that projection is that relating to y, i.e. W ′y, the (1) becomes the

“internal” benchmarked predictor θ̃I = θ̃y + var(θ̃y)W [W ′var(θ̃y)W ]−1W ′(y −
θ̃y). In both cases, θ̃E and θ̃I verify the benchmarking property W ′θ̃E = t and

W ′θ̃I =W ′y, respectively.
In the standard regression theory it is well-known that if for the model in a)

we get E(u|x) ̸= 0, the covariates are said endogeneous in the linear model, i.e.
almost one of the explanatory variables is correlated with the regression error u.
One of the most important endogeneity problem arises when model misspecifica-
tion is due to some omitted variables in the equation model. This situation leads
in general to the “omitted variable bias” of the fixed-effects estimator, together
with an overestimation of the error variance. When important regressors are
ignored and the correlation between included and omitted regressors is relevant,
the correlation between the covariates and the model error u increases. Con-
versely, it matters to delete from the model ”unimportant” regressors, because
they may increase the sampling variance. In large samples, the bias of estimates
becomes the major issue (Davidson et al., 2004). Although the standard area
level model is mixed linear model, ignoring omitted variables in the regression
component of the model, and the consequent unseemly random-area effect vari-
ance estimation, may adversely affect the linear predictor. For example, it can
be shown that if the true mixed linear model with known model variance Q
is y = X1β1 +X2β2 + π + Zv + e, with π as the unobservable omitted vector
of fixed effects, and v and e, the random effects and the residual error, respec-
tively, the bias for the fixed-effects estimates of β1 is B(β̂1,gls) = A′(I−X2B

′)π,
A = Q−1X1(X

′
1Q

−1X1)
−1, B = PX2(X

′
2PX2)

−1.
Generally, the presence of omitted variables in the structural linear model

significantly correlated with the regression error may be expressed by a model
error u, composed of two parts. Denoting by θm = Xβ + u the assumed but
incorrect population model, and q the omitted regressor, then u = qγ+v, where
v is the “true” structural regression error. Given the true model θ, we have:

θ = θm + (θ − θm) = Xβ + qγ + v. (3)

As q is the unobservable factor in the model for θ, v is uncorrelated with all
the covariates x1, ..., xp, and q. Further, other relations are given, since by the
normalization due by the model q has zero mean: E(u|x) ̸= E(u), E(u|q) ̸=
0,cov(u, q) ̸= 0, E(v|x, q) = 0, Ev(θ − θm) = qγ. With the true model for
θ, and given the benchmarking model c), it is straightforward that E(t) =
W ′θ ̸= W ′θm. In the same way, taking the subspace spanned by the columns
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of W , we observe that BW ′θm ̸= BW ′θ = Bt, B = W (W ′W )−1, as BW ′

is the orthogonal projection matrix for W . A proxy-variable solution, say z,
for the unobserved factor q, can be assumed as dependent on the difference
(W ′θ −W ′θm), i.e. z ∝ E(BW ′θ − BW ′θm). As z becomes a linear regressor
for q, we may have in general:

q = zλ+ r = λ0 + λ1z + r, (4)

E(r|z) = 0, E(r|x, z) = 0, and, as requested by standard “redundancy” con-
ditions about proxy variables, we can easily check for z that E(θ|x, q, z) =
E(θ|x, q). Furthermore, given the linear projection L(q|x, z), due to the circum-
stance that cov(x, r) = 0 we may observe that L(q|x, z) = L(q|z). By putting
(4) into (3), we get:

θ = Xβ + γλ01 + λ1BW
′(θ −Xβ)γ + γr + v,

(I − γλ1BW
′)(θ −Xβ) = γλ01 + γr + v.

Thus:
θM = Xβ + (I − b1BW

′)−1ϵ, (5)

with β = β0 + (I − b1BW
′)−1b01, ϵ = γr + v, b0 = γλ0, b1 = γλ1. By

mitigating the omitted factor in the assumed model, equation (5) defines a
new model for θ, due to the availability of a proxy variable z. The last by
“mirroring” differences in the parameter θ by the projection onto the subspace
defined by the benchmarking matrix W . It is straightforward to see for the
model (5) that var(θM ) = σ2

ϵ (I− b1BW ′)−1[(I− b1BW ′)−1]′, and cov(ϵ, θM ) =
Σϵ(I − b1BW

′)−1. Although the benchmarking property is always verified for

the adjusted predictor (1), whatever the estimate θ̃y or θ̃M , is certainly inter-
esting to investigate how different models may change estimate of mse(θ). By

the decomposition of the mse(θ̃) = g1 + g2 + g3 for the Fay-Herriot model,

with the leading term g1(σ
2
u) = R − RQ−1R = diag(

σ2
uψ1

σ2
u+ψ1

, ...,
σ2
uψm

σ2
u+ψm

), it is

straightforward to note that g1,i(σ
2
v) < g1,i(σ

2
u), ∀i, i = 1, ...,m, when σ2

v < σ2
u.

Further, with Q = diag(σ2
v + ψ1, ..., σ

2
v + ψm), Qm = diag(σ2

u + ψ1, ..., σ
2
u +

ψm), and following standard matrix inversion rules, Q−1
m = Q−1 − S−1, S =

diag[
(σ2

v+ψ1)(σ
2
u+ψ1)

σ2
u−σ2

v
, ...,

(σ2
v+ψm)(σ2

u+ψm)
σ2
u−σ2

v
)], it can be shown that:

tr[mse(θ̃M )] = tr
{
var[θ̃y(σ

2
v)] +R(Q−1

m + S−1)P(I−PX)qR
}

< tr
{
var[θ̃y(σ

2
u)] +R(Q−1

m + S−1)P(I−PX)qR
}
= tr[mse(θ̃y)].

Here the projection matrix of the model (3) is partitioned by the decomposition
PX,q = PX + P(I−PX)q, where the matrix P(I−PX)q projects vectors onto the
space spanned by the columns of (q − PXq).
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