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Abstract

The R package abn is designed to fit additive Bayesian models to observational datasets.
It contains routines to score Bayesian networks based on Bayesian or information theoretic
formulations of generalized linear models. It is equipped with exact search and greedy
search algorithms to select the best network. It supports a possible blend of continuous,
discrete and count data and input of prior knowledge at a structural level. The Bayesian
implementation supports random effects to control for one-layer clustering. In this paper,
we give an overview of the methodology and illustrate the package’s functionalities using
a veterinary dataset about respiratory diseases in commercial swine production.

Keywords: structure learning, graphical models, greedy search, exact search, scoring algo-
rithm, GLM, graph theory, R.

1. Introduction
Bayesian network (BN) modelling has an impressive track record in analysing systems epi-
demiology datasets (Cornet, Sierra, Tournebize, Gabrielle, and Lewis 2016; McCormick 2014;
Hartnack, Odoch, Kratzer, Furrer, Wasteson, L’Abée-Lund, and Skjerve 2019), especially
in veterinary epidemiology (McCormick, Sanchez-Vazquez, and Lewis 2013; Ludwig, Berthi-
aume, Boerlin, Gow, Léger, and Lewis 2013; Firestone, Lewis, Schemann, Ward, Toribio,
Taylor, and Dhand 2014; Cornet et al. 2016; Hartnack, Springer, Pittavino, and Grimm 2016;
Pittavino, Dreyfus, Heuer, Benschop, Wilson, Collins-Emerson, Torgerson, and Furrer 2017;
Ruchti, Meier, Würbel, Kratzer, Gebhardt-Henrich, and Hartnack 2018; Ruchti, Kratzer,
Furrer, Hartnack, Würbel, and Gebhardt-Henrich 2019; Comin, Jeremiasson, Kratzer, and
Keeling 2019). It is a particularly well-suited approach to better understand the underlying
structure of data when scientific understanding of the data is at an early stage. BN modelling
is designed to sort out directly from indirectly related variables and offers a far richer mod-
elling framework than classical approaches in epidemiology like, e.g., regression techniques or
extensions thereof. In contrast to structural equation modelling (Hair, Black, Babin, Ander-
son, Tatham et al. 1998), which requires expert knowledge to design the model, the Additive
Bayesian Network (ABN) method is a data-driven approach (Lewis and Ward 2013; Kratzer,
Pittavino, Lewis, and Furrer 2019b). It does not rely on expert knowledge, but it can possi-
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2 Additive Bayesian Network Modelling

bly incorporate it. Contrary to other scoring approaches, it can handle a blend of variables
distribution. Thanks to its formulation, the ABN method supports variables adjustment and
can control for clustering. Within the same framework, the network can be scored and the
effect size estimated. This paper aimes at presenting the actual R implementation of the
ABN methodology using a simple case study. An older package vignette exists that targets
presenting more detailed code.
R as an open-source, reliable and easy-to-use environment for statistical computing. It is very
popular in the epidemiological community (R Core Team 2017). In this paper, ABN refers to
the methodology and abn refers to the R package.
The aim of the R package abn is to provide researchers free implementation of a set of
functions to score, select, analyse and report an ABN modelling. The main functionalities of
the package are Bayesian, information theoretic scoring, exact and greey search algorithms.
The R package abn is also equipped with ancillary functions to simulate and manipulate ABN
models. The package is available through the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=abn. The unique feature of the R package abn
compared to other network modelling R packages is the Bayesian-based scoring system, which
makes ABN methodology theoretically sound and computationally competitive thanks to the
internal use of iteratively nested Laplace approximations (INLA) (Rue, Martino, and Chopin
2009, available at www.r-inla.org/download). From an applied perspective, a regression
framework is suitable for analyses that target data modelisation and seek to report insight of
observational data. A byproduct of the Bayesian regression framework used by the R package
abn is the possibility of adjusting an analysis for clustering, which is a common concern in
systems epidemiology and not possible in other network modelling R packages. Beyond its
nice theoretical framework, the R package abn is equipped with the only R implementation of
an exact search based on dynamical programming that targets BN modelling (Koivisto and
Sood 2004).
The structure of this paper is as follows: First, we finish this section with a short motivat-
ing example and alternative approaches for modelling BNs. Then, Section 2 describes the
comprehensive ABN methodology. Section 3 lists and describes the functionalities of the R
package. It includes simulation studies for comparing the efficiency of the implemented scores.
Section 4 presents a case study of an ABN modelling using data from the field of veterinary
epidemiology. We conclude and summarize the article in Section 6. The appendix provides
more technical details.

1.1. Motivating example
We start illustrating the main functionality of the R package abn by analyzing the so-called
asia dataset provided by the R package bnlearn (Scutari 2010). It is a small synthetic dataset
from Lauritzen and Spiegelhalter (1988) about lung diseases (tuberculosis, lung cancer and
bronchitis) and visits to Asia. In total, the dataset consists of eight binary variables. As this
dataset has been used in various illustrations, we do not present it here in detail, nor do we
perform an initial exploratory data analysis. We assume all necessary packages are installed
and we start with loading the data. The advantage of using the R package abn over a classical
approach is that we take all data into account without making an a priori choice of what are
the independent and what is the dependent variables.

R> library("abn")

https://CRAN.R-project.org/package=abn
www.r-inla.org/download
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R> data("asia", package = "bnlearn")
R> colnames(asia) <- c("Asia", "Smoking", "Tuberculosis",
+ "LungCancer", "Bronchitis", "Either", "XRay", "Dyspnea")

We now determine the relationship between the data. A more theoretical and more detailed
explanation is given in Sections 2 and 3.

R> distrib <- as.list(rep("binomial", 8))
R> names(distrib) <- names(asia)
R>
R> mycache <- buildscorecache(data.df = asia, data.dist = distrib,
+ max.parents = 4)
R> mp.dag <- mostprobable(score.cache = mycache)

At this time, we have constructed the underlying relationship of the variables. In our context,
we also speak of we have learned about the structure. In a next step, we estimate the
parameters describing the relationship between the variables, estimating the odds ratios of
the conditional effects.

R> fabn <- fitabn(object = mp.dag, create.graph = TRUE)
R> require(Rgraphviz)
R> plot(fabn$abnDag)

Asia

SmokingTuberculosis

LungCancer

BronchitisEither

XRay Dyspnea

Asia

Smoking

Tuberculosis LungCancer

BronchitisEither

XRay Dyspnea

Figure 1: Network for asia dataset. Left: unconstrained, right: constrained. The constrain
is on the direction of the link between LungCancer and smoking nodes.
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This example highlights that the R package abn does not model causality. However, it is
possible to structurally constrain the modelling procedure in retaining or banning structures
between the variables.

R> mycache <- buildscorecache(data.df = asia, data.dist = distrib,
+ max.parents = 4, dag.retained = ~LungCancer | Smoking)
R> mp.dag <- mostprobable(score.cache = mycache)
R> fabn <- fitabn(object = mp.dag, create.graph = TRUE)

The function fitabn() computes the parameter estimates from a given structure, a list of
distributions and a dataset. The asia dataset is made of Bernoulli variable and then the
parameter estimates are log odds ratio. The method used is a Bayesian approach, thus the
estimates are the modes of the posterior distributions.

R> fabn

The ABN model was fitted using a Bayesian approach. The estimated modes are:

$Asia
Asia|(Intercept)

-4.77

$Smoking
Smoking|(Intercept)

0.012

$Tuberculosis
Tuberculosis|(Intercept)

-4.72

$LungCancer
LungCancer|(Intercept) LungCancer|Smoking

-4.28 2.26

$Bronchitis
Bronchitis|(Intercept) Bronchitis|Smoking

-0.85 1.78

$Either
Either|(Intercept) Either|Tuberculosis Either|LungCancer

-11.4 19.1 21.1

$XRay
XRay|(Intercept) XRay|Either

-3.09 8.30

$Dyspnea



Gilles Kratzer, Fraser Iain Lewis, Arianna Comin, Marta Pittavino, Reinhard Furrer 5

Dyspnea|(Intercept) Dyspnea|Bronchitis Dyspnea|Either
-2.08 3.31 2.19

Number of nodes in the network: 8 .

There is an arrow between the nodes Lung Cancer and Smoking. The function fitabn()
returns an intercepts which could be interpreted as noise and an odds ratio of 2.26 on the
logit scale. In exponentiating it we get the classical odds ratio (OR: 9.58) which is a measure
of association between the two random variable. The OR is larger than 1 meaning that Lung
Cancer and Smoking are positivelly associated.
In this simple example, we have plenty of observations to estimate 15 parameters. In more
realistic cases, we have to control for over-fitting. This will be further discussed in Section 4.4.

1.2. Alternative R packages
Not too surprisingly, there are several R packages available for BN modelling, which often
cover a particular model and data niche. The R packages can be divided into two broad
classes: the ones targeting parameters and structure learning and the ones targeting infer-
ence in BN models. Following R packages target parameters and structure learning. The
most popular R package is the R package bnlearn (Scutari 2010). It has implementations of
most of BD scores but also information theoretic scores for continuous and discrete mixed
variables. Additionally, it has implementations of multiple network structure learning via
multiple constraint-based and score-based algorithms. This is the most versatile R package
for BN modeling and should be the prefered primary software choice. When focusing on a
causal framework, the R package pcalg is very popular (Kalisch, Mächler, Colombo, Maathuis,
and Bühlmann 2012). It contains an implementation of the PC-Algorithm that selects one
class representative of the network skeleton. When dealing with discrete Bayesian networks
only, the R package catnet allows parameter and structure learning using likelihood-based
criteria. The R package deal (Bøttcher, Dethlefsen et al. 2003) enables learning BN with a
mixture of continuous and/or discrete variables under the conditional Gaussian distribution
(restriction of discrete nodes being only parent of continuous ones). Other useful R packages
are actively maintained on CRAN, but none of them implement scoring procedures that deal
simultaneously with multiple exponential family representatives in a Bayesian or likelihood-
based framework and allow for grouping correction and epidemiological adjustment. When
targeting inference the most used R packages are the gRbase (Dethlefsen, Højsgaard et al.
2005) and gRain (Højsgaard et al. 2012). Indeed, those R packages do not have any struc-
tural learning algorithm, thus the BN models should be fully provided by the user. But
they allows to manipulate efficiently the models parameter to perform prediction and infer-
ence. The R package abn is the only library for BN modelling inference based on a fully
Bayesian formulation. It contains a unique implementation of an exact search algorithm. It
targets systems epidemiology applied research in providing to the user extensive outputs eas-
ing biological findings interpretation and reporting. The Task View: gRaphical Models in R
(CRAN.R-project.org/view=gR) gives a comprehensive overview of the different computing
libraries available on CRAN.
Aside from R, multiple implementations in other computing environments such as Weka
(Bouckaert 2008) (which is accessible in R via the R package RWeka, Hornik, Buchta, and
Zeileis 2009), MATLAB (Murphy et al. 2001) or open source python or C++ implementation

CRAN.R-project.org/view=gR
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exist. In the epidemiological community, the R implementations are the most popular ones
due to the simplicity of using R.

2. Methodological background
This section describes the theoretical foundations of ABN. First, we present the BN modelling
paradigm. Then we extend this framework to describe the ABN methodology. Finally, we
embed the ABN methodology into a learning scheme.

2.1. Bayesian Network

The idea of studying observational data using using a BN is quite old (Pearl 1985). Formally, a
BN for a set of random variables X = {X1, . . . , Xn} is a directed acyclic graph (DAG) where
the nodes are the random variables and the directed links are the statistical dependencies
between the nodes. A graph G is the union of two sets: the set of nodes or vertices and the
set of arcs or directed links, arrows or edges. Thus: G = (V,E), where V is a finite set of
vertices and E is a finite set of edges. An index node Xj is said to be the parent of a node
i if the edge set E contains an edge from j to i. A set of parents for a node j is denoted by
Paj . Conversely, one can easily define the set of children Chj for a node j.
In a BN, the factorization of the joint probability distribution P(X) through a so-called set
of local probability distributions is given by the Markov property, which implies that an index
node Xj is dependent solely on its set of parents Paj

P (X) =
n∏

j=1
P (Xj | Paj). (1)

In equation (1), the total number of nodes is denoted by n. A BN model, B, is the union of
the structure S and the model particularization θB: B = (S,θB). The edges represent both
marginal and conditional dependencies. Collectively, they define the structure or network
which encodes the conditional independence through graphical separation. Verma and Pearl
(1988) shows that if two nodes are d-separated by a set of nodes, then the random variables
are conditionally independent through the set of variables. This theorem is the starting point
of a class of BN learning algorithms called constraint-based approaches. In a BN, each node
Xj , with parent set Paj , is parametrised by a local probability distribution: P (Xj | Paj).
The choice of the parametrisation is the source of an alternative class of learning algorithms
called score based approaches.
The Markov blanket (MB) of a node is the set of parents, children and co-parents, i.e., the
parents of the specified children. An interesting property of the MB is that this is the set of
nodes that fully inform an index node. For example, in the right network of Figure 1, the MB
of index node "Dyspnea" consists of nodes "Bronchitis" and "Either", whereas the MB of
index node "Either" consists of nodes "XRay", "Dyspnea", "Tuberculosis", "LungCancer"
and "Bronchitis". Indeed, a node is conditional independent of any non-descending node
in a BN given its parents.
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2.2. Additive Bayesian Network formulation

An ABN model, A, is a graphical model that extends the usual generalized linear model
(GLM) to multiple dependent variables through the factorization of their joint probability
distribution (Lewis and Ward 2013). An A model assumes that each node is a GLM where
the covariates are the parents and the distribution depends on the index node.
Given an index node Xj , a set of parents Paj , and using the classical notation for the
exponential family parametrization (Pitman 1936)

P (Xj | Paj) = exp
(
η(θj)T (Paj)−A(θj)

)
dH(Paj), (2)

where the functions η, T , A, H may be node-dependent (the indices omitted to simplify the
notation) and where the parameters θj incorporate the configuration of the parents’ node.
For example, in the case of binary variables, i.e., Xj ∈ {0, 1}, equation (2) is simplified when
using the classical logit link function to

P (Xj | Paj) = logit−1(θj) = expit(θj), (3)

resulting in the classical logistic regression models for all the nodes.
The ABN modelling technique is situated in a small data analysis niche. It targets a dataset
composed of variables issued from a mixture of different distributions. The main focus is that
the final model should be interpretable. An A is called additive in the sense that the effect
of the parents is assumed to be additive in the exponential family link scale.

2.3. Learning algorithm

Many learning strategies have been proposed depending on the ultimate modelling goal be-
ing in concordance with the research question. To perform inference in BN, one needs a
probabilistic model to compare the networks and a search algorithm to select the optimal
structure. If we restrict ourselves to a purely non-dynamic network (either using temporally
dependent data or a dynamical network) and observational data, we can propose two main
strategies. The first is constraint-based approaches, where one learns the BN using statistical
independence tests. The optimal network is identified using the reciprocal relationship be-
tween graphical separation and conditional independence (Spirtes 2001). The second popular
approach is based on structural scoring, where each candidate network is scored and the one
which has the highest score is kept. In practice, this is computationally intractable for the
typical number of variables involved in a research project. The number of possible networks
is massive and increases super-exponentially with the number of nodes (Robinson 1977). A
practical workaround is to use a decomposable score, i.e., a score that is additive in terms of
the network’s nodes and depends only on the parents of the index node. This approach is
very close to the classical model selection in statistics (Zou and Roos 2017).
The scoring approach paradigm requires that the scores represent how well the structure
fits the data (Zou and Roos 2017). Many scores have been proposed for discrete BNs in
a Bayesian context (Daly, Shen, and Aitken 2011) that aims at maximizing the posterior
probability. Indeed, Heckerman, Geiger, and Chickering (1995) propose the so-called Bayesian
Dirichlet (BD) family of scores which use a Dirichlet prior. The BD family regroups the K2,
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BDeu, BDs and BDla scores (Scutari 2018). For continuous BN with multivariate Gaussian
data, using an inverse Wishart prior leads to the BGe score (Consonni and Rocca 2012). By
analogy, the scores can be adapted to a mixture of variables such as information theoretic
scores. They are less suitable from a theoretical perspective but more polyvalent. Scores
within a frequentist framework have been proposed (Daly et al. 2011), such as Bayesian
Information Criterion (BIC), Akaike Information Criterion (AIC) and Minimum Description
Length (MDL) (Daly et al. 2011). They all have in common a goodness-of-fit part and a
penalty for model complexity. A direct and natural extension of this idea, implemented in
the R package abn, uses the posterior score in a Bayesian regression settings. When applied to
BN scoring, it is called marginal likelihood (MacKay 1992), as the likelihood is marginalized
in the parameter space for the estimation. In a Bayesian setting, the parameter prior acts as
a penalty term.
The model learning phase involves two parts: 1. Network, skeleton or structure learning
S; and, 2. Parameter learning where the model parameter is θB. Hence, in a Bayesian
framework, constructing an ABN model A given a set of data D

P (A | D) = P (θA,S | D)︸ ︷︷ ︸
model learning

= P (θA | S,D)︸ ︷︷ ︸
parameter learning

· P (S | D)︸ ︷︷ ︸
structure learning

. (4)

The two learning steps are interconnected. Several efficient algorithms have been proposed for
both learning procedures. In order to learn the relationships between variables, the conditional
probability distributions should be fitted. In a frequentist setting, this can be done using the
classical Iterative Reweighed Least Square (IRLS) algorithm (Faraway 2016). The structure
selection step can be done using a heuristic or exact approach.

An interesting feature of the ABN methodology is to be able to impose external expert
knowledge. Indeed, in most of applied data analysis, some part of the network is known.
For example, if two random variables are timely related the direction of the possible arrow is
known. Or if, based on existing literature a possible connection is known to be expected. The
R package abn allows such external causal input through a banning or a retaining matrix.
Those matrices are used to compute the list of valid parent combination. However, a more
theoretically sounding approach, suggested by Heckerman et al. (1995), is to augment the
observed data with synthetic data that represents the causal belief. The practical feasibility
in an ABN analysis remains an open question (McCormick et al. 2013).
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3. The R Package abn
This section describes the functionalities of the R package abn in categorizing them compare
to their final objectives. We provide insights about how the functions are implemented. We
show simulations that compare the model parameter estimations using a Bayesian or an MLE
approach and how different scores perform to retrieve networks.
The R package abn has three level of functionalities for different purposes:

• Core functions: aiming at performing an ABN analysis (scoring and learning)

• Ancillary functions for analysis: aiming at supporting the analysis by enhancing
plotting abilities, accounting for the uncertainty in the structure through link strength
estimation, and comparing structure or getting structural metrics

• Ancillary functions for simulation: aiming at helping in simulating ABN models
by simulating DAGs and ABN data.

A classical ABN analysis is the sequential application of three R functions see Section 1.1
(typically: buildscorecache(), fitabn() and mostprobable()). The reason why the anal-
ysis is divided into three functions is to let more freedom to the end user to tune parameter
and to have a better control over possible learning/fitting issues.

3.1. Set of core functions
The two main core functions for scoring are buildscorecache() and fitabn(). The former is
essentially a wrapper of the latter. Those functions have a Bayesian and an MLE implementa-
tion which are not equivalent in their output (there is an argument method that can be bayes
or mle to choose the implementation). They require minimally a named dataset, the named
list of the nodes’ distribution and an upper limit for network complexity. buildscorecache()
first computes an empty list of valid parent combinations using banning and retaining input
matrices (which are assumed to be empty by default). Then it iterates through the cache to
score the candidate piece of network. In the Bayesian implementation, buildscorecache()
and fitabn() estimate a Bayesian regression using the following parameter priors: weekly
informative Gaussian priors with mean 0 and variance 1000 for each of the regression parame-
ters of the model (both binomial and Gaussian), as well as diffuse Gamma priors (with shape
and scale equal to 0.001) for the precision parameters in Gaussian nodes in the model using
an internal INLA code.
buildscorecache() within an MLE setting uses an IRLS algorithm depending on the given
list of distributions at each step of the scoring process. For the special case of the binomial
nodes, the usual logistic regression is tried. If it fails to estimate the given problem, a
bias-reduced tailored algorithm is used (Firth’s correction). It is know to improve accuracy
of regression coefficients in presence of separation (van Smeden, de Groot, Moons, Collins,
Altman, Eijkemans, and Reitsma 2016). If, however, the algorithm fails to return a finite
estimate, some predictors are sequentially removed until the design matrix becomes fully
ranked. These three steps ensure the R package abn to be able to score a dataset even if there
is data separation.
The fitabn() function score a given network. It requires a valid DAG, a named dataset and a
named list of distributions. It returns the list of score for each node, the parameter estimates,
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the standard deviation and the p-values. Special care should be taken when interpreting and
displaying the p-values. Indeed, the DAG has been selected using goodness of fit metric, so
at least adjustment methods should be used.
A unique feature of fitabn() and buildscorecache() is the possibility to take one-layer
clustering into account. In some situations, data collection has a clear grouping aspect.
Therefore, there is a potential risk for non-independence between data points from the same
group that could cause over-dispersion. This can lead to analyses which are over-optimistic,
as the true level of variation in the data is under-estimated.
To account for this additional variability, a random effect is introduced. Thus, each node
becomes a Generalized Linear Mixed Model (GLMM) (Breslow and Clayton 1993; Faraway
2016) instead of a GLM, but in a Bayesian setting. This implies introducing an additional
correlation structure via random effects, i.e., adjusting for correlated residuals or non-constant
variance. The rationale is that standard errors are underestimated during the first search so
the DAG produced during the structure search have more rather than less structure. That
structure could then be trimmed during the MCMC part.
We therefore compute the posterior distribution and check if it widens. In such as case, we
must take the clustering in the scoring scheme used into account. From an applied perspective,
the major limitation is the computational burden of this approach. Indeed, if the clustering
is unlikely to impact the estimates, it is preferable not to take it into account. The model
is then much simpler and parsimonious. The clustering adjustment could be performed in a
subset of the nodes.
For learning BN, two types of algorithms are implemented: exact and heuristic searches. The
exact procedure, mostprobable(), runs the exact order-based structure discovery approach
of Koivisto and Sood (2004) to find the most probable network. Its input is a cache of pre-
computed scores as from buildscorecache(), the desired score and structural prior to use.
As described in Koivisto and Sood (2004), mostprobable() uses dynamic programming to
marginalize orders analytically. It cannot handle more than 25 nodes, but on similar size
problem, it outperforms any MCMC and probabilistic approaches. It is implemented with
two structural priors: the koivisto prior that states that different cardinalities of parents are
considered to be equally likely a priori; and a structurally uninformative where parent combi-
nations of all cardinalities are equally likely. The heuristic search algorithms implemented are
the hill-climber, the Tabu and the simulated annealing in the function searchHeuristic().
The function requires a cache of pre-computed scores, the desired score and some method-
dependent arguments.

3.2. Defining a DAG

To specify a DAG, the R package abn uses an adjacency matrix, i.e., a named square matrix
with an entry in the ijth entry if there is an arc from j (parent) to i (child).
The R package abn also recognizes a formula-like syntax, similar to the classical R functions
lm, glm, etc. A typical formula is ~ node1|parent1:parent2 + node2:node3|parent3. The
formula statement has to start with ~. In this example, node1 has two parents (parent1 and
parent2). node2 and node3 have the same parent3. The parents names have to exactly
match those given in data.df. The symbol : is the separator between either children or
parents, the symbol | separates children (left side) and parents (right side), the symbol +
separates terms and . replaces all the variables in data.df. Due to this feature, those
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symbols cannot be used in the names of the random variables. The banned matrix could be
produced by the following statement ~ female|..

3.3. Ancillary functions for analysis

plotabn() and tographiz() are useful functions for plotting DAGs. plotabn() can display
a DAG with fitted values and arrows with thickness proportional to arc strength.

The concept of link strength for discrete BN was introduced in Boerlage (1992). A good
unpublished overview is given by Ebert-Uphoff (2009). This method is especially useful to
account for the uncertainty when using BN to model. Indeed, an arc is either present or absent.
This strong dichotomisation of structural relations in BN is often hard to interpret. The link
strength tends to give a proxy for arc support by the data and in an applied perspective
is complementary to the regression coefficients. In practice, the function linkStrength()
discretizes the dataset using a large choice of histogram rules and then computes multiple
link strength metrics. Then, the estimates are plugged in the definition of the entropy to
return the so-called empirical entropy. A well-known problem of empirical entropy is that the
estimations are biased due to the sampling noise. It is also known that the bias decreases as
the sample size increases. The mutual information estimation is computed from the observed
frequencies through a plug-in estimator based on the entropy.

Two functions are useful for comparing DAGs. The compareDag() function returns multiple
graph metrics to compare two DAGs: the confusion matrix, or error matrix in the machine
learning literature. compareDag() provides a list with the true positive rate, the false posi-
tive rate, the accuracy, the G-measure, the F1-score, the positive predictive value, the false
omission rate and the Hamming-Distance. The infoDag() returns a list for standard metrics
for describing a DAG that contains the number of nodes, the number of arcs, the average
Markov blanket size, the neighborhood average set size, the parent average set size and chil-
dren average set size.

The R function scoreContribution() computes the score contribution of each individual
observation to the total network score and additionally returns the diagonal entries of the
hat matrix. This function attempts to produce influential measures adapted to Bayesian
Networks models.

3.4. Ancillary functions for simulation

To simulate DAGs and ABN data, the functions simulateDag() and simulateAbn() are
provided. The function simulateDag() generates DAGs with an arbitrary arc density. To
ensure acyclicity, it samples a triangular adjacency matrix. The arc density is tuned with a
binomial sampling probability. The simulateAbn() generates ABN data using the R package
rjags (Plummer 2018). Simulating observations from a given structure is done with a random
number generator, respecting the node ordering using JAGS (Plummer et al. 2003). It first
creates a BUG file in the actual repository, then uses it to simulate the data. This function
produces a data frame. The purpose of those two functions is to assess the effectiveness of
the other functions of the R package abn. But they could also be used to plan and conceive
systems epidemiology studies in assessing the necessary number of samples in function of the
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expected effect size.

4. Case study

X1   X2   X3  … 

12   23   53    … 

32   31   23    … 

10   16   45    … 

…    …    …     …

Original dataset

Score 1 

Score 2 

Score 3

Cache of pre-computed scores

Bootstrapping
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R > mostprobable()

BN of a given complexity

R > fitabn()

…

……

…
… …

……

…

Parameter estimation  
BN scoring

Looping over to find the 
needed network complexity

…

……

…
… …

……

…

From the BN generate data  
JAGS > model.bug

X1   X2   X3  … 

24   55   54    … 

76   78   43    … 

01   21   44    … 

…    …    …     …

X1   X2   X3  … 

33   24   54    … 

99   87   03    … 

21   33   66    … 

…    …    …     …

X1   X2   X3  … 

16   27   01    … 

73   28   19    … 

99   78   32    … 

…    …    …     …

…

R > mostprobable()
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Figure 2: Schematic workflow diagram for a typical ABN analysis. In the green square is the
typical workflow for an ABN analysis. The blue square describes the bootstrapping procedure.

The purpose of this case study is to perform a fully reproducible and transparent analysis of
an open access observational dataset. The main objective is to produce a reliable network
together with the necessary information to allow applied researchers to interpret and report it.
The final model is controlled for over-fitting, and some strategies for controlling for clustering
are presented. The code for the analysis is provided to help disseminate the ABN approach
in the systems epidemiology community by addressing every step from an applied and in-
terpretative perspective. The proposed procedure for performing an ABN analysis could be
quite complex for a new user. Figure 2 shows in green the workflow diagram of a classical
ABN analysis. It is the sequential application of three functions: buildscorecache() for
computing a cache of pre-computed scores; a search algorithm such as mostprobable() or
searchHeuristic(); and fitabn() for fitting the final model to the data. In blue, the boot-
strapping workflow is presented. It is very similar to a classical ABN analysis, except that it
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is based on simulated datasets to control for possible over-fitting.

4.1. Data description and library loading

The case study dataset collected in March 1987 is about growth performance and abattoir
findings in the commercial production of pigs in 15 Canadian farms (Dohoo, Martin, Stryhn
et al. 2003). The data were collected to study inter-relationships among respiratory diseases
(atrophic rhinitis and enzootic pneumonia), ascarid level and daily weight gain. This dataset is
well adapted to stress the unique ability of BN modelling to disentangle complex relationships
with observational datasets. The data is an adapted version of the original dataset. It consists
of 341 observations of the 9 variables described in Table 1. A nice feature of this dataset is
that it is composed of continuous, discrete and count distributed variables. Furthermore, the
dataset has a natural grouping feature due to the different farms. This is used to showcase
the capability of the R package abn to control for a grouping effect.

Table 1: Description of the variables.

Variable Meaning Distribution
AR presence of atrophic rhinitis Binomial
pneumS presence of moderate to severe pneumonia Binomial
female sex of the pig (1=female, 0=castrated) Binomial
livdam presence of liver damage (parasite-induced white spots) Binomial
eggs presence of fecal/gastrointestinal nematode eggs Binomial

at time of slaughter
wormCount count of nematodes in small intestine at time of slaughter Poisson
age days elapsed from birth to slaughter (days) Continuous
adg average daily weight gain (grams) Continuous
farm farm ID Discrete

The R package abn and its dependencies are available from CRAN. To fully profit from the
case study presented below, other software needs to be installed: Rgraphviz (Hansen, Gentry,
Long, Gentleman, Falcon, Hahne, and Sarkar 2019) from bioconductor; or alternatively the
R package DiagrammeR (Iannone 2019) and the JAGS computing library (Plummer et al.
2003). One can load the data using the following code

R> data("adg", package = "abn")

4.2. Data Preparation and package loading

Each variable in the model needs to be associated with a distribution. Thus, one needs
to create a named list that contains all the variables and the corresponding distributions.
Currently, the available data distributions are binomial, gaussian, poisson and multinomial,
where the last distribution is available for MLE fitting only. The data of this example is well
defined, but in general one needs to coerce binary or multinomial variables to factors

R> dist <- list(AR = "binomial", pneumS = "binomial",
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Figure 3: Descriptive distributions of the variables.

+ female = "binomial", livdam = "binomial", eggs = "binomial",
+ wormCount = "poisson", age = "gaussian", adg = "gaussian")

A nice feature of the R package abn is the ability to input prior information about structural
beliefs about the data to guide the structure search. Indeed, prior expert knowledge is common
in systems epidemiology. In this case study, it is reasonable to assume that none of the
variables in the model are going to affect the sex of the animal, an inborn trait. To encode
this information, we ban all the arcs going to female by setting their value to 1 (banned),
opposite to the default value 0 (no banned) in an adjacency matrix-like formulation. The
rows are children and the columns are parents of the index nodes.

R> print(banned)

AR pneumS female livdam eggs wormCount age adg
AR 0 0 0 0 0 0 0 0
pneumS 0 0 0 0 0 0 0 0
female 1 1 0 1 1 1 1 1
livdam 0 0 0 0 0 0 0 0
eggs 0 0 0 0 0 0 0 0
wormCount 0 0 0 0 0 0 0 0
age 0 0 0 0 0 0 0 0
adg 0 0 0 0 0 0 0 0

By default, the R package abn assumes no banned nor retained arcs. See Section 3.2 on how
to specify banned or retained arcs by using a formula-like syntax.
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4.3. Structure search

For computational reasons, it is advised to constrain the maximum number of parents allowed
for each node. We start to compute a cache of pre-computed scores with a single parent per
node and increase subsequently the number of parents until the network score of the optimal
structure does not get larger, even when more parents are allowed. Based on the cache of
pre-computed scores, an exact search using the function mostprobable() is performed and
the network score is computed. In R this is done using a simple for loop with the functions
buildscorecache(), mostprobable() and fitabn().

R> result <- vector("numeric", 7)
R>
R> # ban: formula statement retain: not constrained
R> for (i in 1:7) {
+ mycache <- buildscorecache(data.df = as.data.frame(abndata),
+ data.dists = dist, dag.banned = ~female | .,
+ dag.retained = NULL, max.parents = i, method = "bayes")
+ mydag <- mostprobable(score.cache = mycache)
+ result[i] <- fitabn(object = mydag)$mlik
+ }

Figure 4 displays the network score as a function of the number of parents. The maximum
log marginal likelihood (–2709.25) is achieved with 4 parents. As one can see, the network
score increases quickly at the beginning but then plateaus. A strong assumption is to say
that if increasing the network complexity by one does not change the network score, then the
maximum was achieved. Indeed, nothing prevent the maximum network score being constant
when increasing the number of parent but still changing further when increasing again. An
alternative is to run an analysis with a pre-defined network complexity. Another approach is
to use a heuristic search provided by searchHeuristic(). The heuristic approaches, contrary
to the exact search, do not guarantee the achievement of the optimal network score. These
approaches, however, do not suffer from computing limitations, thus they are the only viable
solution for large problems. Many efficient heuristic search algorithms are implemented in
bnlearn (Scutari 2010).
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Figure 4: Total network log marginal likelihood as a function of the number of parents.
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Figure 5 shows the DAG selected using mostprobable() with a model complexity of 4 parents.
This DAG has 10 arcs for 8 variables, so this is a relatively sparse model (the average number
of parent per node is 1.25, the average size of the Markov blanket is 3.75 and each node has on
average 2.5 neighbors; as returned by function infoDag() or summary()). The square nodes
are Bernoulli distributed, the oval nodes are normally distributed and the diamond node is
Poisson distributed.

Figure 5: DAG selected using an exact search with a model complexity of four parents.

4.4. Control for over-fitting

One major concern in BN modelling is the tendency for over-fitting. Indeed, the number
of observations is generally very limited in comparison to the number of parameters in the
model. The number of possible models, i.e., DAGs, increases super-exponentially with the
number of random variables (Robinson 1973). The possible number of DAGs with 25 nodes
are about a googol (10100).
More conceptually, the question remains of how to present the result of a BN modelling analy-
sis. Multiple strategies have been proposed to create a summary network. One could perform
multiple heuristic searches. One common and very simple approach is to produce a single
robust BN model of the data mimicking the approach used in phylogenetics to create majority
consensus trees. A majority consensus DAG is constructed from all the arcs present in at least
50% of the locally optimal DAGs found in the search heuristics. This creates a single sum-
mary network. The function searchHillclimber() performs such an analysis. Rather than
using the majority consensus network as the most appropriate model for data, an alternative
approach would be to choose the single best model found during a large number of heuristic
searches using searchHeuristic(), or if possible an exact search using mostprobable().
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The sensible step of this approach is to set the necessary number of searches needed to be run
to provide reasonable coverage of all the features of the model landscape. Then this model
should be adjusted for possible over-fitting. As with the majority consensus network, which
effectivelly averages over many different competing models and therefore should generally
comprise only robust structural features. Choosing the DAG from a single model search is
far more likely to contain some spurious features, especially when dealing with small datasets
of around several hundred observations. It is extremely likely to over-fit, as one can easily
demonstrate using simulated data.
A simple assessment of over-fitting can be made by comparing the number of arcs in the
majority consensus network with the number of arcs in the best-fitting model found using an
exact search or a large number of heuristic searches. We have found that in larger datasets, the
majority consensus and best-fitting model can be almost identical, while in smaller datasets
the best-fitting models may have many more arcs, suggesting a degree of over-fitting.
An advantage of choosing a DAG from an individual search is that, unlike averaging over lots
of different structures as in the construction of a majority consensus network, the model chosen
here has a structure which was actually found during a search across the model landscape.
In contrast, the majority consensus network is a derived model which may never have been
chosen during even an exhaustive search. Indeed, it may comprise contradictory features, a
usual risk when averaging across different models. In addition, a majority consensus network
need also not to be acyclic, although in practice this can be easily corrected by reversing
one or more arcs to produce an appropriate DAG. A simple compromise between the risk
of over-fitting when choosing the single highest-scoring DAG and the risk of inappropriately
averaging across different distinct data generating processes is to prune the highest-scoring
DAG using the majority consensus model. In short, element-wise matrix multiplication of the
highest-scoring DAG and the majority consensus DAG gives a new DAG which only contains
the structural features in both models. An alternative approach for tackling this problem,
would be to use Bayesian model averaging. Structural MCMC will be discussed in Section 6.
Friedman, Goldszmidt, and Wyner (1999) presented a general approach for using parametric
and non-parametric bootstrapping to select BN models/DAG structures. They showed that
a non-parametric approach seems to converge less rapidly in terms of number of samples but
requires fewer assumptions. The non-parametric bootstrapping approach is relatively easy to
implement and efficient in extracting robust features from the data. The parametric approach
can be implemented by using readily available Markov chain Monte Carlo sampling software
such as JAGS or WinBUGS. The basic idea is to take the structure with the best network
score, code it, and use these samplers to generate bootstrap datasets from this model. That
is, independent realizations from the model which can be used to generate datasets of the
same size as the observed data. Then the model search is repeated treating the bootstrap data
as the observed data. Generating many bootstrap datasets and conducting searches on each
allows us to estimate the percentage support for each arc in the highest-scoring model. In
other words, we find out how many of the arcs in the highest-scoring model can be recovered
from a dataset of the size that was actually observed. Obviously, the more data, the more
statistical power and recoverable structural features. Arcs with a lower level of support, e.g.,
<50%, can be pruned from the best fitting model, assuming that these are potentially a result
of over-fitting. The resulting model - possibly with arcs pruned from the original model - is
the chosen model for the data. The 50% threshold is arbitrary and could possibly depend on
the expected arc density or model complexity. Other options for trimming or pruning arcs
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exist, but without further information it seems to be a reasonnable uninformative guess. This
strategy is commonly used in phylogenetic trees.
While parametric bootstrapping as a general technique is well established and conceptually
elegant, it may in practice not be computationally feasible. Even when taking the least de-
manding approach of conducting only one heuristic search per bootstrap dataset, the number
of datasets/searches required to get robust support values for each arc in the best fitting
model may be large and beyond what is reasonably possible even using high performance
computing (HPC) hardware.

4.5. Parametric bootstrapping

The chosen dataset allows us to do fast bootstrapping. Given a BN model - a DAG structure
plus parameter priors - the first step is to estimate the posterior parameters. The second step
is to implement the DAG structure together with the posterior parameters in a BUG file. To
make the implementation as general as possible, we present an approach based on dcat()
from JAGS that discretizes each posterior density across a fine grid.
The function fitabn() with compute.fixed = TRUE uses Laplace approximations to estimate
the posterior density of each parameter in a BN model. An appropriate domain (range) for
each parameter must be supplied by the user using a bit of trial and error. It is crucially
important to give a sufficiently wide range so that all of the upper and lower tails of the
distribution are included, e.g., the range should encompass where a density plot first drops
to approximately zero at each tail.
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Figure 6: Example of simulated data (in blue) versus original data (in black).
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Figure 6 compares one round of simulated data (in blue) with the original data (in black).
By default, fitabn() center and standardizes continuous data. As one can see, the simulated
data looks fairly good except for the count data, which looks sub-optimally simulated as the
long right tail is under-represented in the simulated data.
The code displayed in Annex C performs 5000 bootstrapping steps from a model defined in
a BUG file called model8vPois.bug using the R package rjags. A thinning of 20 is used
to reduce auto-correlation in the simulated samples. The global search is depicted with the
pseudo-code given in Algorithm 1.

Result: A list of DAGs and bootstrapped dataset
Input : A fitted ABN model, an original dataset, model complexity limit, a random seed,

a number of desired bootstrap runs, a BUG file model, a thinning parameter
Output: List of matrix and dataframe
for 1:n do

Read a BUG file and run JAGS over it
Extract simulated samples
Format data
Compute a cache of pre-computed scores
Run an exact search
Fit an ABN model to the selected BN

end
Algorithm 1: Pseudo-code for bootstrapping ABN models.

In the following text, the list of DAGs selected from the simulated datasets is called the
bootstrapped samples. In order to simulate the variables of the dataset, we need to provide
a model for each of them using the aforementioned parameters estimates. For instance, the
binomial node AR in our DAG has one incoming arc coming from the node age. In a regression
setting this would be translated into:

logit(AR) = α+ β · age + ε, (5)

where α is the intercept, β is the regression coefficient for variable age, and ε is the error
term modeled by a binomial distribution. Then, the values of α and beta is sampled using the
function dcat() within JAGS from the original discrete distribution of parameters generated
by fitabn().
Figure 7 displays the arc distribution from the selected BN from the simulated datasets, i.e.,
the bootstrapped samples. The network selected from the original dataset had 10 arcs. This
is an indication of over-fitting from the original model.
In order to produce the final pruned DAG, we measure the prevalence of each arc in the
generated structures and retain only arcs present in at least 50% of the bootstrapped samples.
The matrix displayed below shows the percentage of arcs retrieved within the bootstrap
samples. As one can see, some arcs are clearly supported or excluded, but some are very
close to the 50% threshold. This is not surprising given the typical number of observations of
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Figure 7: Histogram of the distribution of the number of arcs in the bootstrapped searches

an epidemiological study (a few hundred). An alternative approach would be to consider an
undirected graph that includes all arcs supported regardeless to direction in more than 50% of
the bootstrap samples. This is justifiable due to the fact that the score used is approximately
the score equivalent. Thus, generally speaking, the data and ABN methodology cannot
discriminate between different arc directions; therefore, considering arcs recovered in only
one direction may be overly conservative. This decision is likely to be problem-specific.

R> print(perdag * 100, digits = 0)

AR pneumS female livdam eggs wormCount age adg
AR 0 0 1 0 0 0 76 5
pneumS 1 0 0 0 0 0 40 8
female 0 0 0 0 0 0 0 0
livdam 0 0 0 0 53 2 0 0
eggs 0 0 0 25 0 0 8 75
wormCount 71 1 1 0 100 0 100 60
age 18 17 56 0 3 0 0 26
adg 1 2 11 0 6 0 74 0

4.6. Control for clustering
In the adg dataset, the data were collected in different farms (random variable encoded as
farm). A workaround was needed to introduce additional correlation structure via random
effects when fitting the data to the structure to avoid overly optimistic parameter estimates.
Three strategies for clustering adjustment are possible in an ABN analysis. They are ranked
in terms of computational complexity:

• Adjustment at the regression phase: given the structure selected without adjuste-
ment (eventually controlled for overfitting), it is possible using the function fitabn()
to adjust for clustering the regression coefficients.

• Adjustment at the bootstrapping phase: given the structure selected without
adjustement, one can alterate the code aiming at controlling for overfitting in adding a
gaussian random effect in the model.

• Adjustement at the learning phase: learning the structure with cluster adjusted
scores with the function buildscorecache().
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Adjustment at the regression phase

The function fitabn() has the possibility to control internally for clustering using the ar-
guments group.var and cor.var. One can choose which variable should be adjusted. On a
personal computer, computing the adjusted model takes 15 minutes to compute, whereas the
unadjusted model ran in less than a second. The grouping variable has 15 levels. In the
function fitabn(), we apply the grouping adjustment to all random variables.
The following code will produce adjusted regression coefficients:

R> marg.f.grouped <- fitabn(object = mydag, group.var = "farm",
+ cor.vars = c("AR", "livdam", "eggs", "wormCount", "age",
+ "adg"), compute.fixed = TRUE, n.grid = 1000)

Adjustment at the bootstrapping phase

In the BUG file, one can add a random effect for each level of the clustering variable (M=15;
the number of farms). The random effect are typically chosen as normally distributed with
mean zero and precision parameter determined with a diffuse gamma prior. In practice one
modify the BUG file with a for loop over the number of level of the clustering variable (M=15;
the number of farms) for each variable that should be adjusted. And a list of priors for
precision parameters. This approach aimes at verifying which of the selected arcs are robust
enough to pass the bootstrapping phase when correction is applied to account for the addi-
tional variance produced by the clustering.

$> for(j in 1:M){\newline
$ % random effect for each group for variable adg\newline
$ rv.adg[j] ~ dnorm(0.0,prec.rv.adg);\newline
$}\newline
$> % priors definitions\newline
$> % rv priors\newline
$>\newline
$> prec.rv.adg ~ dgamma(1,5E-05);\newline

Adjustment at the learning phase

The finest adjustment is done directly at the learning phase when pre-computing the network
scores. This is also the most computationally demanding and it can become numerically
unstable given the number of model that should be computed. This is done using the group.var
and cor.var arguments in buildscorecache(). In the following code the same structural
constrains have been used and the number of possible parent is limited to 4.

R> # recompute the cache of scores using GLMM
R> mycache <- buildscorecache(data.df = abndata, data.dists = dist,
+ group.var = "farm", cor.vars = c("AR", "pneumS",
+ "female", "livdam", "eggs", "wormCount", "age",
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+ "adg"), dag.banned = ~female | ., dag.retained = NULL,
+ max.parents = 4)
R>
R> # exact search
R> dag.adjusted <- mostprobable(score.cache = mycache)
R>
R> # recompute the marginal using GLMM
R> marg.f.grouped <- fitabn(object = dag.adjusted, group.var = "farm",
+ cor.vars = c("AR", "pneumS", "female", "eggs",
+ "wormCount", "age", "adg"), compute.fixed = TRUE,
+ n.grid = 100, control = list(max.mode.error = 0,
+ epsabs.inner = 0.1, max.hessian.error = 0.5,
+ epsabs = 0.1, error.verbose = FALSE, hessian.params = c(0.01,
+ 0.1), factor.brent = 10, loggam.inv.scale = 0.1))
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Figure 8: Marginal densities of model parameter corrected for random effect.

Figure 8 shows the parameter distribution adjusted for clustering using random effect. The
adjustement have been applied to every nodes except the node female. After postproceesing,
the random effect applied to this node is poorly estimable. Indeed, the number of female
versus castrated pigs accross farms is the fairly similar, which implies that the clustering has
a negligeable effect. As on can see, the quantiles have not widened much. Thus, we can use
the new parameter estimates.

4.7. Accounting for uncertainty in BN models
Calculating the so-called link strength is useful for both visualization and approximate in-
ference, and it can be seen as a proxy for arc uncertainty. The strength of the edges is a
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complementary metric to regression coefficients. We use a link strength metric called the true
average link strength percentage (PLS), which expresses by how many percentage points the
uncertainty in variable Y is reduced by knowing the state of its parent X if the states of
all other parent variables are known (averaged over the parent states using their actual joint
probability). The actual definition is:

PLS(X → Y ) = H(Y |Z)−H(Y |X,Z)
H(Y |Z) . (6)

For the case of an arc going from node X to node Y and where the remaining set of parents
of Y is denoted as Z. H is the entropy. The matrix below displays the percent link strength:

R> print(LS, digits = 3)

AR pneumS female livdam eggs wormCount age adg
AR 0.000 0 0.0000 0 0.0000 0 0.089 0.000
pneumS 0.000 0 0.0000 0 0.0000 0 0.000 0.000
female 0.000 0 0.0000 0 0.0000 0 0.000 0.000
livdam 0.000 0 0.0000 0 0.0405 0 0.000 0.000
eggs 0.000 0 0.0000 0 0.0000 0 0.000 0.128
wormCount 0.282 0 0.0000 0 0.4068 0 0.434 0.376
age 0.000 0 0.0189 0 0.0000 0 0.000 0.000
adg 0.000 0 0.0000 0 0.0000 0 0.390 0.000

4.8. Presentation of the results

The marginals represent estimates of the parameters at each node, i.e., the arcs in the DAG.
As the variables are coming from different distributions, they have different biological in-
terpretations. In Figure 9, the square nodes are Bernoulli distributed, the oval nodes are
normally distributed and the diamond node is Poisson distributed. The posterior marginals
represent correlation coefficients for Gaussian nodes, log rate ratios for Poisson nodes, and
log odds ratios for binomial nodes. Binomial and Poisson nodes need to be exponentiated to
get the odds ratios or rate ratios, respectively.
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Figure 9: Final ABN model with arc width proportional to link strength

Table 2: Marginals posterior distribution of the parameter estimates

2.5Q median 97.5Q interpretation LS
AR|age 1.46 2.14 3.19 odds ratio 0.09
livdam|eggs 0.92 2.84 10.23 odds ratio 0.04
eggs|adg 0.71 1.10 1.73 odds ratio 0.13
wormCount|AR 1.38 1.57 1.79 rate ratio 0.28
wormCount|eggs 11.38 14.85 19.59 rate ratio 0.41
wormCount|age 0.77 0.91 1.08 rate ratio 0.43
wormCount|adg 0.78 0.90 1.05 rate ratio 0.38
age|female 0.31 0.44 0.58 correlation 0.02
adg|age -0.90 -0.84 -0.77 correlation 0.39

5. Simulation study
Simulation studies are needed to test models and implemented methods. As an illustration
we show here one simulation that illustrate the efficiency of the implemented scoring system.
More simulation studies are in the annexes: A about DAGs structural metrics and B about
a quality assesment of the estimation of the regression coefficients.
The parameters which are important from a simulation point of view are the BN dimension,
i.e., the number of nodes of the BN, the structure density, i.e., average number of parents per
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node, and the sample size. Additionally to those structure-wise metrics, important factors that
impact simulations are the intensity of the arc link, the variability of the arc’s distributions
and the mixture of variables. Indeed, scores used are only approximately Markov class-
independent and the discrepency increases when mixing distributions.

5.1. Comparison of score efficiency

In order to estimate the efficiency of the different scores implemented in the R package abn,
BNs with a given arc density have been simulated, from which 20 datasets have been simulated
with different sample sizes. The metrics used to display performance of the score are the true
positive (number of arcs properly retrieved), false positive (selecting an arc when there is not
one) and false negative (selecting no arc when there is one). The scores used are marginal
posterior likelihood in a Bayesian regression framework (abn), maximum likelihood without
penalization for complexity (mlik), AIC, BIC and MDL.
Figure 10 shows for an increasing number of observation n = 5, 10, 50, . . . , 10000 the efficience
of five scores mentioned above for a given BN density using boxplots to display the variability
of the distribution of different metrics. As one can see in Figure 10, the mlik (maximum
likelihood) is a sub-optimal score for BN learning as Daly et al. (2011) expected. None of
the other scores are better or worse in general and they give different results for a specific
dataset. Interestingly from an applied perspective, the marginal posterior likelihood seems to
achieved very promising results with a limited number of observations.

6. Summary and discussion
The R package abn is a free implementation of the ABN methodology that allows users to
fit Bayesian and MLE ABN models to observational datasets. The R package abn contains
functions to analyze, select, plot and simulate ABN models. The functions are designed to
be usable with limited knowledge of state-of-the-art Bayesian inference methods.
The R package abn suffers from several applied and modelling limitations. Some of these
limitations are inherent in the Bayesian modeling framework some are tentatively tackled in
an ABN satellite suite of R packages. These packages are at different development stages,
but they are all designed to work synergetically with the R package abn and hopefully will
be integrated in the long term.
From an applied perspective, researchers often have to extract a limited number of variables
from a large observational dataset. In an ABN context, the exact search algorithm is com-
putationally very sensitive to the number of variables of the network. An ABN analysis
targets epidemiological modeling problems where a set of variables of importance rather than
a unique outcome can be clearly identified for the modelling. In situations where no previous
model exists and no clear outcome could be identified to assess the predictive power of the
covariate, most of the classical model selection technique fails. Driven by these findings, a
variable selection approach that solves those issues has been proposed to facilitate the ABN
analysis. The R package varrank (Kratzer and Furrer 2018a,b) is an implementation of the
minimum redundancy maximum relevance model (Battiti 1994) that performs multi-outcome
variable ranking. It can be used prior to the R package abn to perform dimensionality reduc-
tion and to focus on modelling important variables. A possible alternative could be to use
Random Forest’s variable importance that also supports multi-outcome formulation (Strobl,
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Figure 10: Comparison of score efficiency for marginal posterior likelihood (abn), maximum
likelihood (mlik), AIC, BIC and MDL for a given BN density in function of the number of
observations using accuracy, true positive, false positive and false negative metrics.

Boulesteix, Zeileis, and Hothorn 2007).
A more theoretical limitation of the R package abn is the fact that the parameter priors
implemented are designed to be non-informative. Bayesian model selection algorithms with
uninformative priors will asymptotically always select the simpler model, regardless of the
data. This is known as Lindley’s paradox (Lindley 1957). A byproduct of more informative
priors is the ability to guide the posterior when the likelihood is poorly calculable. This
could be useful when there is data separation or in the case of paucity of data. Indeed, while
probably suitable in large datasets, flat priors can quickly turn troublesome when the data is
not informative for a parameter of interest (Kratzer, Furrer, and Pittavino 2019a). From a
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long-term perspective, it is certainly of interest to equip abn with weakly informative priors
whatever the distribution to incorporate and extend the R package abn.
One general limitation of the BN modelling approach and the R package abn is the strong
assumption of data independence coming from the regression framework used. Multiple ap-
proaches have been proposed to model temporal dynamics, such as Dynamic Bayesian Net-
work modelling (DBNs) (Murphy and Russell 2002), Temporal Nodes Bayesian Networks
(TNBNs) (Arroyo-Figueroa and Sucar 1999), VAR processes (Ahelegbey, Billio, and Casarin
2016) and state-space or hidden Markov models (Le Strat and Carrat 1999).
The two pillars of the statistical inference are the estimation of the effect size and the quan-
tification of the model uncertainties. In a regression context, this is achieved by reporting
regression coefficients and their confidence intervals (or poorly using solely the coefficients’
p-values). This is done in ABN analysis when reporting the quantiles of the posterior distri-
bution of the coefficients. However, this is not fully satisfactory. Indeed, the uncertainties
quantification is performed conditionally to one model. A superior approach would be to
perform Bayesian model averaging, using MCMC over the possible structures. The computed
MCMC sample can be used to extract the arc probability of presence or absence. In a broader
perspective, it could be possible to compute the probability of any structural query over the
MCMC sample. This approach is implemented in the R package BiDAG (Suter and Kuipers
2018) or in the R package mcmcabn (Kratzer and Furrer 2019). The former is based on an in-
novative order search, whereas the latter is based on a fully structural formulation. However,
known to be slower in convergence and less efficient with large networks than the R package
BiDAG, the R package mcmcabn has a fully transparent formulation regarding the structural
priors used. It eases the interpretation of findings.

7. Future developments
The case study showed that more exponential distributions should be implemented in order to
better grasp the diversity of variables of interest in systems epidemiology. Indeed, zero-inflated
variables are poorly represented by the Poisson distribution. A negative binomial would
probably be a better alternative. This paper presents an analysis that takes advantage of
bagging to decrease model variance. Figure 10 shows that information theoretic scores perform
differently depending on the context. Thus, there could be an opportunity to construct
a boosted score dedicated to the ABN methodology. This idea should be addressed in a
dedicated simulation study.
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Computational details
The results in this paper were obtained using R 3.6.1 (2019-07-05) – “Action of the Toes”
with the abn 2.2 package. All computations were carried out using RStudio 1.2.5001. R
and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/. RStudio is available at https://www.rstudio.com/. The
JAGS version is 4.3.0. The INLA version is 3.6.

A. DAGs simulation: more technical details
In order to simulate DAGs, the function simulateDag() generates triangular matrices with
user tuneble arc density. The node ordering is sampled from the node definition.

0.00

0.25

0.50

0.75

1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized density of the DAGs

N
or

m
al

iz
ed

 m
ax

im
um

 [%
]

variable

n.arcs

mb.average

nh.average

parent.average

children.average

Density metrics of DAGs with 40 nodes (n=1000)

Figure 11: Normalized DAG structural metrics from simulated Bayesian networks of 40 nodes
with different arc densities

In Figure 11, some normalized (i.e., divided by the maximum possible) DAGs structural
metrics are displayed: n.arcs is the number of arcs, mb.average is the average size of the
Markov blanket (the set of parents, children and co-parents), nh.average is the average number
of neighbours, parent.average is the average number of parents and children.average is the
average number of children in the BN. For each level of network complexity, 1000 BN with

https://CRAN.R-project.org/
https://www.rstudio.com/
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40 nodes were simulated. The normalized distribution of the BN metrics computed with
infDag() is reported. As one can see in Figure 11, the only normalized metric that exhibits
non-linear behaviour with arc density is the Markov blanket.

B. Regression coefficients estimation: quality assurance check
The R package abn contains two functions to estimate the regression coefficent based on
two statistical paradigms: the MLE formulation with an IRLS estimation, and a Bayesian
formulation with diffuse priors estimated with INLA. Figure 12 shows a quality assurance
check of the implementations.
The Bayesian and MLE implementations are compared in Figure 12 to estimate the accuracy
of parameters. Two network densities, 20% and 80% of the possible arcs expressed, were
simulated 50 times. Then the regression coefficients were computed for different sample sizes
and the coefficient of variation of the given node as a proxy for the distribution’s variability.
As one can see in Figure 12, the error is measured as the maximum Root Mean Squared Error
(max RMSE) on a log-log scale. Both implementations produce very similar results even if
the estimation frameworks are very different.

C. Parametric bootstrapping: the R code
This section contains the R code needed to perform parametric bootstrapping described by
the pseudo-code in Algorithm 1.

R> vars <- colnames(abndata)
R>
R> # load data for jags
R> source("PostParams.R")
R>
R> # select nr. bootstrap samples to run
R> set.seed(123)
R>
R> # get 5000 random numbers to set different initial values
R> n <- sample(1:100000, 5000)
R>
R> # specify max number of parents based on previous search
R> max.par <- 4
R>
R> # Simulate data and run ABN on such dataset
R> for (i in 1:length(n)) {
+ print(paste("/n Running simulation", i))
+ # pick initials
+ init <- list(.RNG.name = "base::Mersenne-Twister", .RNG.seed = n[i])
+ # run model
+ jj <- jags.model(file = "plot/model8vPois.bug", data = list(AR.p = AR.p,
+ pneumS.p = pneumS.p, female.p = female.p, livdam.p = livdam.p,
+ eggs.p = eggs.p, wormCount.p = wormCount.p, age.p = age.p,
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Figure 12: Comparison between Bayesian and MLE implementations to estimate regression
coefficients in an ABN framework. The panels show the maximum Root Mean Squared Error
(max RMSE) in function of the network density, the distribution variability and the sample
size.

+ prec.age.p = prec.age.p, adg.p = adg.p, prec.adg.p = prec.adg.p),
+ inits = init, n.chains = 1, n.adapt = 5000)
+ # run more iterations
+ update(jj, 100000)
+ # sample data (same size as original: 341) with a sampling
+ # lag (20) to reduce autocorrelation
+ samp <- coda.samples(jj, c("AR", "pneumS", "female", "livdam",
+ "eggs", "wormCount", "age", "prec.age", "adg", "prec.adg"),
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+ n.iter = n.obs * 20, thin = 20)
+ # build dataframe in the same shape as the original one
+ dt.boot <- as.data.frame(as.matrix(samp))
+ dt.boot <- dt.boot[, vars]
+ # now coerce to factors if need be and set levels
+ abndata <- as.data.frame(abndata)
+ for (j in 1:length(vars)) {
+ if (is.factor(abndata[, j])) {
+ dt.boot[, j] <- as.factor(dt.boot[, j])
+ levels(dt.boot[, j]) <- levels(abndata[, j])
+ }
+ }
+ # Build a cache of all local computations
+ mycache <- buildscorecache(data.df = dt.boot, data.dists = dist,
+ dag.banned = banned, dag.retained = retain, max.parents = max.par)
+ # Run the EXACT SEARCH
+ mp.dag <- mostprobable(score.cache = mycache)
+ fabn <- fitabn(object = mp.dag)
+ # Save the results obtained
+ save(mycache, mp.dag, fabn, dt.boot, file = sprintf("boot.%04d.RData",
+ i))
+ }

D. Numerical stability check: Parameter estimation
Once the trimmed DAG is obtained to keep robust structural features, we can extract the
marginal posterior densities. Indeed, a BN has a qualitative part (the structure) and a
quantitative part (parameters estimates). They are both equally important for interpreting
and reporting the findings. As the estimation is based on the Laplace approximation and the
R package abn does not rely on conjugate priors, a numerical check is performed. Figure 13
shows the marginal densities. This figure is much more ambitious than the structural learning
phase. The critical assumption is that the data contains sufficient information to accurately
estimate the density of individual parameter of the model. This is a stronger requirement
than simply being able to estimate an overall goodness of fit metric. It could happen that
INLA or the internal C code cannot estimate the densities with enough numerical stability.
Many user-tunable parameters can be supplie to fitabn() by providing a list to the control
argument.
Both the shape of the posterior parameter distributions and their area under the density look
satisfactory (see Figures 13 and 14).
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Figure 13: Marginal densities of model parameters
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Figure 14: Area under the posterior density for model parameters.
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