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Abstract. Ranking questions regarding settings where a network of flows connects

the resource extraction sites have been central in the network literature, however,

they have received scant attention in the metapopulation literature. This study

examines the dynamics of the exploitation of a natural resource distributed among

and flowing between several nodes connected via a weighted, directed network. The

network represents the locations and interactions of the resource nodes. A regulator

decides to designate some of the nodes as natural reserves where no exploitation

is allowed. The remaining nodes are assigned (one-to-one) to players, who exploit

the resource at the node. The present study demonstrates how the equilibrium ex-

ploitation and resource stocks depend on the productivity of the resource sites, the

structure of the connections between the sites, and the number and preferences of

the agents. The best locations to host nature reserves are identified per the model’s

parameters and correspond to the most central (in the sense of eigenvector central-

ity) nodes of a suitably redefined network that considers the nodes’ productivity.

The technique proposed in the present study may have applications in decisions

regarding the formation of teams when candidate members are heterogeneous in

their productivities and connections.
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1. Introduction

In the exploitation of common property and open access resources, externalities

engender distortions social planners or agents may wish to strategically regulate or

control. The issue of how to estimate and correct such effects has inspired a huge

number of studies in which resource stocks are usually assumed homogeneous in
1
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space. Metapopulation models present relevant exceptions (see e.g., Sanchirico and

Wilen, 2005) that explicitly address the possibility that natural resource stocks can

be spatially distributed, with various productive sites connected by non-homogeneous

migration flows. Migratory fish provide the most obvious example of a moving dis-

tributed stock, but the same spatio-temporal structure is common to other resources,

such as water and oil, which are often flowing between locations. Moreover, the same

dynamics are shared by other non-natural stocks, such as “knowledge” or pollution,

which may be generated in specific locations and, afterward, diffused to others.

In settings where a network of flows connects the resource extraction sites, do

different productivities of the various sites and different intensities of migration flow

map into a specific hierarchy of the sites? Does this hierarchy affect how the access

of competing agents should be regulated and, in particular, where natural reserves

should be placed?1

While such ranking questions have received scant attention in the metapopulation

literature (however, see Costello and Polaski, 2008), they are central in the network

literature (for surveys, see Jackson and Zenou, 2015; Zenou, 2016), within which a

prominent approach comprises studying the Nash equilibrium of static games where

players are connected via a network of externalities and identifying the key players in

this equilibrium by using network statistics (Ballester et al., 2006).

Accordingly, this study examines the dynamics of the exploitation of a natural re-

source distributed among and flowing between several nodes connected via a weighted,

directed network. It assumes a network perspective on common spatially distributed

resources and develops a simple dynamic model where n nodes (n ≥ 2) of a weighted

directed network represent the n sites where the resource resides and evolves in time,

while the weights on the edges give the interregional migrations rates of the resource.

1The same questions also apply in more general contexts, including mobile resources with envi-
ronmental or amenity values whose reproduction process is affected by economic activities. For
example, given that urban development is likely to worsen conditions at breeding sites of migratory
or non-migratory birds that can move, ranking the sites can help inform zoning regulations and
urban planning.
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The n regions are heterogeneous because they are differently connected, and the

growth rates of the resource possibly differ per region. The regulator’s task is to as-

sign extraction rights to f < n agents to maximize a welfare function, which, for the

most part, we take to be the sum of the agents’ utilities. We assume the regulator is

constrained to assign at most one agent to a region. Following the assignment stage,

the agents compete for the exploitation of the resource as in the classic Levhari and

Mirman (1980) dynamic game, with four main differences: 1. Time is continuous,

and the exploitation of the resource occurs continuously. 2. The stock of the resource

is not homogeneous but distributed among the n regions. 3. The site productivities

are independent of the stocks. 4. Each agent can only access the resource through the

single node to which they are assigned. Further, we assume the instantaneous utility

functions of the agents are isoelastic, consistent with most studies on the Levhari-

Mirman game in continuous time. The present study aims to show how the structure

of the network affects the regulator’s decision.

As the main contribution to the literature, the study shows that when agents are

sufficiently “patient” in the generalized growth theory sense that their rate of discount

is close to a critical discount rate (see e.g., McFadden, 1973 for a discussion of critical

discount rates in optimal growth theory), and the network is (fully or) strongly con-

nected2, there exists a unique Markov perfect equilibrium (MPE) in linear strategies

for the post-assignment dynamic game under two different sets of hypotheses on the

structure of agent’s action sets (see Theorem 1 and Theorem 2). In this equilibrium,

all agents, independently of the assignment, evaluate the different site stocks via a

constant common vector of relative prices that proves to be the eigenvector centrality

of a network that combines the migration flows and the sites’ net rates of growth.

These two forces interact in determining the centrality of the sites.

We also provide comparative statics that show how the equilibrium outcome is

affected by the choice of sites for natural reserves and the network structure. We begin

2Some of this study’s results continue to hold or have natural counterparts when source or sink nodes
are added to the network, making it reducible. However, we think different kinds of reducibilities
yield different phenomena that cannot be captured within a single model.
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by showing that when the social planner compares equilibria for different choices of

nodes where natural reserves are set, they find that the welfare of each agent who

has obtained a permit decreases in the assigned node’s centrality measure. Thus, a

utilitarian planner always sets the reserves at the most central regions of the network

(Section 4.1), and permits are always issued in order of centrality, starting from the

most peripheral node.

We then analyze how the outcome changes when the parameters representing the

network are varied. In the model, the effects of varying the site productivities and

the network density are mediated by the largest eigenvalue of the process that gov-

erns the stock’s evolution without exploitation. This eigenvalue coincides with the

von Neumann rate of growth of the system (i.e., the maximum rate of growth of the

resource, or, in dual terms, the rate of interest implicit in the system), and it plays

the same role as the productivity parameter in the standard aggregate linear growth

model (Rebelo, 1991). The well-known fact that the eigenvalue is an increasing func-

tion of the elements of the matrix representing the process can be used to single out

the effect of increasing the site productivities but not to study the effect of changing

the weights of the network. Indeed, a change in a migration flow engenders a simul-

taneous change (equal but opposite in sign) in the net growth rate of the node from

which the resource flows. Nevertheless, for symmetric networks with different (gross)

productivities, we prove that the largest eigenvalue is a decreasing function of the

elements of the adjacency matrix.

The present study is naturally related to the metapopulation literature (Hanski,

1999; Sanchirico and Wilen, 2005; Smith et al., 2009; Costello and Polaski, 2008,

and others). A few studies in that stream explore aspects of the problem of dynamic

strategic interaction with distributed and moving resources, especially to evaluate

whether management of the resources through a system of territorial use rights (ter-

ritorial use right for fishing or “TURF” in the case of fisheries) can effectively mitigate

the “tragedy of the commons” (see e.g., Kaffine and Costello, 2011, Costello et al.,
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2015, Herrera et al., 2016, Costello and Kaffine, 2018, Costello et al., 2019, de Frutos

and Martin-Herran, 2019, Fabbri et al., 2020).

Beyond the choice of the time structure (continuous vs discrete), the model we

study is similar to the N-patch discrete-time model of Kaffine and Costello (2011).

The models, however, differ in the specifications of the production functions (linear vs.

strictly concave) and the utility functions (isoelastic vs. linear). The linear specifica-

tion of the instantaneous utility function significantly simplifies the dynamics in the

Kaffine and Costello model, implying that the equilibrium path jumps immediately

to the stationary state without any transitional dynamics. Our study’s specification,

however, allows for rich dynamics.

Among studies recently surveyed by Currarini et al. (2016) on the role of networks

in the management of natural resources, İlkılıç (2011) is the closest to the question

this study explores. İlkılıç (2011) studies a static game in which a given number

of users exploit multiple sources of a common pool, and each user faces marginal

costs that are increasing in the total extraction from the site, given the presence of

source-specific congestion externalities. The main conclusion is that, in the unique

Nash equilibrium of the game, the rate of extraction at each source is proportional to

a centrality measure of the links of the source. The model we propose here provides

the basis for developing dynamic versions of the İlkılıç (2011) model.

Closely related to the present study is the now extensive literature on differen-

tial games in resources economics surveyed in Clemhout and Wan (1994), Dockner

et al. (2000), and Long (2011). In almost all the games considered in that literature,

the state variable is scalar (an exception is Clemhout and Wan, 1985, where multi-

species predator-prey interactions are allowed). Plourde and Yeung (1989) provide a

continuous-time version of the Levhari and Mirman (1980) dynamic game. A discus-

sion of the MPE for the case of an exhaustible resource exploited by n agents can be

found in Dockner et al. (2000) Section 12.1.2. Clemhout and Wan (1985) provides

various models of renewable resources and covers the one-dimensional case in which

the reproduction function is linear. The model in this paper is a multidimensional
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version of the models in Dockner et al. (2000) and Clemhout and Wan (1985). The

present study is also broadly related to the network literature that connects the Nash

equilibrium of static games to network statistics (e.g., centrality measures) (Ballester

et al., 2006, Bramuillé et al., 2014, and Allouch, 2015). We also connect the policy

extraction function of the agents in the Markovian equilibrium of the dynamic game

to a centrality measure of a network. The eigenvector centrality of the network we

study here is also related to the solution of a single-player game and, hence, the

Pareto efficient outcomes of the model and the efficiency prices of optimal extraction

plans. In the network literature, Elliott and Golub (2019) recently studied a similar

problem in a static framework.

The remainder of the paper is organized as follows. Section 2 describes the model

and discusses preliminaries. Section 3 presents the main results of the paper and

the description of the Nash equilibrium. Section 4 is devoted to comparative statics.

Section 5 concludes the study and provides sketches of possible generalizations or

applications of the developed techniques to other problems. Appendix A presents the

proofs of all analytic results.

2. The Model

We consider a common property resource that is diffused over an area partitioned

in subareas or regions. The resource is mobile in space, from one region to another,

in given proportions. For example, think of fish, mobile across different regional or

national waters in seas or oceans. The overall area is modeled here as a network where

the nodes represent the different regions, and the weighted edges, the connection

intensity. Technically, we consider a directed and weighted network G, with n nodes,

as many as the number of regions. The set of nodes is N := {1, .., n}, and gij ≥ 0

is the weight upon the edge connecting a source node i and a target node j, with

gij representing the intensity of the outflow from i to j, so that the n × n matrix

G = (gij), i, j ∈ N , is the adjacency matrix of the migration network G. When
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gij = 0 and gji = 0, there are no direct paths between nodes i and j. We assume

gii = 0 for all i ∈ N . Moreover, we assume G is strongly connected; that is, there

exists in G a path connecting any two nodes with corresponding strictly positive

coefficients gij, and G has no loops. Consequently, the matrix G is irreducible.

The evolution system. We denote by ei the i-th vector of the canonical basis

on Rn, by ⟨·, ·⟩ the inner product in Rn, and by R+ the set of nonnegative real

values. For all i ∈ N , Xi(t) stands for the mass at node i at time t, and we set

X(t) = (X1(t), . . . , Xn(t))
⊤. The evolution in time of mass Xi(t) on region i depends

on several factors:

(a) The natural growth ΓiXi(t) of the resource at time t at node i, embodied by

the (constant) natural growth rate Γi; for renewable resources, Γi > 0, and

for non-renewable resources, Γi ≤ 0;3

(b) The outflow of the resource from region i to a linked region j at time t, given

by gijXi(t), so that the net inflow at location i is given by( n∑
j=1

gjiXj(t)

)
−
( n∑

j=1

gijXi(t)

)
= ⟨Gei, X(t)⟩ −

( n∑
j=1

gij

)
Xi(t).

(c) The rates of extraction ci(t) at time t from region i, which represent the

decision variables of the problem and can be chosen by the agents.

Overall, we then have for all i

Ẋi(t) =

(
Γi −

n∑
j=1

gij

)
Xi(t) + ⟨Gei, X(t)⟩ − ci(t).

If A = (aij) is the diagonal matrix of the net reproduction factors, namely aij = 0 if

i ̸= j, and aii ≡ ai = Γi−
(∑j=n

j=1 gij

)
, c(t) = (c1(t), .., cn(t))

⊤, and x0 is the vector of

3If Γi = 0, the resource at node i, unless extracted, remains unchanged in quantity in time (only
moving to other nodes). However, Γi < 0 represents resources subject to natural decay.
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initial stocks at the different nodes, the evolution of the system in vector form isẊ(t) = (A+G⊤)X(t)− c(t), t > 0

X(0) = x0 ∈ Rn
+.

(1)

Moreover, we require the following positivity constraints:

ci(t) ≥ 0, t ≥ 0, and Xi(t) ≥ 0, ∀ t ≥ 0,∀i ∈ N (2)

Further, to exemplify what connection weights in G signify, we consider the par-

ticular case in which the resource moves toward less crowded areas, proportionally to

the difference Xi(t)−Xj(t) (Fick’s first law). When such a difference is positive, fish

move from node i to node j; when it is negative, from j to i. In this case, gij = gji,

with the net inflow at node i given by

−
n∑
j=1

gij(Xi −Xj) =
n∑
j=1

gijXj −
n∑
j=1

gijXi.

Consequently, G = G⊤, then A+G⊤ = A+G, simplifying the problem.

Harvesting Rules and Payoffs. We assume the regulator uses some of the regions

for the reproduction of the resource and assigns the others to agents for exploitation,

according to a territorial use right policy. That is, harvesting is prohibited at nodes

i ∈M ⊂ N , while every node i with i ∈ F := N \M is assigned exclusively to agent

i. Let f be the number of nodes of F , and n− f , that of M . We also assume agents

interact in a differential game, each maximizing the payoff

Ji(ci) =

∫ +∞

0

e−ρtu(ci(t))dt, i ∈ F, (3)

where ρ ∈ R is the discount rate,4 and

u(c) = ln(c) or u(c) =
c1−σ

1− σ
, σ > 0, σ ̸= 1

4The results hold regardless of the sign of ρ. Although a negative discount rate is uncommon in
applications, a stream of literature considers “upcounting” (see e.g., Le Van and Vailakis, 2005,
Dolmas, 1996, and Rebelo, 1991).
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(the case of a logarithmic u stands for the case σ = 1).

2.1. Primitives of the Network. We here introduce all relevant parameters of the

system and their interpretation. The reader is invited to read this section in parallel

with Section 2.2, where the same parameters are computed and commented upon in a

toy example. We begin by observing that, without extraction, the elements of matrix

A + G capture the joint effects of reproduction and migration; thus A + G can be

interpreted as the adjacency matrix of a signed network5 G ′, associated with G, where

a link from i to j represents how the stock i directly affects stock j, and a loop at i

represents how the stock i grows (or decreases) linearly in situ (see Figure 1).

Figure 1. A (strongly connected) migration network and the associated signed
network, with adjacency matrices G and A+G, respectively.

Eigenvalues and eigenvectors of the matrix A + G are essential to this study, as

Theorem 1 shows. Note that A+G, like G, is irreducible since their elements coincide,

except on the diagonal. Moreover, A+G is a Metzler matrix (i.e., it has nonnegative

off-diagonal elements). As a consequence of the Perron-Frobenius theorem, A + G

has a simple (not necessarily positive) real eigenvalue λ, strictly greater than the real

parts of the other eigenvalues and with a positive associated normalized eigenvector.6

5In the literature, signed network refers often to networks containing negative links. We borrow
the term for the case of nonnegative links but possibly negative loops. As we recall in Footnote 6,
negative loops do not preclude the possibility of using the Perron-Frobenius theorem.
6 The Perron-Frobenius theorem for nonnegative irreducible matrices extends to Metzler irreducible
matrices. Indeed, if α is greater than the spectral radius of A + G, Perron-Frobenius (see Bapat
and Raghavan (1997), Theorem 1.4.4) applies to the nonnegative irreducible matrix A + G + αI,
with the same eigenvectors as A+G’s, whose eigenvalues are A+G’s increased by α. In particular,
Metzler irreducible matrices have a simple (although not necessarily positive) eigenvalue, associated
with a positive eigenvector, strictly greater than the real parts of the other eigenvalues.
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The transpose A + G⊤ enjoys similar properties. We then order the eigenvalues

{λ, λ2, λ3, . . . , λn} of A+G as follows:

λ > Re(λ2) ≥ Re(λ3) ≥ ... ≥ Re(λn)

and call η and ζ respectively the right and left eigenvectors of A+G associated with

λ, and both are positive. The rest of the section is then devoted to the interpretation

of λ, η, ζ, and associated useful quantities.

2.1.1. Trajectories in the long run. The interpretation of the eigenvector ζ is straight-

forward: ζ represents the long-run direction of convergence of the trajectories of the

system when the extraction is null. Indeed, when c ≡ 0, the system evolution is

entirely ruled by A + G⊤, and it is well known that its trajectories converge to the

direction of the eigenvector associated with the dominant eigenvalue. Moreover, the

trajectories starting on a ray through ζ remain steadily on that ray at all times.

2.1.2. Weighted Total Mass. The total mass (or aggregate stock) of the resource is

given by
∑n

i=1Xi(t). However, we rather consider the weighted total mass7 given by

⟨X(t), η⟩ :=
n∑
i=1

Xi(t)ηi.

The reason ⟨X(t), η⟩ is a meaningful way of aggregating stocks is explained in Section

2.1.5. Note that total and weighted total masses grow, in time, at the same rate.

Indeed, if m = mini ηi and M = maxi ηi, the fact that η > 0 implies

1

M
⟨X(t), η⟩ ≤

n∑
i=1

Xi(t) ≤
1

m
⟨X(t), η⟩ ≤ M

m

n∑
i=1

Xi(t), ∀t ≥ 0. (4)

2.1.3. Growth Rate of the System. When ci = 0, ∀i (1) implies ⟨Ẋ(t), η⟩ = λ⟨X(t), η⟩,

and

⟨X(t), η⟩ = eλt⟨x0, η⟩.

7Note that if η is chosen so that
∑

i ηi = 1, then ⟨X(t), η⟩ is the weighted average of the Xi(t).
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Thus, given (4), the eigenvalue λ represents the total mass growth rate without ex-

traction. Moreover, as the expansion in rows of the equality (A+G)η = λη gives

(λ− ai)ηi =
n∑

j=1,j ̸=i

gijηj > 0, (5)

with at least one of the gij strictly positive, the net reproduction rates ai satisfy

ai < λ, ∀i ∈ F. (6)

2.1.4. Detrended Trajectory. It is sometimes useful to consider the detrended trajec-

tory of the system without extraction Y (t) = e−λtX(t) so that

Ẏ (t) = (A+G⊤ − λI)Y (t) (7)

with null dominant eigenvalue. Hence, ⟨Ẏ (t), η⟩ = ⟨Y (t), (A+G− λI)η⟩ = 0 and

⟨Y (t), η⟩ ≡ ⟨x0, η⟩, ∀t ≥ 0, (8)

so that the state X(t) has constant projection in time along the direction of η, magni-

fied by the growth factor eλt. Moreover, the motion of the detrended trajectory Y (t)

takes place entirely on the simplex

⟨y − x0, η⟩ = 0, y ≥ 0 (9)

obtained by intersecting the plane of ⟨y, η⟩ = ⟨x0, η⟩ with the positive orthant.8

2.1.5. Meaning of the eigenvector η. Von Neumann prices represent a straightforward

interpretation of the components ηi of η; that is, ηi measures the long-term productiv-

ity of the system at node i. Indeed, consider the detrended trajectory Y i(t) starting

with a unitary mass concentrated in the i-th node, namely x0 = ei. Thus, (8) gives

⟨Y i(t), η⟩ = ηi, implying that the total mass, in the long run, is maximized when such

unitary mass is allocated in the node where ηi is maximal.

8Note that we obtain the same equation as in (9) if we replace x0 with any other point on the
simplex. Moreover, trajectories starting from different points of the simplex are necessarily toward
the intersection of ζ with the simplex.
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A further interpretation of the ηi is as follows. Assume α > 0 is such that the

detrended trajectory Y (t) converges to αζ, as t → ∞. Then (8) implies α ⟨ζ, η⟩ =

⟨x0, η⟩ and, choosing the norms of η and ζ so that ⟨ζ, η⟩ = 1 =
∑

i ηi, we get

α =
∑
i

ηix0i, and ηi =
∂α

∂x0i
(10)

implying α is a weighted average of the initial stocks x0i, which weights are the ηi,

and ηi measures how much site i’s initial stock affects the long-run stock αζ. That is,

the trajectory of the system, when the extraction is null, grows toward the long-run

direction proportionally to the initial weighted total mass ⟨x0, η⟩.9

Network theory presents another interpretation of η, where ηi represents the eigen-

centralities of nodes i (not of G, but of the signed network G ′). Note that since

(A + G)η = λη, and the matrix λI − A is diagonal with all positive diagonal coeffi-

cients λ− ai, one has

(λI − A)−1Gη = η. (11)

Then η is the dominant eigenvector (of eigenvalue 1) also of a migration network with

adjacency matrix (λI−A)−1G; that is, where the coefficients of the original adjacency

matrix G are magnified by reproduction rates: the i-th row of G is multiplied by 1
λ−ai ,

and flows are magnified by such factor, the greater ai, the stronger the effect.

Consistently, when the network is complete (i.e., all nodes are positively connected)

with equal weights, and the network structure has a neutral effect on nodes, ηi signals

the order of net or natural productivity of nodes. Indeed, assume gij = β > 0 for all

i ̸= j, and gii = 0. Combining the i-th and ℓ-th row of (5), we get ηℓ =
ai−λ−β
aℓ−λ−β

ηi, so

that (6) implies aℓ − λ− β < 0, and hence

ηℓ ≥ ηi ⇐⇒ aℓ ≥ ai ⇐⇒ Γℓ ≥ Γi.

See Appendix A.1 for further analyses of the hierarchy of nodes in terms of eigen-

centrality, through the several examples therein.

9The property remains true when agents are active, and the extraction strategies are those described
in Theorem 1, with the difference that the net growth rate λ is diminished by the extraction.
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2.2. Toy Examples. We introduce an example we will work out, through various

sections of the paper to illustrate essential concepts. We assume there are three sites

(nodes 1, 2, and 3), with the third being the only breeding ground for the resource,

namely Γ1 = Γ2 = 0, Γ3 = 2a > 0. For simplicity, we assume all offsprings leave site

3; thus, the net rate of growth a3 is zero. The resource flows at rates a > 0, b ≥ 0

across links, so that the migration and the adjacency matrix are, respectively,

G =


0 b a

b 0 a

a a 0

 , A+G =


−(a+ b) b a

b −(a+ b) a

a a 0

 .

 
 

1  

s1  

a1  

a2
 

1 

.5 .5 
s3  s2  

b  

1 

.5 s1  
.5 .5 

1 
a1  a2

 

s2  s3  

2
 

3
 

a 

a  
a  
a  

a  −2a
 −(a+b)  

−(a+b)  

b  

Figure 2

Figure 2 illustrates the signed network, with matrix A+G.

We consider first the evolution of system (1) when c ≡ 0.

Straightforward calculations yield λ = a and ζ = η =

(1, 1, 2)⊤ and the non-dominant eigenvalues λ2 = −2a

and λ3 = −(a+2b), associated respectively to the left and

right eigenvectors (equal, in this case, as the network is

symmetric) (−1, −1, 1)⊤ and (1, −1, 0)⊤.

Note that site 3 is overall the most central (for it is the

most productive) for all values of a, b. It remains true in

particular when a = b, and the dominant eigenvector of G

is η◦ = (1, 1, 1); that is, when the sites have equal centrality in the migration network.

Consistent with (11), another way of analyzing how productivities and the migra-

tion network interact is to rewrite equation (A+G)η = λη as
1

2a+b
0 0

0 1
2a+b

0

0 0 1
a

Gη = η.

Note that the productivity of a site determines a multiplier of its out-links in the

migration network, with higher multipliers for more productive nodes. The same
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observation also implies the eigenvector centralities of the migration network give the

overall centralities when all sites are equally productive.

The detrended trajectory remains on the simplex given by (9) and tends to the

intersection between the simplex and ζ (or η), (i.e., to αζ). Moreover, (7) implies

that the vector field Ẏ is given by

Ẏ =


−(2a+ b) b a

b −(2a+ b) a

a a −a

Y. (12)

Now we consider two different instances of this problem. In the first case, we assume

b > 0, so that the network is complete; in the second case, we assume b = 0, so that

the network is strongly connected but not complete.

In the case of a complete network (a, b > 0), (12) shows that the vector field Ẏ

is pointing strictly inward at any point Y on the boundary of the simplex (i.e., a

Y with one null coordinate), so that the trajectory is entering the interior of the

simplex (see Figure 3(a)). This property of straightforward interpretation descends

from the completeness of the network: any region where the stock has dropped to

zero immediately receives a positive inflow from a region where the stock is positive.

Figure 3
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By contrast, the property is lost when the migration network is strongly connected

but not complete, as when b = 0. For instance, a trajectory at Y = (1, 0, 0)⊤ has as-

sociated vector field Ẏ = (−2a, 0, a)⊤, so that the trajectory is there initially tangent

to one side of the simplex, as shown in Figure 3(b). However, the inward-pointing

property continues to hold on a subset of the simplex (i.e., in the original 3D space,

on a cone contained in the first orthant).

When agents are active with positive extraction, the difference between a complete

and a mere strongly connected network has a relevant consequence: in the first case,

a small extraction is possible from every initial nonnegative (and non-identically null)

value of the stocks, as every node with a potentially null stock receives an instanta-

neous positive inflow from other nodes; in the second case, the same is true only from

stocks in a proper subset of the positive orthant.

3. Existence of Markovian Equilibria

In investigating the Nash equilibria of the game, we restrict the search to stationary

Markovian equilibria; that is, when the extraction rates ci of the agents are described

as reaction maps to the observed level of the stock X(t) at time t

c(t) = ψ(X(t)), with ci(t) = ψi(X(t)), ∀i ∈ N

(clearly, ψi ≡ 0, i ∈ N \ F ). Thus, the system evolves per the closed-loop equation

(CLE) Ẋ(t) = (A+G⊤)X(t)− ψ(X(t)), t > 0

X(0) = x0,
(13)

provided that such an equation has a unique solution. More precisely,

ψ = (ψ1, ψ2, . . . , ψn), ψi : S → [0,+∞),

where S is a subset of Rn
+ (possibly Rn

+ or a cone contained in Rn
+), depending on the

data of the problem. We denote the set of admissible strategy profiles by
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A = A1 × A2 × · · · × An,

where Ai is the collection of all (re)actions ψi of player i (or a null reaction in nodes

with reserves). We denote by X(t;ψ;x0) or Xψ,x0(t) the solution of (13). We also

adhere to the custom of denoting by ψ−i all components of ψ different from the i-th,

so that ψ = (ψi, ψ−i). As briefly argued at the end of Section 2.2, the choice of S

cannot always be the positive orthant Rn
+, differing, for instance, in the cases of a

complete or noncomplete network, which justifies the following definition.

Definition 1 (Consistent couple) Assume that, for any x0 ∈ S and any

ψ ∈ A, there exists a unique solution Xψ,x0 to (13), with Xψ,x0(t) ∈ S for all t ≥ 0.

Then, the couple (S,A) is said to be consistent.

Note that if (S,A) is a consistent couple, the initial stock x lies in S, and players

select their strategies in A, then the trajectory always remains in S; that is, S is

invariant for strategies in A. This has a direct consequence on the subgame perfection

of Nash equilibria, as explained below.

Definition 2 (Markovian Perfect Equilibrium) Assume the couple (S,A)

is consistent. We say that a strategy profile ψ ∈ A is an MPE if, for all x0 ∈ S and

i ∈ F , the control ci(t) = ψi(X
ψ,x0
i (t)) is optimal for the problem of Player i, given

by the state equation (1) in which cj(t) = ψj(X(t)) for every j ̸= i, the nonnegative

state and extraction rates constraints (2), and the discounted total payoff Ji(ci) given

by (3) to be maximized over the set of admissible controls Ai.

Hence, if the problem is set at a consistent couple (S,A), a Markovian Nash equi-

librium ψ in A is subgame perfect by definition: if a player deviates (purposefully or

mistakenly) from ψ, they cannot leave the set S, and the strategy profile ψ remains

feasible for a Nash equilibrium from the state reached in S.

Identifying a suitable consistent couple (S,A) is crucial to ensure subgame perfec-

tion. Thus, we must specify the choice of S for different networks (see Section 3.4).
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Accordingly, we will proceed by initially assuming that the problem can be set at a

consistent couple (S,A), and the equilibrium lies in A (Theorem 1 in Section 3.1) by

later identifying a consistent couple in different sets of data, so that the assumptions

of Theorem 1 are satisfied (Section 3.4).

3.1. Dynamic Programming. In the forthcoming Theorem 1 and subsequent re-

marks, we establish the existence of an MPE, compute an explicit formula for the

equilibrium, the value function of players, and other relevant quantities. We solve the

problem of player i via dynamic programming as follows:

(1) We define Vi, the value function (or welfare) of player i as the highest payoff

of player i over available choices of the player’s strategy ci, namely

Vi(x) = sup
ci∈Ai

Ji(ci;x),

where x is the initial stock of the resource, and the notation Ji(ci;x) highlights

the dependence in Ji;

(2) Assuming the strategies ψ−i is known, we associate with the problem of player

i a Hamilton-Jacobi-Bellman (HJB) equation:

ρv(x) = max
ci≥0

{
u(ci)− ci

∂v

∂xi
(x)

}
+ ⟨x, (A+G)∇v(x)⟩ −

∑
j∈F−{i}

(
∂v

∂xj
(x)

)
ψj (14)

to which Vi is a (candidate) solution;

(3) We establish the relationship between the maximizing control c∗i and the value

function Vi, u
′(c∗i ) =

∂Vi
∂xi

(x); thus, at every moment, the marginal utility from

extraction is equal to the marginal cost of having a smaller amount of the

resource in the future at node i. Note that, in both cases of power function

and logarithmic utility, u is invertible on the positive real axis such that the

previous relationship can be rewritten as

c∗i = ψi(x) ≡ (u′)−1

(
∂Vi
∂xi

(x)

)
, (15)

which becomes a closed-loop formula for c∗i once Vi is known;
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(4) Finally, in Theorem 1, we exhibit the value functions Vi and a strategy profile

ψ∗ = (ψ∗
i , ψ

∗
−i), with linear dependence on the observed stock X(t) that fulfills

the above properties for every i ∈ F , thereby yielding an MPE. Specifically,

we provide an analytic formula for ψ∗ as a function of X(t).

We now set

θ :=
ρ+ (σ − 1)λ

1 + (σ − 1)f
. (16)

and assume θ > 0.10

Theorem 1 Assume u(c) = c1−σ

1−σ , with σ > 0, σ ̸= 1, θ > 0. Assume also that

(S,A) is a consistent couple and that ψ∗ : S → Rn
+ given by

ψ∗
i (x) =

θ

ηi
⟨x, η⟩ , for all i ∈ F , ψ∗

i (x) = 0, for all i ̸∈ F (17)

is a strategy profile in A. Then,

(i) ψ∗ is an MPE of the game in the sense of Definition 2;

(ii) the value function of agent i along such equilibrium is

Vi(x) =
θ−σησ−1

i

1− σ
⟨x, η⟩1−σ ; (18)

(iii) If X∗(t) = Xψ∗,x0(t) is the trajectory at the equilibrium then

⟨X∗(t), η⟩ = eλ̂t⟨x0, η⟩ (19)

with

λ̂ = λ− θf =
λ− fρ

1 + (σ − 1) f
. (20)

See Appendix A.2 for the proof of Theorem 1.

Several remarks are due here:

10Since λ is the implicit rate of growth of the resource, the assumption is the equivalent for dis-
tributed resources of the necessary and sufficient condition for the existence of a linear MPE with a
homogeneous resource when the f agents have a common constant elasticity of intertemporal sub-
stitution and the state equation is linear in the stock (see e.g., Dockner et al. (2000) p. 326, for
exhaustible resources). If the condition is violated, the utility of the players is not bounded along
the (candidate) equilibrium.
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(1) The same result, with due changes, applies to the case of logarithmic utility

u(c) = ln(c). Although we do not discuss this in detail, it can be proven that

the associated MPE is obtained from (17) setting θ = ρ, corresponding to the

choice σ = 1 in (16). Consequently, the value function of agent i reads as

Vi(x) =
1

ρ

[
ln

(
ρ

ηi
⟨x, η⟩

)
+ λ− fρ

]
.

(2) For all choices of u, the extraction ψ∗
i (x) and the value function Vi(x) of player

i are greater at nodes i with a smaller ηi. Therefore, agents appear to self-

regulate, extracting less when at a more central node. However, as in (20), the

rate of growth is independent of the agent’s assignment; this propensity does

not give the regulator a tool to promote the conservation of the resource: an

agent optimally extracts less at more central nodes, which offsets the negative

effects of exploiting more productive sites.

(3) Note that (18) implies ∂Vi(x)
∂xj

= θ−σησ−1
i ⟨x, η⟩−σ ηj so that, for any couple of

indices j, k in N , one has

∂Vi(x)
∂xj

∂Vi(x)
∂xk

=
ηj
ηk
, (21)

where the left-hand side represents the relative shadow prices of the resources

at nodes j and k, as evaluated by player i. Nonetheless, the right-hand side

does not depend on i, implying that every player gives the same relative

evaluation of stocks, independently of the node at which they stand. Section

3.4 further discusses this result.

(4) Equation (19) says that the weighted total mass ⟨X∗(t), η⟩ of the resource at

equilibrium grows with the rate λ̂, which equals the natural growth rate λ

diminished by a quantity proportional to θ and the number of players f . As a

consequence of (4), λ̂ is also the growth rate in the long run of the aggregate

stock
∑

iXi(t).
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3.2. Long-Run Stocks. We now analyze the long-term behavior of the stock, par-

ticularly in establishing if the stock tends to stabilize over time around certain values

at different nodes. In section 2.1.1, we noticed that, for a null extraction, the con-

vergence is toward the direction of the eigenvector ζ associated with the dominant

eigenvalue λ. Here, we will explain how the equilibrium extraction reduces the growth

rate to λ̂ = λ− θf and modifies the direction of the associated eigenvector to ζ̂.

We first introduce some useful notation. We define ξ as the vector with components

ξi = η−1
i if i ∈ F , and ξi = 0 otherwise; and E := ξ η⊤, which is the n × n matrix

obtained by multiplying the column vector ξ by the row vector η⊤:

ξ =
∑
i∈F

η−1
i ei, E := ξ η⊤ = (ξiηj)ij. (22)

We describe the equilibrium trajectory through the eigenvectors/eigenvalues of the

matrix of the CLE (13) obtained for ψ := ψ∗; that is, Ẋ(t) = (A+G⊤ − θ E)X(t), t > 0

X(0) = x0.
, (23)

as (22) implies that (17) can be written in vector form as

ψ∗(x) = θ⟨x, η⟩ξ = θ ξη⊤x = θEx,

(with θ = ρ in the case of logarithmic utility). We now set

θ1 =
λ− Re(λ2)

f
,

with 0 < θ < θ1 equivalent to λ̂ > Re(λ2). The properties of E (in Appendix A.3,

Lemma A.1) imply the following result, proved in Appendix A.3.

Lemma 1 Assume 0 < θ < θ1.

(i) A + G − θE⊤ has eigenvector η associated with the eigenvalue λ̂ = λ − θf ;

hence, there exists a real eigenvector ζ̂ of A+G⊤ − θE associated with λ̂.



ON COMPETITION FOR SPATIALLY DISTRIBUTED RESOURCES IN NETWORKS 21

(ii) Consider a basis {ζ, v2, . . . , vn} of generalized eigenvectors11 of A + G⊤, as-

sociated with the eigenvalues {λ, λ2, . . . , λn}. Then {ζ̂ , v2, . . . , vn} is a ba-

sis of generalized eigenvectors for A + G⊤ − θE associated with eigenvalues

{λ̂, λ2, . . . , λn}.

The above lemma implies that the extraction process modifies the direction of

only the dominant eigenvector of the matrix A + G⊤, which changes from ζ to ζ̂,

and the associated eigenvalue, which decreases from λ to λ̂. Notably, the remaining

eigenvalues and (left and right) eigenvectors remain the same.

Given that λ̂ and ζ̂ depend continuously on θ, and ζ > 0, then there exists θ2 > 0

such that ζ̂ ≡ ζ̂(θ) is positive for all θ < θ2. We then set

θ2 = sup{θ : ζ̂(s) > 0, ∀s ∈ [0, θ]}.

The decomposition of the equilibrium trajectory along the eigenvector directions

(which the reader finds in Appendix A.3, Lemma A.2) implies the following result.

Proposition 1 Assume 0 < θ < θ1, let X∗ be the equilibrium trajectory de-

scribed in Theorem 1. Then, there exists α̂ ≥ 0 such that the detrended trajectory

X∗(t)e−λ̂t satisfies

lim
t→+∞

X∗(t)e−λ̂t = α̂ ζ̂.

If, in addition, θ < θ2, the trajectory definitively enters the positive orthant.

See Appendix A.3 for the proof. Notably, the proposition implies the following

facts.

First, in the long run, the stock X∗ tends to be distributed in the various nodes pro-

portionally to the components of ζ̂. Indeed, when λ̂ is (remains) the eigenvalue with

the greatest real part among {λ̂, λ2, . . . , λn}, the equilibrium trajectory X∗ converges

toward the direction of the associated eigenvector ζ̂.

11A generalized eigenvector of A+G⊤ associated with the eigenvalues λ̃ is an element of the kernel
of (A+G⊤ − λ̃I)mv = 0 for some m ∈ N.
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Second, the convergence within the positive orthant is guaranteed by a sufficiently

small θ, expressed by the condition 0 < θ < min{θ1, θ2}. That has a straightforward

interpretation for logarithmic utility (θ = ρ, corresponding to σ = 1) given that a

small enough θ can be seen as agents being sufficiently patient. If instead σ ̸= 1,

and the number of agents is given, θ ≈ 0 means ρ ≈ ρ̂ ≡ (1 − σ)λ. In optimal

growth theory, ρ̂ represents a critical discount rate (the minimum, in the case of

one player, for which an optimal solution exists). The case of an exogenous growth

rate is dealt with in Brock and Gale (1969), while the case of a linear technology is

treated extensively in McFadden (1973)12. Given that, with linear technology, there

is a trade-off between the growth rate and the intensity of consumption, we can think

that agents for whom ρ ≈ ρ̂ are patient in the generalized sense that they prefer

a high growth rate over immediate consumption. The peculiarity in our multiagent

setting is that the sign of the difference ρ− ρ̂ is not necessarily positive but depends

on the sign of the denominator in the formula defining θ.

3.3. Toy Examples Revisited. We apply the results in the previous sections to the

toy examples of Section 2.2. According to Theorem 1, the equilibrium strategy of a

player at nodes 1, 2, or 3 respectively, is

ψ∗
1(x) = ψ∗

2(x) = θ(x1 + x2 + 2x3), ψ∗
3(x) =

θ

2
(x1 + x2 + 2x3),

with respective value functions

V1(x) = V2(x) = v∗, V3(x) =
v∗

21−σ
, where v∗ =

(x1 + x2 + 2x3)
1−σ

θσ (1− σ)
.

We now assume there are two agents, assigned to nodes 1 and 2, while node 3 is used

as a reserve. Consistent with Lemma 1, the dominant eigenvalue and eigenvector of

the matrix A + G⊤ (i.e., λ = a and ζ = (1, 1, 2)⊤) are changed by extraction into

those of the matrix A+G⊤ − θE

λ̂ = a− 2θ, and ζ̂ =

(
1− 2θ

a
, 1− 2θ

a
, 2

)⊤

,

12In both studies, time is discrete. However, analogous results hold in continuous time.



ON COMPETITION FOR SPATIALLY DISTRIBUTED RESOURCES IN NETWORKS 23

while the other (right and left) eigenvalues/eigenvectors remain unchanged. Moreover,

θ1 = 3a
2
, θ2 = a

2
, and ζ̂ is positive, with the equilibrium trajectory X∗(t) converging

toward the direction of ζ̂ whenever 0 < θ < min{a
2
, 3a

2
} = a

2
.

Finally, to introduce the next section on subgame perfection, we analyze the admis-

sibility of the equilibrium strategy profile at points of Rn
+. In particular, we hint at

the fact that the property of the vector field Ẏ of pointing strictly inward, highlighted

in Section 2.2, plays a role in the admissibility of the strategy profile ψ∗. Equation

(19) implies that the detrended trajectory Y ∗(t) = e−(a−2θ)tX∗(t) lies on the simplex

⟨η, y−x0⟩ = 0, y ≥ 0 tending toward the intersection between such plane and ζ̂. The

vector field Ẏ ∗ is given by

Ẏ ∗ =


θ − 2a− b b− θ a− 2θ

b− θ θ − 2a− b a− 2θ

a a 2θ − a

Y ∗.

In the case of a complete network (b > 0), ψ∗ is admissible at every point of the

boundary of the simplex, provided θ < min{a
2
, b}, as the vector field remains point-

ing strictly inward. In the case of a merely strongly connected network (b = 0),

with similar calculations, one can show that the detrended trajectory Ỹ from, say,

Ỹ0 = e1, starts from a null second coordinate and has ˙̃Y2 = −θ < 0, thus leaving

immediately the positive orthant for every θ > 0. Hence, the equilibrium profile fails

to be admissible at some values of Rn
+, let alone subgame perfect. The difference in

the two instances of the toy example explains why in the next section admssibility

and subgame perfection of the equilibrium are discussed separately for complete and

for merely strongly connected networks.

3.4. Subgame Perfection. Accordingly, to have subgame perfection of the equilib-

rium ψ∗ in Theorem 1, we must identify a consistent couple (S,A) for the problem:

a set of initial data S and a set of strategy profiles A such that S is invariant for all

strategies in A; that is, a stock vector X(t) initially in S remains in S when players

choose strategies in A.
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3.4.1. Complete Networks. We first discuss the case in which the network G is com-

plete: all nodes are connected by positive edges in both directions: gij > 0, ∀i, j ∈ N

with i ̸= j, and gii = 0,∀i ∈ N . Under this assumption, as large an S as possible can

be chosen; that is

S = Rn
+,

coupled with a set of strategies Ai for player i, i ∈ F , given by

Ai :=

ψi : R
n
+ → [0,+∞) :

(i)ψi is Lipschitz-continuous

(ii)ψi(x) ≤
〈
(A+G⊤)x, ei

〉
for all x ∈ Rn

+ such that xi = 0.

 (24)

When i ̸∈ F , we assume Ai contains only the null strategy. Note that the Lipschitz-

continuity13 of ψi implies that the CLE (13) has a unique solution, X(t), whereas the

condition (ii) ensures that, when the stock at node i is null, the extraction ψi can be,

at most, as much as the inflow at i from the other nodes, so that the stock remains

nonnegative at all times. Clearly, (Rn
+,A) is a consistent couple.

However, is the strategy profile described in (17) in A? The next proposition

specifies for which values of the data this situation is true.

Proposition 2 The strategy profile ψ∗ described in (17) lies in A (and conse-

quently, ψ∗ is an MPE) if and only if

0 < θ ≤ θ̂ = min

{
gij
ηi
ηj

: i ∈ F, j ∈ N, i ̸= j

}
. (25)

Specifically, if (25) is violated, there exist initial data x0 ∈ Rn
+ such that the trajectory

X∗(·) starting at x0 leaves the positive orthant Rn
+ at some times.

The proof is in Appendix A.4. Note that θ̂ > 0, given the full connection of the

network. However, Condition (25), again, requires that agents are sufficiently patient

in extracting the resource.

13A ψi is Lipschitz-continuous if there exists L > 0 such that |ψi(x) − ψi(y)| ≤ L|x − y|, for every
x, y ∈ Rn

+. Lipschitz-continuous functions are also differentiable a.a. (with respect to Lebesgue
measure) with a bounded derivative, at the points where it exists.
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3.4.2. Strongly Connected Networks. For a strongly connected network where some

gij, i ̸= j are null, Proposition 2 implies that there exist some initial positions x0

from which the trajectory X∗ solving (23) is not feasible; that is, X∗(t) leaves the

positive orthant, at least for some time t. Nonetheless, exhibiting a consistent cou-

ple is possible, at least with capacity constraints, expressing that extraction is more

challenging when the resource is less abundant. More precisely, we assume

ψi(x) ≤ βixi, ∀i ∈ F

where βi ≥ 0 are given catchability parameters, and define Aβ = Aβ1
1 × · · · × Aβn

n ,

where the strategy set of player i is

Aβi
i :=

ψi : S → [0,+∞) :
(i)ψi is Lipschitz-continuous

(ii)ψi(x) ≤ βixi, for all x ∈ S.


Strategies in Aβj

j at reserve nodes j ̸∈ F are chosen null.

We now establish the existence of a cone S in Rn
+ such that (S,Aβ) is a consistent

couple. For a positively defined matrix P ∈ Rn×Rn and a real constant d, we define

the ellipsoid depending on P and d

E(P, d) :=
{
x ∈ Rn

+ : x⊤Px ≤ d
}
,

and the cone through the origin containing the positive eigenvector ζ

S∗ = {ry : r > 0, y ∈ ζ + E(P, d)}. (26)

Note that for a small enough d, E(P, d) is an arbitrarily small neighborhood of the

origin, regardless of the choice of P . Consequently, for a small enough d, both ζ +

E(P, d) and S∗ are entirely contained in (0,+∞)n.

Proposition 3 Let ψ∗ be the strategy profile described in (17), X∗(t) :=

X(t;x0, ψ
∗), the associated trajectory, and S∗, the cone defined in (26) and contained

in (0,+∞)n. For small enough catchability parameters βi > 0, there exists a threshold
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θβ ∈ (0,min{θ1, θ2}) such that when θ ∈ (0, θβ) the couple (S∗,Aβ) is consistent, the

strategy profile ψ∗ is admissible, and, hence, ψ∗ is an MPE in (S∗,Aβ).

See Appendix A.4 for the proof.

3.5. Uniqueness of the Equilibrium. Finding all the MPE for the problem would

require simultaneously solving f interdependent partial differential equations of type

(14), one for every player. When the state variable is scalar, the system reduces to a

system of ordinary differential equations, for which standard uniqueness results can

sometimes be used (e.g., Cvitanić and Georgiadis, 2016), but with a state variable

dimension of at least two, we are not aware of any uniqueness result for systems of

PDE of such general form. Nonetheless, assuming that linear strategies are salient

because of their simplicity, and players are, therefore, more likely to coordinate on

this kind of equilibria rather than (possibly existing) alternative equilibria with a

more complex structure, we analyze uniqueness among linear strategies.

Regarding the strategy profile ψ∗ given by (17), we can prove that ψ∗ is the unique

linear MPE for the problem:

(i) on (Rn
+,A), when the network G is complete;

(ii) on (S∗,Aβ), for small enough β > 0 and θ > 0, when G is strongly connected.

Theorem 2 Assume G complete, θ ∈ (0, θ̂), and f < n. The hypotheses of

Theorem 1 are then verified at the consistent couple (Rn
+,A), and the strategy profile

ψ∗ described is the unique linear MPE of the game.

See Appendix A.5 for the proof of this theorem, though we explain the main ideas

by working out the example with a complete network in Section 2.2, where we set

b = a > 0. Assume, in equilibrium, two players harvesting at nodes 1 and 2 using the

linear strategies cj(t) = ⟨wj, X(t)⟩ ≡ wj1X1(t)+w
j
2X2(t)+w

j
3X3(t), with w

j
i ≥ 0, while

node 3 is the reserve. The evolution of the system is then Ẋ(t) = (A+G⊤−W )X(t),
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with the matrix W having rows w1, w2, and w3 = 0. More explicitly,

(A+G⊤ −W ) =


−2a− w1

1 a− w1
2 a− w1

3

a− w2
1 −2a− w2

2 a− w2
3

a a 0

 .

We show that this linear equilibrium necessarily coincides with (17).

We denote by W−j the matrix W where the j-th line is replaced by a vector of

zeros, so that W = W−1 +W−2. For wji < a for all i ̸= j, both A + G⊤ −W and

A+G⊤−W−j are Metzler matrices with strictly positive out-of-diagonal entries. Thus,

as in Footnote 6, they have a single dominant eigenvalue, respectively ℓW and ℓj, with

positive left eigenvectors ηW and ηj. At the equilibrium, each agent j maximizes the

utility, given the evolution described by Ẋ(t) = (A + G⊤ −W−j)X(t) − ejcj(t). A

standard optimization argument applied separately to both players shows that their

optimal policy is linear; more precisely, cj(t) = dj ⟨X(t), ηj⟩, with dj = θj⟨ηj, ej⟩
−1

and θj = (ρ+ (σ − 1)ℓj)σ
−1. Consequently,W⊤

−1 = d2η
2e⊤2 , andW

⊤
−2 = d1η

1e⊤1 . From

ℓ1η
1 = (A+G−W⊤

−1)η
1 = (A+G−W⊤)η1 +W⊤

−2η
1 = (A+G−W⊤)η1 + θ1η

1,

we derive (A + G −W⊤)η1 = (ℓ1 − θ1)η
1 = ℓ1−ρ

σ
η1. Since by Perron-Frobenius the

only positive eigenvector of A + G −W⊤ is ηW (except for positive multiples), one

has η1 = ηW and, similarly, η2 = ηW . Hence, in any linear MPE, all policy functions

have the form cj(t) = dj
〈
X(t), ηW

〉
, so that all agents tacitly agree on the relative

values of the stocks in the different sites. Moreover, given that

(A+G)ηW = (A+G−W )ηW +WηW = (A+G−W )ηW +W⊤
−1η

W +W⊤
−2η

W

= (A+G−W )ηW +W⊤
−1η

2 +W⊤
−2η

1 = (ℓW + (θ1 + θ2))η
W ,

ηW is the unique positive eigenvector of (A + G); hence, ηW = η. Thus, the above

consensus can only be reached in terms of the eigenvector centralities of the original

network A+G. Finally, with further calculations, one proves that the coefficients dj

are necessarily those described in Theorem 1.
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The presence of reserves is quite primal in the study subject; thus, the assumption

f < n in Theorem 2 can be considered not to be particularly strong. However, note

that this assumption is indispensable: one can construct examples of systems with

f = n (which verifies the other assumptions of the theorem) in which more than

one linear equilibrium can be constructed. However, these examples are specific, and

multiplicity of linear equilibria likely occurs only on a subset of measure zero of the

space of admissible parameters.

A counterpart of the result proved in Theorem 2 can be stated for the second

consistent couple characterized in Proposition 3; that is, the cone and the effort-

constrained controls. Here, we do not need to restrict to complete networks but must

work with sufficiently small catchability parameters βi. The result is as follows.

Theorem 3 Suppose the hypotheses of Proposition 3 are verified. If θ ∈ (0, θ1)

and β > 0 are small enough, the MPE given in Theorem 1 and Proposition 3 is the

unique linear MPE of the game on (S∗,Aβ).

Appendix A.5 presents a sketch of the proof (similar to and even simpler than the

one of Theorem 2).

4. Comparative Statics

4.1. Optimal Location of the Reserves. Here, we assume the number f of extrac-

tion permits is given, and intervention of the regulator is limited to deciding where

the n− f natural reserves are placed among the available n regions. This decision is

made at the beginning of the game and never changed afterward.

We assume agents choose their strategies according to Theorem 1, and such equi-

librium strategies are admissible for the given set of data for any choice of reserves

placement. The regulator then compares the outcome associated with the different

placements and chooses the configuration maximizing the sum of utilities of players.

Hence, if F = {F ⊂ N : |F | = f} describes all possible subsets of N having f
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elements, the regulator maximizes with respect to F ∈ F

W (x, F ) =
∑
i∈F

Vi(x), (27)

where value functions Vi are those described in Theorem 1, and x is the initial distri-

bution of the resource through the nodes.

Proposition 4 Under the assumptions of Theorem 1, assume the strategies

profile ψ∗ is admissible at x0 for any choice of F ∈ F . The social welfare W defined

in (27) is then maximized if the natural reserves are built at a subset F of n−f nodes

i, where ηi are highest. If F ∗ ∈ F is one of such choices, then

max
F∈F

W (x0, F ) = W (x0, F
∗) =

θ−σ

1− σ
⟨x0, η⟩1−σ

∑
i∈F ∗

ησ−1
i . (28)

The proof is straightforward, as each term of the sum in (28) is a nonincreasing

function of ηi. This result has a clear explanation. In Section 2.1, we show that ηi

measures the long-term productivity at node i, and, in (21), every player gives the

same evaluation of stocks, independent of the node at which they stand. Moreover, as

observed in Section 3.2, “patient” agents (i.e., agents whose optimal rate of extraction

θ is small) prefer to consume dividends rather than stocks. Given that resource flows

extracted in the different regions are perfect substitutes, the regulator must optimally

preserve those units of stocks that prospectively have higher productivity.

In the examples of Section 2.2 with two players, where the dominant eigenvector is

η = (1, 1, 2), the social planner optimally places the reserve at node 3. Moreover, in

the examples in Appendix A.1, the more central nodes (in terms of eigencentrality)

are the optimal choice for reserve placement.

4.2. Comparative Growth Rates. We now analyze how the long-term growth rate

of the resource stocks (i.e., λ̂ given by (20)) changes with respect to the parameters



30 G.FABBRI, S.FAGGIAN, AND G. FRENI

of the system, such as reproduction rates Γi, embodying local productivity advance-

ments, the largest eigenvalue λ of A + G representing the maximum rate of growth

of the system (growth will null extraction), and the number of players f .

We assume, as in Theorem 1, that the equilibrium extraction rate θ defined in

(16) is strictly positive, with the condition satisfied with a positive numerator and

denominator in (16). We refer to this case as the standard regime,as opposed to the

case of a negative numerator and denominator, which is the voracious regime briefly

discussed at the end of this section.14 As easily computed, the standard regime

occurs under mutually exclusive conditions (we consider “standard” also the case of

logarithmic utility, corresponding to σ = 1):

(a) f ≥ 1, σ > 1, λ > − ρ

σ − 1
;

(b) 1 ≤ f < 1
1−σ , 0 < σ < 1, λ <

ρ

1− σ
,;

(c) f ≥ 1, σ = 1.

Appendix A.6 presents the proof of the following proposition.

Proposition 5 Under the assumptions of Theorem 1 and in the standard

regime, represented by any of the subcases (a), (b), and (c), consider the growth rate

λ̂ of the system described by (20). Then,

(i) λ̂ is strictly increasing in Γi, for all i;

(ii) λ̂ is strictly increasing in λ.

(iii) λ̂ is strictly decreasing in f .

The picture emerging from (i) and (ii) in Proposition 5 is transparent and justifies

denoting the said regime as “standard.” Moreover, (iii) confirms that a tragedy of

commons mechanism prevails: the higher the number of agents the quicker they tend

to appropriate the resource to avoid being preceded by the others. We further add

the following:

14The term “voracious” originates from Tornell and Lane (1999) in the context of a development
model with a single common stock and multiple private stocks. The two regimes recur and yield
significantly different system behaviors.
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• When f = 1, a positive numerator ρ − (1 − σ)λ in (16) is a necessary and

sufficient condition for a finite value function. Moreover, as λ represents the

asymptotic growth rate of the resource under null extraction, the result is

consistent with the parallel condition ρ− (1−σ)A > 0 in the standard single-

player AK-models (for extraction or growth). The same remark applies to the

problem of a social planner maximizing the sum of utilities of f players (see

e.g., Freni et al., 2006).

• Now, we consider a game with f players. In subcase (b), the condition 0 <

σ < 1 coexists with a restriction on the number of players, f < 1
1−σ . The

latter descends from the fact that each agent, in solving their control problem,

perceives a maximum growth rate of the resource of λ− (f −1)θ. Hence, their

value function is finite if and only if ρ − (1 − σ)[λ − (f − 1)θ] > 0; that is,

1 + (σ − 1)f > 0. Similar conditions for the aggregate cases with A = 0 are

given in Dockner et al. (2000).

• Referring to subcases (a), (b), and (c) of the standard regime, note that

dθ

dλ
= − 1− σ

1− (1− σ)f
=

1

f − (1− σ)−1
.

Hence, in case (a), dθ
dλ

> 0, meaning that the agents exploit the resource

more intensively when λ is greater; in case (b) dθ
dλ

< 0, with an opposite

interpretation; in case (c) θ = ρ (corresponding to dθ
dλ

= 0), the extraction is

independent of λ. Interpreting λ as the rate of interest of the system, this

fact has a natural explanation, recalling that with a unitary intertemporal

elasticity of substitution (the case of a logarithmic utility) the substitution

and the income effects associated with a change in the rate of interest exactly

cancel each other out.

The growth rate λ̂ also changes with changes in the entries of the adjacency matrix

G, although less predictably. Indeed, we cannot use the fact that λ is an increasing

function of the elements of the matrix A + G, as a change in a migration flow G

engenders a simultaneous change (equal but opposite in sign) in the net growth rates
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constituting A. In the case of symmetric networks, we can establish the following

result (proof in Appendix A.6).

Proposition 6 Assume G is symmetric (i.e. gij = gji, for all i, j ∈ N) and

that assumptions of Theorem 1 hold. Then, for all i, j ∈ N

(i) λ is a nonincreasing function of gij, strictly decreasing if Γi ̸= Γj;

(ii) λ̂ is a nonincreasing function of gij.

Thus, we interpret that increased mobility prevents the accumulation of the stock

in more productive sites, causing a decrease in the maximum growth rate λ.

4.2.1. The voracious regime. In the voracious regime, the equilibrium extraction rate

θ defined by (16) bears a negative numerator and denominator; that is15

ρ− (1− σ)λ < 0, 0 < σ < 1, f >
1

1− σ
. (29)

As a consequence, we have

dθ

dλ
>

1

f
> 0, and

dλ̂

dλ
=

1

1− (1− σ)f
< 0,

the former establishing that the agents exploit the resource more intensively when λ is

greater and the latter establishing that the long-term growth rate decreases although

the maximal growth rate of the system increases, implying that the associated increase

in the extraction rate θ is somewhat disproportionate, hence, “voracious.” Moreover,

in settings of parameters satisfying (29), the conclusions of Propositions 5 and 6

reverse: λ̂ is decreasing in λ, increasing in f in Γi, and increasing in gij when G is

symmetric.16

15Some studies report an elasticity of intertemporal substitution 1
σ close to zero (see e.g., Hall, 1988

and Best et al., 2020), while others report values greater than 1 (e.g., Gruber, 2013).
16In the voracious regime (29), the social planner problem is not well defined, as some strategies
engender an infinite value function. However, if there is a sufficiently high number of agents, the
game has an MPE, as the players, by overexploiting the resource, reduce future earnings and, thus,
keep their value functions finite.
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5. Conclusion

By using a simple framework with heterogeneous regions and a given number of

agents the present study aimed to ascertain how the structure of the migration net-

work and the sites productivities affect competition for spatially distributed moving

resources. We found that if the regulator’s objective is to maximize the unweighted

sum of the utilities of the agents, and they are constrained to assign no more than

one agent to each region, the reserves should be localized in the most central regions,

with the relevant centrality measure being given by the eigenvector centrality of a

network whose links are the coefficients of the migration flows and whose loops are

the in situ net productivities of the nodes.

Although the agents and the regulator in the analysis care only about resource con-

sumption, the model provides a basis for more general analyses in which preferences

for conservation are considered. For example, resource stocks could be introduced in

the utility functions of the agents or the regulator welfare function. It is plausible

that, under the new assumptions, a strong bias toward stock conservation could even

induce a reversal of the above assignment rule. Moreover, the role of the regulator

could additionally be examined in more general contexts in which a “bad” extreme

equilibrium coexists with the interior equilibrium. For example, an extreme equilib-

rium can be expected to exist in variants of the model in which the extracted resource

can be stored (e.g., Kremer and Morcom, 2000). In this case, a spatially structured

policy could be a useful tool to eliminate the incentives that might potentially induce

agents to coordinate on the “bad” outcome.

We derived the results in the context of a game of extraction of a natural resource.

However, there are other interpretations of the model; thus, it can find applications in

games of a different nature, such as growth models with externalities, dynamic games

with spatial diffusion of pollution, and dynamic contribution games. For example,

from the analysis, one can study a growth model where production is distributed

among n (differently productive) nodes and the production on one node generates
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nonnegative externalities, captured by the matrix G, on the production of the other

nodes. In this context, extensions of the Perron-Frobenius theory to matrices with

some negative entries (e.g., eventually positive or eventually exponentially positive

matrices; see e.g., Noutnos and Tsatsomeros, 2008) could be used to further extend the

analysis to cases in which positive and negative externalities coexist. Alternatively,

by interpreting the state variables as local measures of environmental quality and

the weighted sum ⟨X(t), η⟩ as the corresponding aggregate measure, the model can

be applied to study a dynamic pollution game in which “clearness” moves across

different locations and is depleted by the agents’ local economic activities. Direct

costs of pollution can be considered by assuming stock-dependent utility functions.

Finally, the model could be adapted to study a discrete public goods contribution

game where a group of agents invests in, for example, knowledge to reach a target,

given externalities (e.g., imagine multiple connected laboratories trying to achieve a

scientific breakthrough). In that case, the control variables must be interpreted as

costly efforts that influence the state of the project. Homogeneous-stock versions of

the model have been examined by scholars such as Kessing (2007), who show that

efforts are strategic complements in time; Georgiadis (2015), who analyze optimal

contracts for a generalized model in which the evolution of the project is stochastic;

and Cvitanić and Georgiadis (2016), who propose a budget-balanced mechanism that

induces each agent to choose the first-best effort level. An adaptation of the technique

we use can be utilized to generalize the above mentioned one-dimensional dynamic

contribution games and may have applications in the decisions regarding the forma-

tion of teams when candidate members are heterogeneous in their productivities and

connections.
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Appendix A. Proofs and Complements

A.1. More on Nodes Centrality. We here discuss the hierarchy of nodes in some

more examples.
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Example 1. We consider a network in which net productivities are all equal

ai = Γi −
n∑
j=1

gij ≡ a for all i ∈ N.

We denote the Perron–Frobenius eigenvalue for G by λ◦ and the associated normalized

eigenvector by η◦. In this context, A + G = aI + G, and the eigenvectors of G and

aI + G are the same, implying η = η◦ (with η, η◦ is associated, respectively, with

eigenvalues λ, and λ◦ = λ − a). Hence, when nodes are equally productive, all sites

are ranked according to the eigenvector centrality η◦ of the migration network G, with

ηi higher when node i is better connected to the other nodes (i.e., more eigencentral).

That is, when nodes are undifferentiated with respect to productivity, the migration

network rules the hierarchy.

Example 2. The last example in Section 2.1.5 showed that when the network is

complete with equal weights, then ηℓ ≥ ηi ⇐⇒ aℓ ≥ ai ⇐⇒ Γℓ ≥ Γi. We wonder if

the property is true in general. Specifically, if a node ℓ has a greater centrality than

a node i in the migration network η◦ℓ ≥ η◦i , and a greater reproduction rate Γℓ ≥ Γi,

is it true that the reserve is better placed at node ℓ than at node i (i.e., ηℓ ≥ ηi)?

The answer is negative, as explained in the following example. Consider the network

described by Γ1 = 1, Γ2 = 1 + b, Γ3 = 0,

G =


0 1 0

0 0 1

2 0 0

 , A+G =


0 1 0

0 b 1

2 0 −2

 ,

with b > 0. An explicit calculation yields λ◦ =
3
√
2 and η◦ = (1, 3

√
2, 3
√
4)⊤. Note that

η◦2 > η◦1 and Γ2 > Γ1; that is, node 2 precedes node 1 both in productivity (natural

and net) and centrality. Nonetheless, η1 > η2 for some choices of positive b, as we

show next. If η = (1, η2, η3)
⊤, from (A+G)η = λη, we derive

η1 = 1, η2 = λ, η3 = λ(λ− b), b = λ− 2

λ(λ+ 2)
.



ON COMPETITION FOR SPATIALLY DISTRIBUTED RESOURCES IN NETWORKS 39

Note that the last equation implies that b is an increasing function of λ and vice

versa. A direct calculation shows that for b = 0, one has λ(0) ≃ 0.8, so that by

continuity λ(0) < λ(b) < 1 for small positive b. Hence η1 > η2 and a reserve is better

set at node 1 rather than at node 2. Thus, the relationship between the hierarchy

dictated by the eigencentrality η and the productivity/network structure is complex

and generally nonmonotonic.

Example 3. Finally, we interpret ηi as a measure of productivity and connectiveness

of the i-th node and the nodes more directly connected to it. We take G, as in the

previous example, and set Γ1 = Γ2 = 1 and Γ3 = 2 + a. Then

µ1 = 1, µ2 = λ, µ3 = λ2, a = λ− 2

λ2
,

with λ an increasing function of a; moreover, for a = −1 one has µ1 = µ2 = µ3 = 1,

and λ = 1, so that λ > 1 if and only if a > −1. Therefore,

µ1 < µ2 < µ3 for a > −1, and µ1 > µ2 > µ3 for a < −1.

Hence, an increasing reproduction rate Γ3 increases η3, making (definitively) node 3

the most central, and influences the centrality η2 of node 2, which is more directly

connected to it than node 1.

A.2. Proofs for Subsection 3.1.

Proof of Theorem 1. We initially take the perspective of player i, active at node

i. For all other players, we assume that they play the strategies

ψj(x) =
θ

ηj
⟨x, η⟩ , with j ∈ F \ {i}.

With this choice, the HJB equation (14) becomes

ρv(x) =
σ

1− σ

(
∂v

∂xi

)1− 1
σ

+ ⟨x, (A+G)∇v(x)⟩ − ⟨x, η⟩
∑

j∈F\{i}

(
∂v

∂xj

)
θ

ηj
,
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with the maximum attained at

ci =

(
∂v

∂xj

)− 1
σ

. (30)

Step 1: we search for a solution of the HJB equation of type

v(x) =
bi

1− σ
⟨x, η⟩1−σ , with ∇v(x) = bi ⟨x, η⟩−σ η, (31)

where bi is a suitable positive real number. Substituting v and its partial derivatives

into the HJB equation yields v as a solution if and only if

bi =
1

ηi

(
σηi

ρ− λ (1− σ) + (1− σ) (f − 1)θ

)σ
.

Given that from (16), ρ− λ (1− σ) = θ(1 + (σ − 1)f), last equation gives

bi =
1

ηi

(ηi
θ

)σ
.

Step 2: Markovian equilibrium. From (30) follows

ψi(x) = (biηi)
− 1

σ ⟨x, η⟩ = θ

ηi
⟨x, η⟩ ,

so that the candidate equilibrium is given by (17), and the associated value functions,

(18). We prove in Step 4 that (17) is indeed an equilibrium.

Step 3: Closed-loop equation. Note that c(t) = θ⟨X(t), η⟩ξ = θ ξη⊤X(t) along the

equilibrium trajectories, implying the evolution system can be rephrased as in (23).

Statement (iii) follows from

⟨Ẋ(t), η⟩ = ⟨X(t), (A+G)η⟩ − ⟨X(t), η⟩⟨ξ, η⟩ = ⟨X(t), η⟩(λ− θf),

where λ− θf = λ̂ = (λ− fρ)(1 + (σ − 1) f)−1.

Step 4: Best response. We verify now that the feedback strategy (17) is the best

response for Player i, when the other players choose ψj, with j ̸= i, as in (17). The
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problem of Player i is then maximizing (3) under the dynamics Ẋ(t) = (A+G⊤ − θ ξiη⊤)X(t)− ci(t)ei, t > 0

X(0) = x0.
, (32)

where ξiℓ = ξℓ for all ℓ ̸= i, and ξii = 0. Set c∗i (t) = ψ(X∗(t)), and let ci(t) be any other

admissible control, with X∗(t) and X(t), respectively, as the associated trajectories.

Now we consider the quantity (c∗i (t) − ci(t))
∂v
∂xi

(X∗(t)) and use the fact that c∗i (t)

realizes the maximum in (30) with dj = θ/ηj and p = ∇v(X∗(t)) to derive

1

1− σ

(
c∗i (t)

1−σ − ci(t)
1−σ) ≥ (c∗i (t)− ci(t))

∂v

∂xi
(X∗(t)) (33)

Next, observe that adding and subtracting
〈
(A + G⊤ − θ ξiη⊤)(X∗(t) −

X(t)),∇v(X∗(t))
〉
and using (32), the right-hand side in (33) equals

〈
(A+G⊤ − θ ξiη⊤)(X∗(t)−X(t)),∇v(X∗(t))

〉
−
〈
(Ẋ∗(t)− Ẋ(t)),∇v(X∗(t))

〉
=
〈
X∗(t)−X(t), (A+G− θη(ξi)⊤)∇v(X∗(t))

〉
−
〈
(Ẋ∗(t)− Ẋ(t)),∇v(X∗(t))

〉
.

(34)

Recalling (31) and (19), we have

∇v(X∗(t)) = bi⟨X∗(t), η⟩−ση = bie
−σλ̂t⟨x0, η⟩−ση.

Using this expression and the fact that (A + G − θη(ξi)⊤)η = (λ − θ(f − 1))η, the

expression in (34) can be written as

= bi⟨x0, η⟩−σe−σλ̂t
[〈
X∗(t)−X(t), [λ− θ(f − 1)]η

〉
−
〈
(Ẋ∗(t)− Ẋ(t)), η

〉]
.

Thus, utilizing these estimates and integrating (33) on [0, T ] for T > 0, we obtain

∫ T

0

e−ρt

1− σ

(
c∗i (t)

1−σ− ci(t)
1−σ) dt ≥ bi⟨x0, η⟩−σ

[ ∫ T

0

e−(σg+ρ)t
〈
X∗(t)−X(t), (λ−θ(f−1))η

〉
dt

−
∫ T

0

e−(σg+ρ)t
〈
(Ẋ∗(t)− Ẋ(t)), η

〉
dt

]
(35)
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and, integrating the last term by parts, the right-hand side equals

= bi⟨x0, η⟩−σ
[ ∫ T

0

e−(σλ̂+ρ)t
〈
X∗(t)−X(t),

(
λ− θ(f − 1)

)
η
〉
dt+

− e−(ρ+σλ̂)T ⟨(X∗(T )−X(T )), η⟩ −
∫ T

0

e−(σλ̂+ρ)t
〈
(X∗(t)−X(t)), (σλ̂+ ρ)η

〉
dt

]
= bi⟨x0, η⟩−σe−(ρ+σg)T ⟨(X(T )−X∗(T )), η⟩ ≥ −bi⟨x0, η⟩−σe−(ρ+σλ̂)T ⟨X∗(T ), η⟩ ,

(36)

where the last equality is a consequence of σλ̂+ρ = λ−θ(f−1), and the last inequality,

a consequence of ⟨X(T ), η⟩ ≥ 0, as X(T ) is admissible and, hence, nonnegative. Now,

e−(ρ+σλ̂)T ⟨X∗(T ), η⟩ = e−(ρ+σλ̂)T eλ̂T ⟨x0, η⟩ decreases to 0, as T tends toward +∞:

g(1− σ)− ρ = −θ < 0.

Thus, taking the limit as T tends toward +∞ in (35)(36) (limits exist as the first

integral is monotonic in T ), we obtain∫ +∞

0

e−ρt
c∗i (t)

1−σ

1− σ
dt ≥

∫ +∞

0

e−ρt
ci(t)

1−σ

1− σ
dt;

that is, c∗i (t) is optimal.

□

A.3. Proofs for Subsection 3.2.

Lemma A.1 Let E = ξη⊤. The matrix E (respectively, E⊤) has an eigenvalue f

with multiplicity 1, associated with the eigenvector ξ (respectively, η), and eigenvalue

0 with multiplicity n − 1. All eigenvectors of E (respectively, E⊤) associated with

the zero eigenvalue are orthogonal to η (respectively, ξ).

Proof of Lemma A.1. We prove the claims for E, as the arguments for E⊤ are

similar. For any v ∈ Rn, Ev = ⟨η, v⟩ ξ = fξ, implying the dimensions of the range

and the kernel of E are, respectively, 1 and n − 1. Given that Eξ = ⟨η, ξ⟩ ξ ̸= 0,

ξ is the unique (except for multiplications by a number) eigenvector of E and the
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unique vector that is not in the kernel. For each vector v in the kernel of E, one has

0 = Ev = ⟨η, v⟩ ξ, meaning v is orthogonal to η. □

Proof of Lemma 1. The proof of (i) is trivial. Accordingly, to prove (ii) we first

show that any generalized eigenvector v for an eigenvalue λi ̸= λ is orthogonal to

η (this property is well known but we detail it here for the reader’s convenience).

Thus, consider an eigenvalue λi ̸= λ (and then i ≥ 2) and vi as an element of the

generalized eigenspace Vi. Hence, there exist a strictly positive integer m such that

(A+G⊤ − λiI)
mvi = 0. Therefore,

0 = η⊤
[
(A+G⊤ − λi)

mvi
]
=
[
η⊤(A+G⊤ − λi)

m
]
vi = (λ− λi)

mη⊤ vi,

and given that λ ̸= λi, then η
⊤ vi = 0, implying η is orthogonal to vi.

By Lemma A.1, this implies that Evi = 0, and (A+G⊤−θE−λi)mvi = (A+G⊤−

λi)
mvi = 0. Thus, vi is also a generalized eigenvector for (A + G⊤ − θE) associated

with the eigenvalue λi.

Given that we already know that ζ̂ is an eigenvector for (A+G⊤ − θE) associated

with λ̂, we only need to observe that {ζ̂ , v2, . . . , vn} is a set of independent vectors.

It is straightforward given that {v2, . . . , vn} are independent (they are a subset of a

basis of the space) and, by the hypothesis 0 < θ < θ1, λ̂ ̸= λi for all i > 1, and ζ̂ is

contained in a generalized eigenspace (of (A+G⊤ − θE)) different from all the Vi for

all i ≥ 2 and cannot be generated by the vi for i ≥ 2. □

The proof of Lemma A.2 and Proposition 1 are well-known facts (see, e.g., chapter 1

in Colonius and Kliemann (2014)); we provide them here for the reader’s convenience.

Lemma A.2 Under the assumptions of Proposition 1, there exist continuous co-

efficients mi, linear in x0, with limt→∞mi(t)e
−εt = 0 for all ε > 0 such that

X∗(t) = m1(t)e
λ̂tζ̂ +

n∑
i=2

eRe(λi)tmi(t)vi. (37)
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Proof of Lemma A.2. If J is the real Jordan form of the matrix A + G⊤ − θE,

then there exists a real invertible matrix P such that P−1(A + G⊤ − θE)P = J .

Consequently, there exist real coefficients βi such that

X∗(t) = et(A+G
⊤−θE)x = PetJ

(
n∑
i=1

⟨x0, vi⟩P−1vi

)
= P

n∑
i=1

βie
JtP−1vi.

It follows then from the general theory (see, for instance, Section 1.3 of Colonius

and Kliemann (2014)) that eJtP−1vi = eRe(λi)tMi(t)P
−1vi, where Mi(t) is a block

matrix (that is non-zero only on the Jordan block related to λi) whose coefficients are

products of sinus and cosinus functions of t and polynomials of t with the maximum

degree of the dimensions of the generalized eigenspace. As PeJtP−1vi is again an

element of the generalized eigenspace associated with λi, it can be written as a linear

combination of the eigenvectors related to the same generalized eigenspace, with the

coefficient having the same described behavior as t, and then the claim follows. □

Proof of Proposition 1. The proof is entirely based on Lemma A.2 and follows

from (37) once we observe that Mi(t), appearing in the proof of Lemma A.2 for a

simple eigenvalue, is just a real coefficient. □

A.4. Proofs for Subsection 3.4.

Proof of Proposition 2. If we specify condition (ii) of (24) for x = ej and j ̸= i,

we get (25); hence, it is necessary. However, if we suppose (25) is verified, given

x =
∑

j ̸=i xjej for some xj ≥ 0, we have

ψ∗
i (x) =

∑
j ̸=i

xj
θ

ηi
ηj ≤

∑
j ̸=i

xj

gijηj
ηi

ηi
ηj = ⟨x,Gei⟩ =

〈
G⊤x, ei

〉
+
〈
(A+G⊤)x, ei

〉
,

wherein for the inequality, we utilized (25), and, in the last equality, we utilized

xi = 0; and A is diagonal, so that ⟨Ax, ei⟩ = 0. Therefore, (25) is also sufficient.

Further, to prove the last claim, observe that the condition (25) is equivalent to

requiring that the matrix of system (23) (having nondiagonal terms gij − θηiξj), is
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indeed a Metzler matrix. That is equivalent to establishing that the system is positive;

that is, it has solutions contained in the positive orthant Rn
+ for all initial conditions

x ∈ Rn
+ (see, for example, Farina and Rinaldi, 2000, Chapter 2, Theorem 2, page 14).

As soon as such a condition is violated, there exist trajectories of the system starting

at some x0 ∈ Rn
+, which comes out of the positive orthant Rn

+. □

Proof of Proposition 3. For simplicity, we prove the assertion for the case of all

βi ≡ β > 0 (for the general case the adjustment is minimal). When β = 0, the agents

can only choose to fish null amounts at every node and, arguing as in Proposition 1,

whatever the initial condition x0 ∈ Rn
+, the system converges to the vector ζ. By using

the decomposition of Lemma A.2 and the fact that θ < min{θ1, θ2}, the projection

of the detrended trajectory X∗(t)e−λt on the (n − 1)-dimensional space ζ⊥ can be

decomposed into a sum of terms related to eigenvalues with a negative part. Thus

(see Bitsoris, 1991), the set E(P, d) is (positively) invariant for the projected system

and the vector field of the velocities on the boundary of E(P, d) is strictly inward.

By continuity, there exists β̄ > 0 such that, for any β ∈ [0, β̄], the projection of

any vector field of the velocities satisfying

[A+G⊤ − β]X(t) ≤ Ẋ(t) ≤ [A+G⊤]X(t)

on the boundary of S∗ is inward, and then, for any choice of the strategies in Aβ, the

system remains in S∗. This result proves that (S∗,Aβ) is a consistent couple; thus, if

the equilibrium described in Theorem 1 is admissible, then it is also subgame perfect.

Given that S∗ ⊆ (0,+∞)n (and it does not touch the boundary of Rn
+, except at

the origin) there exist constants ri such that, for any x ∈ S∗,

ri

(∑
j ̸=i

xjηj

)
≤ xi,

and, for θ and βi such that θ < βmin
i
(ηi/ri), we have

ψ(x) =
θ

ηi
⟨x, η⟩ ≤ θ

ηi

xi
ri

≤ βxi,
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and the set of strategies and the equilibrium described in Theorem 1 is admissible,

hence yielding an MPE.

□

A.5. Proofs for Subsection 3.5.

Proof of Theorem 2. Assume ψ̂j(x) = ⟨wj, x⟩, with wj ∈ Rn
+, j ∈ N as a linear

MPE in A. We want to show that, necessarily, ψ̂ = ψ∗. Note that when starting at

x = ej, the extraction rate is ⟨wj, ei⟩ = wji , which implies wji ≥ 0 for all i ∈ N . We

then define the square nonnegative matrices

W :=
∑
j∈N

ej(w
j)⊤, W−i :=

∑
j∈N,j ̸=i

ej(w
j)⊤

so that the stock evolves at the equilibrium with law Ẋ = (A + G⊤ −W )X. Given

that ψ̂ is admissible (it lies in A by hypothesis) at every initial stock x0 ∈ Rn
+, then

X ψ̂,x0(t) ≥ 0 for all t ≥ 0, implying that A +G⊤ −W is a Metzler matrix (see, e.g.,

Farina and Rinaldi, 2000, Chapter 2, Theorem 2, page 14). Since the wjs are positive,

A+G⊤ −W−i = A+G⊤ −W + wiei is a fortiori a Metzler matrix.

We now take the standpoint of player i that assumes the other players stick to the

choice ψ̂−i and maximizes (3) for ci ∈ Ai when subject to

Ẋ(t) = (A+G⊤ −W−i)X(t)− ci(t)ei, X(0) = x0

and under the constraint Xi(t) ≥ 0 for all t ≥ 0.17

The case A + G −W⊤ being irreducible. As a first step, we assume A + G −W⊤

is irreducible. Then, a fortiori, A + G −W⊤
−i is irreducible. The Perron–Frobenius

theorem implies that A + G − W⊤ (respectively A + G − W⊤
−i) has a simple, real

eigenvalue λ̂ (respectively λ̂i) strictly greater than all other eigenvalues’ real parts

and associated with the unique strictly positive eigenvector η̂ (respectively η̂i).

17Note that (see, e.g., Farina and Rinaldi, 2000, Chapter 2, Theorem 2, page 14), given that A +
G−W⊤

−i is a Metzler matrix, the constraint Xi ≥ 0 (together with the nonnegativity of the initial
datum) is enough to ensure that all the components of X remain nonnegative.



ON COMPETITION FOR SPATIALLY DISTRIBUTED RESOURCES IN NETWORKS 47

The problem of agent i is associated with an HJB equation of type (14). Now, set

η̂i = (η̂i1, η̂
i
2, . . . , η̂

i
n), and

b =

(
σ

ρ− λ̂i(1− σ)

)σ

(η̂ii)
σ−1, and θi =

ρ− λ̂i(1− σ)

σ
. (38)

As in the proof of Theorem 1, we can verify that a solution of this HJB equation

is given by v(x) = b(1− σ)−1 ⟨x, η̂i⟩1−σ, and (15) implies that the only candidate

optimal extraction policy is

c∗i =
θi

η̂ii

〈
η̂i, x

〉
.

Optimality can be proven using a standard verification argument, as for Theorem 1.

Given that c∗i is the only optimizer, ψ̂i(x) coincides with c
∗
i , implying

A+G−W⊤ = (A+G−W⊤
−i)− θiEi,

where Ei =
1
η̂ii
η̂ie⊤i . Note: Ei η̂

i = η̂i, so that η̂i is a strictly positive eigenvector of

the right- and left-hand sides of the above identity.

Given that, by Perron-Frobenius’s theorem, the positive eigenvector of (A+G−W⊤)

is unique, necessarily,

η̂ ≡ η̂i, and λ̂ = λ̂i − θi =
λ̂i − ρ

σ
,

which can equally be proven for all i ∈ F . Hence, θi ≡ ρ− λ̂(1− σ) for all i, and

W⊤ =
∑
i∈F

θiEi ⇒ W⊤η̂ = (ρ− (1− σ)λ̂)f η̂,

so that, by difference, η̂ is also a positive eigenvector of A + G; that is, (A + G)η̂ =

(ρ − (1 − σ)λ̂)fη̂ + λ̂η̂. However, necessarily, η̂ ≡ η, and (ρ − (1 − σ)λ̂)f + λ̂ ≡ λ.

Therefore, λ = θif + ρ−θi
1−σ , and θ

i = ρ+(σ−1)λ
1+(σ−1)f

= θ. Thus, we have proven that ψ∗ ≡ ψ̂.

The case A+G−W⊤ being reducible. We now consider the case of A+G−W⊤ being

reducible. For brevity, we set M = A + G⊤ −W , and M−i = A + G⊤ −W + eiw
i⊤.

Barring a permutation (i.e., a change in nodes name), we can assume that M⊤ =

A+G−W⊤ is in Frobenius form (see (1.7.1) page 38 of Bapat and Raghavan, 1997),
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reading as

M⊤ =


M⊤

1 M⊤
21 . . . M⊤

K1

0 M⊤
2 . . . M⊤

K2

... 0
. . .

0 0 0 M⊤
K

 ,

with irreducible submatrices M⊤
k on the diagonal (some M⊤

Ki can contain zeros).

Given that G is strictly positive, and there is no extraction in reserves, all the matrix

elements from a reserve to any other location must be strictly positive. Thus, reserves

are among the locations associated with M⊤
K , although the same block may partly

also refer to fishing locations.

As before, we denote by λ̂ the dominant eigenvalue18 of M⊤, by η̂ one of the

associated eigenvectors, by λ̂i the dominant eigenvalue of M⊤
−i, and by η̂i one of the

associated eigenvectors. Moreover, we denote by λk the dominant eigenvalue of Mk

for any k = 1, . . . , K.

The rest of the proof is divided into two steps.

Step 1: if there exists i ∈ F for which η̂i > 0, then the only linear equilibrium is

the one described in Theorem 1. Indeed, arguing as in the case of an irreducible M ,

we again obtain wi = (θi/η̂ii)η̂
i, where θi is given by (38), and η̂i is an eigenvector

of the matrix M⊤. Given that η̂i > 0 by assumption, it coincides with the unique

dominant eigenvector ofM⊤ (Theorem 11, page 36 of Farina and Rinaldi (2000)) and

in particular with η̂.

We look now at the behavior of other agents. We call agent-jk any agent j fishing

(at node j) in the subset of nodes k. Its extraction vector at the given equilibrium

is denoted by wj = (w
(1)
jk , w

(2)
jk , . . . , w

(K)
jk )⊤, where w

(h)
jk is a vector with as many

coordinates as the dimension of block Mh. We first look at a possible agent in one

18 Even if not irreducible, M⊤ is a Metzler matrix, and we can apply a weak form of the Perron-
Frobenius theorem as Theorem 1.7.3 of Bapat and Raghavan (1997), jointly with Footnote 6, to
imply that the spectral radius of the matrix is an eigenvalue, dominant (its real part is higher than
the real part of any other eigenvalue), and associated with a nonnegative eigenvector, possibly not
unique.
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of the nodes related to K. First, observe that (given that KK is the down-right

block, and we already proved that the unique dominant eigenvector of M⊤ is strictly

positive), one must have λK = λ̂. Moreover, λ̂ is the maximum of all λk; thus,

λK ≥ λk for all k. Now the control problem for agent-jK is associated with the

matrix

M⊤
−j =


M⊤

1 M⊤
21 . . . M⊤

K1

0 M⊤
2 . . . M⊤

K2

... 0
. . .

0 0 0 M⊤
K

+


0 . . . 0 w

(1)
jK

0 . . . 0 w
(2)
jK

...
...

...
...

0 . . . 0 w
(K)
jK

 .

The Perron’s eigenvalue of M⊤
K + w

(K)
jK is higher than λK and all λk terms. The

dominant eigenvalue ofM⊤
−j is then strictly positive, unique, and associated with the

eigenvalue of M⊤
K +w

(K)
jK . Arguing again as above, one computes the optimal closed-

loop control of agent-jK and verifies that wj = (θj/η̂jj )η̂, (where η̂ is the Frobenius

eigenvector of M⊤).

We show now that the same holds for any other agent-jk, k ̸= K. We first show

that there exists a unique eigenvector associated with λ̂j, and it is strictly positive.

We consider the matrix  ajk m⊤
Kjk

gjkK M⊤
K

 ,
which is the proper principal submatrix of M⊤

−j obtained by removing all rows and

corresponding columns that are not in the K block and are not jk. Its dominant

eigenvalue is strictly greater than λK and, at the same time (see Theorem 1.7.4 of

Bapat and Raghavan, 1997), smaller than λ̂j; thus, λ̂j > λ̂ = λK . This result implies

that all matrices of type [λ̂jI −M⊤
k ] have a strictly positive inverse (see Theorem

1.7.2 page 35 of Bapat and Raghavan, 1997). This fact is sufficient to show that all

the components of any eigenvector η̂j associated with λ̂j (which is ex-post unique;

see Theorem 11, page 36 of Farina and Rinaldi, 2000) are strictly positive.
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For the components related to the block K, we have

η̂jK = η̂j(j)[λ̂jI −M⊤
KK ]

−1gjkK , (39)

where η̂jK is the part of the eigenvector η̂j corresponding to the areas in K, η̂jK(j) is

the j-th component of the same eigenvector, and gjkK is the vector of inflows from

the K part. Therefore, prices in this subset are either all positive or zero. Proceeding

recursively, the same alternative occurs for all prices in the other blocks of the matrix.

Thus, eventually η̂j > 0, which is true for all agents.

With the same argument as in the irreducible case, we compute the optimal closed-

loop controls of all agents and verify first that, for all j, wj is indeed the Frobenius’s

eigenvector of M⊤, and, except for multiplication factors, it is the unique strictly

positive eigenvector of A+G. The uniqueness of the multiplication factors follows the

proof of Theorem 1, completing the proof of the uniqueness of the linear equilibrium.

Step 2: There exists an agent i for which η̂i > 0. In the case in which agents

concentrate in the subset K of nodes, the matrix is irreducible. Then, without loss

of generality, we assume agents are distributed also in regions other than those in

the subset K. If λK > λk, then, arguing as in Step 1, all η̂is are strictly positive

and coincide with η̂. In the opposite case, there exists k∗, with k∗ ̸= K such that

λk∗ ≥ Reλk for all k = 1, . . . , K.

Now consider an agent-ik∗; that is, operating in region i and belonging to subset

k∗. Arguing as in Step 1, we see that the matrix M−i =M⊤
k∗ +w

(k∗)
ik∗ e

⊤
i has eigenvalue

λ̂i with λ̂i > λk∗ . Thus, all matrices of type [λ̂iI −M⊤
k ] with k ̸= k∗ have a positive

inverse. In particular, (39) implies

η̂iK = η̂i(i)[λ̂iI −M⊤
K ]

−1gik∗K .

Substituting backward into the eigenvector equation for theK−k∗−1 block, we find a

similar equation. Proceeding iteratively until we reach k∗, we see that all prices in the

areas “downstream” of k∗ are either all positive if the component of the eigenvector
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at ik∗ is positive, or all zero if the same component is zero. However, this component

cannot be zero given that, otherwise, one would have to find a non-strictly positive

eigenvector of the irreducible matrix

M⊤
k∗k∗ + w

(k∗)
ik∗ e

⊤
ik∗ .

Given that the components of the eigenvector at ik∗ are positive, all prices “upstream”

of k∗ are also positive. Therefore, we have an agent with positive prices. □

Proof of Theorem 3 (Sketch). The existence part of the statement is proved in

Proposition 3. We sketch here the proof of uniqueness, using the arguments of the

proof of Theorem 2. We assume a linear MPE; that is, a set of strategies of the form

ψ̂j(x) = ⟨wj, x⟩, with wj ∈ Rn
+, j ∈ N and such that ψ̂j(x) ≤ βjxj for j ∈ N . As for

the proof of Proposition 3 we prove the assertion for the case of all βj = β (for the

general case the adjustment is minimal).

First, arguing as in the proof of Proposition 3, we derive that the trajectories are

contained in a cone in (0,+∞)n. Thus, there exist constants sjm > 0 (which depend

only on the cone structure that can be chosen independently of β) such that

xj ≤ sjmxm.

The constraint ψ̂j(x) = ⟨wj, x⟩ ≤ βxj implies wjmxm ≤ βxj for all m ∈ N (recall that

wjm are nonnegative, as shown along the proof of Theorem 2). Thus,

wjm ≤ β
xj
xm

≤ βsjm.

If one chooses β > 0 that is small enough, by continuity, since the matrix A+G has a

simple dominant eigenvalue associated with a strictly positive eigenvector, the same

properties hold for the matrix A+G−W⊤ and all the A+G−W⊤
i matrices. Then,

after choosing a θ small enough to ensure (as in the proof of Proposition 3) that the

candidate equilibrium is admissible, we can argue exactly as in the proof of Theorem

2 in the case where A+G−W⊤ is irreducible. □
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A.6. Proofs for Section 4.

Proof of Proposition 5. To prove (i), we extend to Metzler matrices the well-

known result that the largest eigenvalue of an irreducible positive matrix is an in-

creasing function of its elements (see e.g., Berman and Plemmons, 1994, Chapter 2,

Corollary 1.5). We consider {Γi} and {Γ′
i} two sets of reproduction rates, the matri-

ces A+G and A′+G of the associated systems, and their maximal eigenvalues λ and

λ′. If Γi ≤ Γ′
i for every i, then clearly A+G ≤ A′ +G. Hence, our thesis is λ ≤ λ′.

Given that there exists a constant c such that A + G + cI and A′ + G + cI are

positive, I being the identity matrix, and A+G+cI ≤ A′+G+cI, then the associated

maximal eigenvalues bear the same order λ(A+G+ cI) ≤ λ(A′+G+ cI+ cI). Given

that λ(A + G + cI) = λ + c, λ(A + G + cI) = λ′ + c; moreover, λ̂ is an increasing

function of λ (see (20)), the proof of (i) is complete. Statements (ii) and (iii) hold

by direct calculations, in all subcases (a) (b) (c)

dλ̂

dλ
=

1

(σ − 1)f + 1
> 0,

dg

df
= − ρ+ λ(σ − 1)

(1 + λ(σ − 1))2
< 0.

□

Proof of Proposition 6. We first check the effect of an ϵ increase in gij, with i ̸= j,

on the value of λ. Accordingly, fix ϵ > 0 and define Mij := (ei e
⊤
j + ej e

⊤
i )− (ei e

⊤
i +

ej e
⊤
j ). Note that the system matrix changes from A+G to A+G+ ϵMij. This last

matrix can be written as the sum of two Metzler matrices

A+G+ ϵMij = [A− ϵ(ei e
⊤
i + ej e

⊤
j )] + [G+ ϵ(ei e

⊤
j + ej e

⊤
i )],

so that it is a Metzler matrix. Moreover,Mij is a negative-semidefinite matrix, so that

⟨x,Mijx⟩ ≤ 0 for all x ∈ Rn. Since A+G is irreducible, if ϵ is small enough the matrix

A+G+ϵMij is irreducible. We denote by ηϵ its Perron-Frobenius eigenvector of norm

1 (see Footnote 18), and by λϵ the associated Perron-Frobenius eigenvalue. Given that

the network matrix is symmetric, we can utilize the variational characterization of
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eigenvalues (see for instance Corollary III.1.2 of Bhatia, 2013), so that

max
x∈Rn\{0}

⟨x, (A+G+ ϵMij)x⟩
|x|2

= λϵ =
⟨ηϵ, (A+G+ ϵMij)ηϵ⟩

|ηϵ|2

≤ max
x∈Rn\{0}

⟨x, (A+G)x⟩
|x|2

+ ϵ
⟨ηϵ,Mijηϵ⟩

|ηϵ|2
≤ max

x∈Rn\{0}

⟨x, (A+G)x⟩
|x|2

= λ.

This result implies dλ
dgi,j

≤ 0 and (i) is proved. Thus, (ii) follows from (i) and (20). □
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