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a b s t r a c t 

A spatio-temporal blockwise Euclidean likelihood method for the estimation of covariance 

models when dealing with large spatio-temporal Gaussian data is proposed. The method 

uses moment conditions coming from the score of the pairwise composite likelihood. The 

blockwise approach guarantees considerable computational improvements over the stan- 

dard pairwise composite likelihood method. In order to further speed up computation, a 

general purpose graphics processing unit implementation using OpenCL is implemented. 

The asymptotic properties of the proposed estimator are derived and the finite sample 

properties of this methodology by means of a simulation study highlighting the compu- 

tational gains of the OpenCL graphics processing unit implementation. Finally, there is an 

application of the estimation method to a wind component data set. 

© 2021 EcoSta Econometrics and Statistics. Published by Elsevier B.V. All rights reserved. 

 

 

 

1. Introduction 

With the advent and expansion of Geographical Information Systems (GIS) along with related software, statisticians today 

routinely encounter large spatial or spatio-temporal data sets containing one or multiple variables observed across a large 

number of location sites. This has generated considerable interest in statistical modeling for large geo-referenced spatial and 

spatio-temporal data; see, for instance, Cressie and Wikle (2015) and Sherman (2011) . 

Gaussian random fields (RFs) are the cornerstone for this kind of analysis and have been largely used in the past years

thanks to a well developed and rich theory. Moreover, they represent the building block for more sophisticated models 

or non-Gaussian RFs (see, for instance, Bevilacqua et al. (2020) , De Oliveira et al. (1997) and Xu and Genton (2017) ). The

covariance function is a crucial object in Gaussian RF analysis. It is well known, in fact, that, together with the mean, the
� For reproducible research purposes, we developed the R package STBEU ( Morales-Oñate et al., 2019 ) that includes the full code. 
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covariance function completely characterizes the finite dimensional distribution of the RF. Furthermore, it is also well known 

that the spatio-temporal kriging predictor depends on the knowledge of such covariance function. 

Since a covariance function must be positive definite, practical estimation generally requires the selection of some para- 

metric classes of covariances and the corresponding estimation of these parameters. The maximum likelihood method is 

generally considered the best option for estimating the covariance model parameters. Nevertheless, the evaluation of the 

objective function under the Gaussian assumption requires the solution of a system of linear equations. For a Gaussian RF 

observed in n spatio-temporal locations the computational burden is O (n 3 ) , making this method computationally impracti- 

cal for large data sets. This fact motivates the search for estimation methods with a good balance between computational 

complexity and statistical efficiency. 

Some solutions have been proposed involving approximations of the covariance matrix ( Cressie and Johannesson, 2008; 

Furrer et al., 2006; Kaufman et al., 2008; Litvinenko et al., 2017 ), stochastic approximations of the score function ( Stein et al.,

2013 ), approximations based on Markov RFs ( Lindgren et al., 2011; Rue and Held, 2005; Rue and Tjelmeland, 2002 ), Gaussian

predictive process ( Banerjee et al., 2008 ) or on the composite likelihood idea ( Bai et al., 2012; Bevilacqua and Gaetan, 2015;

Bevilacqua et al., 2012; Eidsvik et al., 2014 ) and the so-called Vecchia approximations ( Katzfuss and Guinness, 2020; Stein

et al., 2004 ) among others. Another interesting proposal merging a parametric and non parametric approach can be found 

in Ma and Kang (2020) . For an extensive review see Heaton et al. (2019) and the references therein. 

The concept of composite likelihood (CL) refers to a general class of objective functions based on the likelihood of 

marginal or conditional events (see Lindsay, 1988; Varin et al., 2011 , for a recent review). This kind of estimation method

has two important features: first, it is generally an appealing estimation method when dealing with large data sets; sec- 

ond, it can be helpful when the specification of the likelihood is difficult. As outlined in Bevilacqua and Gaetan (2015) the

class of CL functions is very large and, to the best of our knowledge, there are no clear guidelines on how to chose a specific

member of this class for a given estimation problem. In the Gaussian case, if the choice of the CL is driven by computational

concerns, the CL based on pairs has clear computational advantages with respect to other types of CL functions. 

In a purely spatial context, Bevilacqua et al. (2015) propose a blockwise Euclidean likelihood (EU) method ( Antoine et al.,

20 07; Owen, 20 01 ) for the estimation of a latent Gaussian RF when considering binary data. The moment conditions used

in the EU estimator derive from the score function of the CL based on marginal pairs. A feature of this approach is that it

is possible to obtain computational benefits over the standard pairwise likelihood depending on the choice of the spatial 

blocks. 

The main advantage of EU estimators is due to their computational simplicity. While similar estimators, such as the 

empirical likelihood estimator and the exponential tilting estimator (see, e.g.: Kitamura, 1997; Newey and Smith, 2004; 

Nordman and Caragea, 2008; Qin and Lawless, 1994 ), are computed via the solution of complicated optimization problems 

in the parameter of interest and an auxiliary parameter vector, EU estimators are characterized by a closed form solution 

for the auxiliary parameter and a simple optimization problem based on a quadratic form. This structure makes the EU 

estimator particularly appealing for the problem we want to tackle. 

The goal of the paper is to modify and extend the approach in Bevilacqua et al. (2015) to the spatio-temporal context

and Gaussian data. This generalization implies the construction of (possibly overlapping) spatio-temporal blocks. Different 

types of blocks should be considered depending on the type of data. For instance, for a few location sites observed in a large

number of temporal instants, the use of temporal blocks is the natural choice. The asymptotic properties of the proposed 

estimator are established under increasing domain asymptotics. 

Since the proposed method is highly amenable to parallelization, we reduce the computational complexity by consider- 

ing an implementation based on the OpenCL language ( Stone et al., 2010 ) in a general purpose graphical processing unit

(GPGPU) framework ( Lee et al., 2010; Suchard et al., 2010 ). This allows to considerably reduce the computational costs as-

sociated to the blockwise EU estimation of the spatio-temporal covariance model. 

The remainder of the paper is organized as follows. In Section 2 , we introduce the concept of spatio-temporal RF and

the pairwise likelihood estimation method. In Section 3 , we introduce the blockwise spatio-temporal EU method and we 

establish the associated asymptotic properties. In Section 4 , we investigate the performance of the spatio-temporal blockwise 

EU estimator in terms of statistical and computational efficiency highlighting the gains induced by the graphics processing 

unit (GPU) parallelization. In Section 5 , we apply our methodology to a data set on Mediterranean wind speed. Finally, in

Section 6 we give some conclusions. 

2. Spatio-temporal pairwise likelihood 

Let l = (s � , t) � denote a generic spatio-temporal index with l ∈ L = S × T with S ⊂ R 

d and T ⊂ R 

+ being our sampling

region, and let Z = { Z l , l ∈ L } be a real-valued spatio-temporal RF (STRF) defined on L . 

When T = { t 0 } then L ≡ S and Z s ≡ Z (s � ,t 0 ) � is a purely spatial RF. When S= { s 0 } then L ≡ T and Z t ≡ Z (s � 
0 

,t) � is a purely

temporal RF. The high order of complexity of spatio-temporal interactions calls for simplifying assumptions, such as those 

of intrinsic or weak stationarity, that have implications on the existence of the moments of the RF. 

A STRF Z is second-order (weakly stationary) if E [ Z l ] = μ and Var [ Z l ] = σ 2 are finite constants for all l ∈ L and the co-

variance Cov [ Z l , Z l ′ ] = C(h , u ) = σ 2 ρ(h , u ) with ρ(·, ·) a positive definite function such that ρ(0 , 0) = 1 that only depends

on h = s ′ − s and u = t ′ − t . Additionally, in the remainder of the paper we assume a zero nugget effect. Isotropy is another

very common assumption and also the building block for more sophisticated models. Isotropic spatial RFs have the feature 
2 
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that, for a candidate correlation function φ : [0 , ∞ ) → R and given s ′ , s , two arbitrary location sites in S, the correlation

function solely depends on the Euclidean distance (denoted ‖ · ‖ throughout) that is ρ(h ) = φ(‖ h ‖ ) . Spatio-temporal mod-

eling inherits the assumption of spatial isotropy coupling, through a continuous function, spatial isotropy with temporal 

symmetry. This is, φ : [0 , ∞ ) × [0 , ∞ ) → R , with φ(0 , 0) = 1 , such that ρ(h , u ) = φ( ‖ h ‖ , | u | ) . 1 
In the past years, many parametric models have been proposed in order to model the covariance function of a Gaus-

sian STRF. A possible simple construction is obtained as the product of any valid isotropic spatial and temporal symmetric 

covariance as for instance: 

C(h , u, θ) = σ 2 exp 

(
−|| h || 

αs 
− | u | 

αt 

)
, (1) 

where θ = (σ 2 , αs , αt ) 
� . Here αs and αt are positive spatial and temporal scale parameters respectively. This kind of covari-

ance model, called separable model, has been criticized for its lack of flexibility. For such a reason, different classes of non

separable covariance models have been proposed in order to capture possible spatio-temporal interactions. A special case of 

the celebrated Gneiting class ( Gneiting, 2002 ) is given by: 

C(h , u, θ) = 

σ 2 

(1 + | u | /αt ) 
e 

− ‖ h ‖ 
αs (1+ | u | /αt ) 

β/ 2 , (2) 

where θ = (σ 2 , αs , αt , β) � . In this case, the parameter β ∈ [0 , 1] is a (non) separability parameter. When β = 0 the covari-

ance model is separable. 

Let us assume that z = { z l 1 , . . . , z l n } � is a realization of Z and define � i j ( θ) ≡ log ( f Z i j 
( z i j ) , θ) , θ ∈ � ⊂ R 

d θ , the loglike-

lihood associated to the Gaussian bivariate distribution random vector Z i j = (Z l i , Z l j ) 
� . The pairwise weighted composite

likelihood objective function is then given by 

pl( θ) = 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

� i j ( θ) w i j , (3) 

where 

w i j are suitable positive weights not depending on θ. Then the maximum pairwise weighted composite likelihood estima- 

tor is given by ̂  θPL = argmax θ∈ � pl( θ) . Moreover, ̂  θPL is consistent and its asymptotic distribution, under increasing domain 

asymptotics, is Gaussian with asymptotic covariance matrix given by G (θ) −1 = H(θ) −1 J(θ) H(θ) −1 � where G ( θ) is the

Godambe information matrix and H( θ) = − E [ ∇ 

2 pl( θ)] , J( θ) = E [ ∇ pl( θ) ∇ pl( θ) � ] ( Bevilacqua et al., 2012 ). 

A distinctive feature of pl( θ) is that the associated estimating function, 

∇pl( θ) = 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

∇� i j ( θ) w i j , 

where ∇ denotes the vector differential operator with respect to θ, is unbiased. Let us then define g i j (θ) := ∇� i j ( θ) w i j .

Hence, 

E [ g i j (θ0 )] = 0 , (4) 

where θ0 is unique. 2 The moment condition in Eq. (4) is one of the building blocks of our approach. 

The role of the weights w i j in Eqs. (3) and (4) is to reduce computational time and to improve the statistical efficiency of

the estimator. As shown in Bevilacqua and Gaetan (2015) , Davis and Yau (2011) and Joe and Lee (2009) , compactly supported

weight functions depending on fixed spatial or spatio-temporal distance, i.e. 

w i j = 

{
1 ‖ s i − s j ‖ ≤ d s , | t i − t j | < d t , 
0 otherwise 

, (5) 

can significantly improve both the statistical efficiency and the computational complexity of the estimation method. A the- 

oretical guideline on how to choose d s and d t is given in Bevilacqua et al. (2012) but its implementation is computationally

demanding. In practice, the choice of d s or d t depends on the problem at hand and on the size of the dataset. A rule of

thumb is to fix d s or d t as a small proportion of the maximum spatial and temporal distances ( Bevilacqua et al., 2012 ). 

The recent literature on the topic has put forward alternative and more statistically efficient weighting schemes (see, e.g., 

Pace et al., 2019 ). However, also in this case, their practical implementation is computationally demanding. 
1 We will use the notation | · | to indicate both the cardinality of a set and the absolute value of a scalar. Hence, for a generic set A , |A| is its cardinality, 

while for a generic scalar a, | a | is its absolute value. The different notation for sets and scalars avoids any potential confusion. 
2 The assumption that θ0 be unique is rather standard in the literature (see e.g. Bevilacqua et al., 2012 ), it may be, though, problematic to maintain 

when dealing with complex models such as those treated in this paper. In this case a researcher may invoke some modifications that accommodate for 

the presence of multiple optima (see for example Van der Vaart, 2007 , Section 5.2.1). It is possible to adapt the standard proof for the consistency of 

M-estimators to the presence of multiple optima. In particular, one can define a set of population optima, say, �0 ∈ � and show, under fairly standard 

assumptions, that, for every ε > 0 and every compact set K ⊂ �, P(d ( ̂  θ, �0 ) ≥ ε ∧ ̂  θ ∈ K) → 0 where ̂  θ is an M-estimator and d (·, ·) measures the distance 

between a point and a set. Further details can be found in Theorem 5.14 in Van der Vaart (2007) . 

3 



V. Morales-Oñate, F. Crudu and M. Bevilacqua Econometrics and Statistics xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ECOSTA [m3Gsc; February 12, 2021;5:56 ] 

 

 

 

 

 

 

 

3. Spatio-temporal blockwise Euclidean likelihood 

In what follows we introduce the spatio-temporal blockwise EU (STBEU) under a general spatio-temporal framework for 

both evenly and unevenly spaced lattice. A similar framework has been considered in Bai et al. (2012) and Nordman and

Caragea (2008) . The approach is not exactly the same as that of Bevilacqua et al. (2012) and exploits the limiting results of

Jenish and Prucha (2009) for RFs. 

Let us construct the blockwise version of the moment conditions described in Eq. (4) . Let L ⊂ R 

d × R 

+ be our sampling

region, where the generic element l = (s � , t) � includes both the spatial index and the time index and consider a block 

length b n where b −1 
n + 

b 
2(1+ d) 
n 

n → 0 as n → ∞ and a set U = 

(
− 1 

2 , 
1 
2 

]d × ( 0 , 1 ] (see e.g. Nordman and Caragea, 2008 ). Then, a

(1 + d) -dimensional block is defined as 

B b n (κ) = κ + b n U . 

Notice that the set U is a (1 + d) -dimensional square and can be seen as the prototypical space for the construction of the

generic block B b n (κ) . The size of the block depends on b n while its position depends on the point of coordinates κ. The

associated index set is defined as 

K b n = 

{
κ : B b n (κ) ⊂ L 

}
, 

with κ ∈ R 

d × R 

+ and N = |K b n | , the number of blocks. The blockwise version of Eq. (4) is 

E [ m κ( θ0 ) ] = 0 , (6) 

where, for D b n (i, j, κ) = 

{
(i, j) : (l i , l j ) ∈ B b n (κ) ∩ R 

d × R 

+ } and b 1+ d 
n = |D b n | , 

m κ( θ) = 

1 

b 1+ d 
n 

∑ 

{ i, j}∈D b n (i, j, κ) 

g i j ( θ) . 

The STBEU objective function is defined as 

R n (θ, λ) = 

1 

2 

∑ 

κ∈K b n 

(
1 + λ� m κ( θ) 

)
2 (7) 

(see Antoine et al., 2007 ). 3 From the first order conditions of Eq. (7) we can compute an estimator of the auxiliary parameter

λ

̂ λ(θ) 

b 1+ d 
n 

= − ̂ Σ(θ) −1 ̂ m ( θ) (8) 

with 

̂ m ( θ) = 

1 

N 

∑ 

κ∈K b n 
m κ( θ) 

and 

̂ Σ(θ) = 

b 1+ d 
n 

N 

∑ 

κ∈K b n 
m κ( θ) m κ( θ) 

� 
. (9) 

By plugging in Eq. (8) into Eq. (7) we find 

R n (θ, ̂  λ(θ)) = 

N 

2 

(
1 − b 1+ d 

n ̂ m ( θ) 
� ̂ Σ(θ) −1 ̂ m ( θ) 

)
= 

N 

2 

(
1 − b 1+ d 

n Q n (θ) 
)
, 

where Q n (θ) is implicitly defined. Hence, 

̂ θ = arg min 

θ∈ �
Q n (θ) (10) 

is the STBEU estimator for the parameter vector θ. 
3 The auxiliary parameter λ comes from the fact that the EU estimator is a member of the generalized empirical likelihood family of estimators. These 

estimators admit a dual representation as the solution of a Lagrangian optimization problem. The parameter vector λ is related to the corresponding 

Lagrange multipliers. See Newey and Smith (2004) for some general results on generalized empirical likelihood, Bevilacqua et al. (2015) for an application 

of EU to the spatial case and Owen (2001) for a textbook treatment of the problem. 

4 
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3.1. Asymptotic results 

The asymptotic results are derived by adapting to our problem some results in Jenish and Prucha (2009) (see also Bai

et al., 2012 ). 

A1. Let L ⊂ R 

d × R 

+ be a possibly unevenly spaced lattice. For any two points l and k in L their distance is at least d 0 .

This is, given a distance metric ς(·, ·) , we have ς(l, k) ≥ d 0 with d 0 > 0 . 

A2. Let L n be a sequence of arbitrary subsets of L such that |L n | → ∞ as n → ∞ . 

A3. The parameter set � ⊂ R 

d θ is compact and θ0 is an interior point of �. 

A4. For some δ > 0 and e > 0 and for all κ ∈ L n , 

lim 

e →∞ 

E 

[
sup 

θ∈ �
‖ m κ(θ) ‖ 

2+ δ1 { sup 

θ∈ �
‖ m κ(θ) ‖ > e } 

]
= 0 , 

where 1 {·} is the indicator function. 

A5. Define ∇ 

� 
θ the � -th derivative operator with respect to θ and � = 0 , 1 , 2 . Then, (i) E 

[‖∇ θm κ(θ) ‖ 1+ η] < ∞ for all

l ∈ L n , with η > 0 ; (ii) E 
[
sup θ∈ � ‖∇ 

� 
θm l (θ) ‖ ] < ∞ ; (iii) let ∇ 

� 
θm (θ) = E 

[∇ 

� 
θm l (θ) 

]
, then ∇ θm (θ0 ) is full column

rank; 

(iv) ̂ Σ(θ0 ) → p Σ(θ0 ) , a positive definite matrix. 

A6. Consider V ⊆ L n and W ⊆ L n , let σ (V) = σ (z l , l ∈ V) and σ (W) = σ (z l , l ∈ W) and α(V, W) = α(σ (V) , σ (W)) . Con-

sider also the set R 

d × R 

+ endowed with the metric ς(l, k) = max 1 ≤i ≤1+ d | l i − k i | . In addition to that define the set

distance as ς(V , W ) = inf { ς(l, k) : l ∈ V, k ∈ W } for any subset V, W ⊂ R 

d × R 

+ . Then, the α-mixing coefficient for

the RF is given by 

αp,q (r) = sup ( α(V , W ) , |V | ≤ p, |W| ≤ q, ς (V , W ) ≥ r ) 

where 

α(V , W ) = sup ( | P (A ∩ B) − P (A ) P (B) |;A ∈ σ (V) , B ∈ σ (W) ) . 

We assume that the following conditions hold: 

(a) 
∑ ∞ 

h =1 h 
(1+ d) −1 α1 , 1 (h ) 

δ
2+ δ < ∞ , 

(b) 
∑ ∞ 

h =1 h 
(1+ d) −1 αp,q (h ) < ∞ for p + q ≤ 4 , 

(c) α1 , ∞ 

(h ) = O (h −(1+ d) −ε ) for some ε > 0 . 

In what follows we discuss some important features of the assumptions used to derive Theorem 1 . Assumption A1 defines

the structure of the lattice. Even though we allow the lattice to be unevenly spaced, we do not want the points to be too

close to each other. Under Assumption A2 the number of points in any subset of L grows as n grows. Assumption A3 is

a standard condition on the parameter space. A4 is an assumption on the tail behavior of the moment condition and it is

called uniform L δ+2 integrability. Assumption A4 together with assumptions A1, A2 and the α-mixing condition A6 allows 

us to use a central limit theorem for RFs. A5 is a set of regularity conditions. In particular, A5(i) and A5(ii) allow us to

use a uniform law of large numbers, A5(iii) is necessary to guarantee invertibility of the variance covariance matrix of the

estimator, while A5(iv) is a condition on the finiteness of the limiting variance covariance matrix of the moment conditions 

and it is used in the consistency proof. 

Theorem 1. Assume A1 to A6 hold. Then, 

1. ̂ θ → p θ0 , 

2. 
√ 

n 
(̂ θ − θ0 

)
→ d N ( 0 , Ω(θ0 ) ) , 

where Ω(θ0 ) = (∇ θm (θ0 ) 
� Σ(θ0 ) 

−1 ∇ θm (θ0 )) 
−1 . 

4. Numerical experiments 

4.1. Statistical efficiency 

This section compares the relative efficiency of the STBEU with respect to the pairwise likelihood (PL). To this end, we

configure two sampling schemes, a regular sampling scheme and an irregular sampling scheme. In the first case, we set a

regular grid with unit spacing [ −a, a ] 2 in both directions and with n s = (2 a + 1) 2 locations in space and n t in time. In the

second case, the setting involves an irregular grid with n s = 

(2 a +1) 2 

2 × 2 locations in space uniformly distributed on [ −a, a ] 2 

and n t in time. In both cases we have N = n t × n s spatio-temporal locations and a ∈ R . In what follows we consider three

specific simulation settings: 

1. spatial blocks: more space than time locations, [ −8 , 8] 2 and n t = 19 , that is n s = 289 and n st = 5202 ; 

2. temporal blocks: more time than space locations, [ −2 , 2] 2 and n t = 210 , that is n s = 25 and n st = 5250 ; 
5 
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Table 1 

Number of spatial, temporal and spatio-temporal blocks re- 

sulting from fixing the block length b and the overlapping 

parameter p = p s = p t used in the simulation study 

Blocking p

1 0.5 

Spatial b s = 2 64 225 

b s = 4 16 49 

Temporal b t = 2 105 209 

b t = 3 70 139 

Spatio- 

temporal 

b st = 4 625 3969 

b st = 9 144 800 

Table 2 

Simulated relative efficiency (with respect to the PL, i.e. SRE = 

mad PL 

mad STBEU 
) of STBEU estimator under spatial blocking. Relative efficiency is presented for 

different values of the block length, overlapping-non overlapping (in parentheses) and regular-irregular cases. Rows with ST RE caption shows the overall 

performance. 

Double exponential Gneiting 

Regular Irregular Regular Irregular 

b = 2 b = 4 b = 2 b = 4 b = 2 b = 4 b = 2 b = 4 

αs = 1 . 2 / 3 αt = 1 . 2 / 3 αs = 1 . 2 / 3 αt = 1 . 2 / 3 

αs 1.015 0.961 0.765 0.824 1.133 1.009 0.799 0.865 

(1.035) (0.988) (0.666) (0.720) (1.051) (1.094) (0.706) (0.768) 

αt 0.949 0.912 0.651 0.751 1.101 1.051 0.714 0.800 

(0.916) (0.954) (0.570) (0.667) (1.131) (1.115) (0.571) (0.715) 

σ 2 0.997 0.957 0.651 0.846 1.006 0.878 0.665 0.825 

(1.071) (0.975) (0.554) (0.764) (0.930) (0.983) (0.548) (0.756) 

ST RE 0.952 0.901 0.529 0.701 1.054 0.963 0.625 0.778 

(0.939) (0.937) (0.391) (0.536) (1.039) (1.054) (0.47) (0.68) 

αs = 1 . 8 / 3 αt = 1 . 8 / 3 αs = 1 . 8 / 3 αt = 1 . 8 / 19 

αs 1.008 1.005 0.832 0.801 1.188 1.087 0.897 0.902 

(1.021) (1.084) (0.625) (0.706) (1.212) (1.224) (0.759) (0.835) 

αt 1.012 0.975 0.730 0.824 1.195 1.074 0.830 0.891 

(1.038) (1.020) (0.617) (0.723) (1.292) (1.156) (0.647) (0.885) 

σ 2 0.993 0.893 0.688 0.853 0.980 0.923 0.682 0.851 

(1.001) (0.987) (0.588) (0.763) (0.996) (0.981) (0.595) (0.795) 

ST RE 1.038 0.921 0.59 0.723 1.233 1.076 0.69 0.832 

(1.04) (1.01) (0.433) (0.633) (1.253) (1.186) (0.513) (0.742) 

 

 

 

 

 

 

 

 

 

 

3. spatio-temporal blocks: balanced spatio-temporal locations, [ −5 , 5] 2 and n t = 50 , that is n s = 121 and n st = 6050 . 

Note that more means roughly 10 times (or higher) locations more than the other and balanced means less than 2 times.

Under these settings, we perform 500 simulations of a Gaussian RF with Double Exponential and Gneiting covariance func- 

tions as defined in Eqs. (1) and (2) . In both cases we estimate the spatial and temporal scale parameters and the variance

parameters that is αs , αt and σ 2 respectively. For each simulation setting and covariance model we consider two combi- 

nations of parameters, so that we can evaluate the effect of an increasing spatial and temporal dependence through αs , αt 

(specific parameter values are found in Tables 2 , 3 and 4 ). 

We also consider the effect of the block length on the efficiency of the STBEU estimator. Following Bevilacqua et al.

(2015) and Lee and Lahiri (2002) , spatial blocks are formed by the set [ C 
√ 

γ , C 
√ 

γ ] 2 in overlapping and non overlapping

cases with C being a positive constant and we chose γ to be the range of the spatial coordinates. Temporal blocks are formed

by a sequence of the temporal length spaced by b t . For example, if the spatial block has length b s = 2 , the temporal block

length b t = 10 , γ = 16 and n t = 50 , then C = 1 / 2 and the prototype spatio-temporal block U is equal to (−1 / 8 , 1 / 8] 2 × 5 . 

We chose b s = { 2 , 4 } for space, b t = { 2 , 3 } for time and b st = { 4 , 9 } for spatio-temporal blocking. In the overlapping ver-

sion, constants o s and o t are needed to tune the degree of overlapping. A possible choice for these constants is o s = b s p s 
and o t = b t p t with 0 < p s ≤ 1 and 0 < p t ≤ 1 . We set p = p s = p t = 0 . 5 for the overlapping case while p = p s = p t = 1 cor-

responds to the non overlapping case. Table 1 shows the number of spatio-temporal blocks associated with three settings 

under the overlapping and non-overlapping version. 

As outlined in Section 2 , the efficiency of the method depends on the choice of d s and d t . Here we follow Bevilacqua

et al. (2012) for the choice of these two parameters and we fix the distances d s and d t in the weight function (5) to be 25%

of their corresponding block length. 
6 
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Table 3 

Simulated relative efficiency (with respect to the PL, i.e. SRE = 

mad PL 

mad STBEU 
) of STBEU estimator under temporal blocking. Relative efficiency is presented for 

different values of the block length, overlapping-non overlapping (in parentheses) and regular-irregular cases. Rows with ST RE caption shows the overall 

performance. 

Double exponential Gneiting 

Regular Irregular Regular Irregular 

b = 2 b = 3 b = 2 b = 3 b = 2 b = 3 b = 2 b = 3 

αs = 3 . 1 / 3 αt = 3 . 1 / 3 αs = 3 . 1 / 3 αt = 3 . 1 / 19 

αs 1.111 0.827 1.072 0.787 1.038 0.842 1.035 0.811 

(0.752) (0.619) (0.674) (0.593) (0.676) (0.591) (0.690) (0.555) 

αt 1.134 1.010 1.218 0.945 1.323 1.205 1.332 0.972 

(0.888) (0.752) (0.818) (0.709) (1.088) (0.932) (0.820) (0.763) 

σ 2 0.966 0.739 1.055 0.741 0.984 0.749 1.018 0.746 

(0.610) (0.504) (0.657) (0.544) (0.670) (0.568) (0.655) (0.537) 

ST RE 1.189 0.841 1.169 0.82 1.325 0.986 1.217 0.884 

(0.706) (0.515) (0.668) (0.486) (0.8) (0.608) (0.701) (0.533) 

αs = 4 / 3 αt = 4 / 3 αs = 4 / 3 αt = 4 / 19 

αs 1.119 0.825 1.074 0.759 0.981 0.769 1.033 0.798 

(0.786) (0.623) (0.690) (0.584) (0.634) (0.548) (0.690) (0.559) 

αt 1.184 1.045 1.264 0.956 1.400 1.377 1.357 1.074 

(0.946) (0.804) (0.852) (0.702) (1.166) (1.020) (0.894) (0.836) 

σ 2 0.955 0.756 1.090 0.743 1.008 0.775 1.014 0.768 

(0.627) (0.542) (0.670) (0.540) (0.675) (0.559) (0.651) (0.518) 

ST RE 1.315 0.916 1.264 0.886 1.401 1.034 1.288 0.936 

(0.776) (0.558) (0.726) (0.52) (0.844) (0.636) (0.746) (0.559) 

Table 4 

Simulated relative efficiency (with respect to the PL, i.e. SRE = 

mad PL 

mad STBEU 
) of STBEU estimator under spatio-temporal blocking. Relative efficiency is presented 

for different values of the block length, overlapping-non overlapping (in parentheses) and regular-irregular cases. Rows with ST RE caption shows the overall 

performance. 

Double exponential Gneiting 

Regular Irregular Regular Irregular 

b st = 4 b st = 9 b st = 4 b st = 9 b st = 4 b st = 9 b st = 4 b st = 9 

αs = 3 . 1 / 3 αt = 3 . 1 / 3 αs = 3 / 3 αt = 3 / 19 

αs 1.283 0.918 1.034 0.842 1.187 0.890 0.970 0.784 

(1.054) (0.692) (0.584) (0.625) (0.899) (0.674) (0.574) (0.684) 

αt 1.494 0.914 1.042 0.913 1.786 1.177 1.166 1.039 

(1.030) (0.723) (0.632) (0.707) (1.297) (0.941) (0.729) (0.809) 

σ 2 0.951 0.721 0.759 0.711 1.024 0.782 0.746 0.699 

(0.773) (0.642) (0.464) (0.569) (0.815) (0.689) (0.462) (0.566) 

ST RE 1.398 0.794 1.035 0.846 1.542 0.904 1.095 0.92 

(0.923) (0.535) (0.431) (0.524) (1.02) (0.6) (0.46) (0.582) 

αs = 4 / 3 αt = 4 / 3 αs = 4 / 3 αt = 4 / 19 

αs 1.244 0.876 1.112 0.891 0.897 0.708 1.022 0.853 

(1.034) (0.631) (0.638) (0.701) (0.659) (0.501) (0.565) (0.655) 

αt 1.507 0.976 1.176 1.020 1.223 1.055 1.318 1.121 

(1.122) (0.794) (0.715) (0.785) (1.009) (0.744) (0.818) (0.928) 

σ 2 0.991 0.722 0.793 0.690 0.738 0.706 0.749 0.686 

(0.814) (0.652) (0.527) (0.600) (0.650) (0.533) (0.529) (0.610) 

ST RE 1.624 0.909 1.205 0.939 0.962 0.755 1.177 0.953 

(1.076) (0.61) (0.516) (0.586) (0.633) (0.413) (0.506) (0.605) 

 

 

Figure 1 shows the intuition behind the spatio-temporal blocking procedure. Think of spatio-temporal locations as being 

a dense block as showed in the upper-left panel of Fig. 1 with time represented by depth. Spatial blocking is the upper-

right panel: space is divided by the blocking procedure mentioned above such that every block considers all time locations. 

The lower-left panel represents temporal blocking: time is divided uniformly and all space locations are considered in each 

block. Finally, the lower-right panel is the spatio-temporal blocking which is a combination of both spatial and temporal 

blocking. Note that, regardless of the procedure, every block considers spatio-temporal locations. Say we have more space 

locations than time locations, then better performance is expected by choosing spatial blocking. The same reasoning applies 

for temporal blocking or spatio-temporal blocking. 

Tables 2, 3 and 4 report the simulation results for the spatial, temporal and spatio-temporal blocking respectively. We 

measure efficiency in two ways. The first one corresponds to the simulated relative efficiency defined as SRE = 

mad PL 
mad 

,

STBEU 

7 
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Fig. 1. Intuition behind the spatio-temporal blocking procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where mad PL and mad ST BEU are the median absolute deviations associated with PL and STBEU estimators respectively. SRE 

is reported for every parameter and scenario. The choice of the mad as a measure of statistical efficiency is due to the fact

that the STBEU estimator may display fatter tails than its competitor (see, e.g., Hansen et al., 1996 , for a similar situation in

a different context). 4 The second approach is the simulated total relative efficiency (STRE) as a measure of overall efficiency 

for the multi-parameter case ( Bevilacqua and Gaetan, 2015 ). The STRE is defined as ST RE = 

(
D PL 

D STBEU 

)1 /d θ
where d θ = 3 is

the number of parameters of the model, D PL and D ST BEU are the determinants of the variance covariance matrices of the PL

and STBEU estimators respectively. 

The simulation results allow us to make some interesting comments on the performance of the estimators under scrutiny. 

First of all, we notice that it is difficult to have a clear ranking between STBEU and PL in absolute terms. However, we notice

that for certain specifications STBEU tends to outperform PL. For example, this happens in Table 2 for the ST RE when using

the Double Exponential correlation function with b = 2 in the regular case and for the Gneiting correlation function for

almost all the results ( ST RE and SRE) in the regular case. Similar results are found in Tables 3 and 4 . It is worth mentioning

that STBEU outperforms PL in some irregular cases as well. Particularly, for αt in the temporal blocking case using the 

Gneiting correlation function. 

In addition to that, since the computation of STBEU is comparatively time saving, a researcher concerned with speed may 

be willing to trade off some statistical efficiency in favor of higher computational efficiency. Further details on computational 

efficiency are presented in Section 4.2 . Moreover, consistently with the results in Bevilacqua et al. (2015) , the STBEU tends

to perform better when the spatial data are on a regular grid. Finally, we notice that the effect of the block length has

a considerable impact on the results. In general, we notice that smaller block lengths tend to provide better results. This

suggest that, given an adequate procedure for the selection of the block length in conjunction with our computationally 

efficient approach, we may obtain further improvements. This problem is relevant and it is the object of future research. 

We additionally consider a simulation study using a special case of the spatio-temporal Wendland correlation function 

proposed in Porcu et al. (2020) : 

φ(h , u, θ) = 

σ 2 

(1 + || h || /αs ) 2 . 5 

(
1 − | u | 

αt (1 + || h || /αs ) −β

)
4 . 5 + , (11) 

where θ = (σ 2 , αs , αt , β) � (see Appendix E for the corresponding code). This covariance model is compactly supported in

time and has some computational benefits with respect to the covariance models (1) and (2) since the associated covariance

matrix is sparse. We use this model in the application in Section 5 . The case β = 0 implies a separable spatio-temporal

covariance and the case 0 < β ≤ 1 leads to a non separable covariance function We opt for a non overlapping regular spatial

blocking setting ( b s = 0 . 2 ) with n s = 400 and n t = 10 , a total of n st = 40 0 0 . The distances in the weight function are set to

d s = 0 . 06 and d t = 3 . Figure 2 shows the boxplots of the estimated parameters. As a general comment, the distribution of

the estimates for the four parameters tends to be symmetric and with very few outliers. 

4.2. Computational efficiency 

The STBEU estimator is implemented in C and OpenCL (OCL) standard, both interfacing with R. We used a MacBook Pro

laptop that has three devices, an Intel Core CPU and two GPU devices: Intel Iris Pro and AMD Radeon R9 M370X Compute

Engine, but we worked in CPU and AMD since they support double precision. Computational efficiency performance is 
4 In Appendix C we also provide results for performance measures based on the mean square error and on the nine decile range. 
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Fig. 2. Boxplots of the parameters of the space time Wendland covariance model in equation (11) , using a non overlapping regular spatial blocking setting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

evaluated comparing C vs OpenCL (through R) in two ways: evaluation of g i j from Eq. (4) in one block, and the full blockwise

approach. 

Our AMD device supports OpenCL version 1.2. There are 10 Compute Units (CUs), where each CU contains 16 stream 

cores, and each stream core houses four processing elements. Thus, each compute unit in the Radeon R9 M370X has 64

( 16 × 4 ) processing elements (i.e. 640 PE in total) 5 . Our CPU (called the host in OpenCL) has access to 16 Gb of the main

memory, while the GPU has 2 Gb of memory from which it can directly process data. 

Now, in order to evaluate the correlation functions, we need to compute n st (n st − 1) / 2 distances for the upper tri-

angular matrix formed by all possible pairs of n st spatio-temporal locations. At first glance, this would mean that the 

problem size (called NDrange in OpenCL where ND stands for N − dimensional, N = 1 , 2 , 3 ) is n st (n st − 1) / 2 too. Say, for

example, we have n s = 1024 locations in space and n t = 32 in time, that makes n st = 32768 spatio-temporal locations.

Double precision requires 8 bytes per location, that means that our host and device memory requirement would be 

8 × (32768 × (32767) / 2) ≈ 4 . 3 Gb. To overcome this memory requirement issue, we set the NDrange to have two dimen-

sions with sizes n s and n t . It means that our device memory requirement is now 8 × 1024 × 32 ≈ 33 kB, roughly 0 . 0 0 07% of

the initial requirement in our example. The latter was possible due to the workgroup concept in OpenCL. 

Figure 3 compares C and OpenCL performance of Eqs. (1) and (2) as specified before. Space locations vary from 4 to

9409 and time locations from 2 to 97 on the left panel, the opposite in the right panel. These results are dependent on the

characteristics of the computer, such as the graphic card, OpenCL version, hardware specifications, and so on. Nonetheless, it 

provides a relative sense of the computational improvement potential. We used AMD in this case, local size is 16 work-items 

in each dimension, which makes our total max Work Group Size (256). In both panels, OpenCL GPU timing outperforms 

C from roughly n st ≈ 10 0 0 0 reaching approximately 6 and 3 times faster for the double exponential and Gneiting case

respectively. 

Rows from Fig. 4 compare spatial blocking against temporal blocking and columns compare Double Exponential (1) and 

Gneiting (2) correlation models. In the spatial blocking procedure, n t is fixed to 100 and n s maximum is 29584, meaning

n st = 2958400 , and n s is fixed to 100 and the maximum value of n t is 29600 ( n st = 2960000 ) in the temporal blocking

case. We can see that OpenCL outperforms C in all cases. An important conclusion from Fig. 4 is that OpenCL should be

used when having more locations per block. In the blockwise context, this implies that having a denser block improves the
5 All GPU vendors have some fundamental building block they scale up/down to hit various performance/power/price targets. AMD calls theirs a Compute 

Unit, NVIDIA’s is known as an SMX, and Intel’s is called a sub-slice. 
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Fig. 3. Gradient ( g i j ) evaluation time performance comparison C vs OpenCL (denoted OCL) for Double Exponential and Gneiting covariance functions. Space 

locations vary from 4 to 9409 and time locations from 2 to 97 on the left panel, the opposite in the right panel. 

 

 

 

 

 

 

 

 

 

 

time performance. Rows from Fig. 4 reinforce this conclusion as we set 50 temporal blocks and approximately 11 spatial 

blocks. Comparing the correlation function used in the blockwise procedure (i.e. the columns from Fig. 4 ) suggests that

using the Double Exponential covariance function outperforms the Gneiting covariance function. Finally, note that OpenCL 

GPU outperforms OpenCL CPU in three out of four panels. 

5. Application: Mediterranean winds 

The Mediterranean winds data set contains wind component observations (east-west) for 1175 space locations and 28 

time periods taken every 6 hours from 0 0:0 0 UTC on 29 January 2005 to 18:00 UTC on 04 February 2005. These data are

available in Wikle et al. (2019) . Figure 5 shows a map of the spatial locations. 

For reproducible research purposes, we developed the R package STBEU ( Morales-Oñate et al., 2019 ) that includes the

full code for this application. 

We assume data to be a realization of an isotropic in space and symmetric in time spatio-temporal Gaussian RF with

spatio-temporal Wendland correlation function intrduced Eq. (11) . 

Since the data set has more space than time locations, spatial (non overlapping) blocks are constructed in the following

manner: [0 , 400] 2 and n t = 28 , that is n s = 1175 and n st = 32900 . We estimate the model with STBEU considering the cases

β = 0 , 0 . 5 , 1 and with weights such that only pairs with spatial and temporal distances lower than 50 and 6 respectively are

considered for each block, that is d s = 50 and d t = 6 in the weight function (5) . The results are reported in Table 5 while

standard errors are shown in parenthesis. In terms of magnitude, the estimated coefficients for STBEU are not too susceptible 

to the choice of β . With respect to PL, we notice some sizable difference in the estimates of αt both in comparison with

STBEU and in relation with the choice of β . Furthermore, the estimates of the other parameters, αt and σ 2 , tend to be 

similar for the two estimation methods and with respect to the choice of β . In addition to that, we observe that the standard

errors for σ 2 are systematically smaller for PL. However, identifying a similar pattern for the other parameters seems to be 
10 
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Fig. 4. Blockwise time performance comparison for C vs OpenCL (denoted OCL with CPU and GPU). The x axis is divided to 10 e 4 . Rows compare spatial vs 

temporal blocking and columns compare the correlation model. 

Fig. 5. Mediterranean region. The light blue dots are the space locations where the wind component data are recorded in the region from 6 . 5 ◦ W- 16 . 5 ◦ E 

and 33 . 5 ◦ N- 45 . 5 ◦ N. 
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Table 5 

Estimation results of the spatio-temporal Gaussian process 

with Wendland covariance model (11) using Mediterranean 

wind data with STBEU and PL for β = 0 , 0 . 5 , 1 . Standard er- 

rors are shown in parenthesis. 

STBEU 

Parameters αs αt σ 2 

β = 0 385.73 16.93 13.45 

(2.90) (0.26) (0.27) 

β = 0 . 5 386.69 17.07 13.38 

(4.07) (0.27) (0.38) 

β = 1 399.37 16.62 13.16 

(26.45) (0.32) (0.27) 

PL 

β = 0 351 . 79 18.44 12.03 

(19.75) (1.47) (0.87) 

β = 0 . 5 352.91 18.45 12.03 

(19.82) (1.47) (0.87) 

β = 1 354.04 18.47 12.03 

(19.91) (1.48) (0.87) 

Fig. 6. Confidence bands for the empirical spatial and temporal marginal semi-variogram versus the estimated semi-variograms for model (11) with β = 0 . 5 

using STBEU (solid line) and PL (dotted line) estimates. 

 

 

 

 

i

more complicated. We notice, though, that for β = 0 . 5 the standard errors for STBEU are much smaller than those produced

by PL. 

Additionally, in Fig. 6 , the empirical marginal spatial and temporal semi-variograms are compared with their estimated 

theoretical counterparts using STBEU and PL estimates with β = 0 . 5 and they show a satisfactory fitting in particular for

the STBEU estimation. The shaded area between the solid lines represents the confidence band for the STBEU while that 

between the dotted lines the PL. Additional information about the standard errors are presented in Appendix B . 

Finally we show the computational benefits of the STBEU method. Results in Table 6 show the elapsed time (in minutes)

of the entire optimization process (we use the simplex method proposed in Nelder and Mead (1965) as implemented in the

R function optim ) for five setups: 

i. PL using CPU one core (default in R), 

ii. PL using OpenCL framework with CPU (Intel(R) Core(TM) i7-4980HQ), 

ii. STBEU using CPU one core (default in R), 
12 
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Table 6 

Estimation elapsed times (minutes) of the spatio-temporal 

Gaussian process with Wendland covariance model (11) to 

Mediterranean winds data. Scenarios are i) PL using CPU one 

core (default in R), ii) PL using OpenCL framework with CPU 

(Intel(R) Core(TM) i7-4980HQ), iii) STBEU using CPU one core 

(default in R), iv) STBEU using OpenCL framework with GPU 

(AMD Radeon R9 M370X) and v) STBEU using OpenCL frame- 

work with CPU (Intel(R) Core(TM) i7-4980HQ). 

Scenario Elapsed time Time Gain (with respect to i)) 

i) 16.6696 1.0000 

ii) 2.5202 6.6144 

iii) 1.0604 15.7201 

iv) 0.4764 34.9908 

v) 0.2237 74.5177 

 

 

 

 

 

 

 

iv. STBEU using OpenCL framework with GPU (AMD Radeon R9 M370X) and 

v. STBEU using OpenCL framework with CPU (Intel(R) Core(TM) i7-4980HQ). 

Using the Wendland covariance function and comparing against the PL (CPU-only) setup, the STBEU method is approxi- 

mately 35 and 75 times faster in setups iv) and v) respectively. 

6. Conclusions 

In this paper we introduce a blockwise Euclidean likelihood method based on the score of the pairwise likelihood objec- 

tive function for the estimation of spatio-temporal covariance models of Gaussian RFs. This approach is particularly useful 

when dealing with large data sets. We show that the proposed estimator, denoted as STBEU, is consistent and asymptotically 

normal. Furthermore, a set of simulation results and an application on a wind speed data set suggest that the STBEU works

well in finite samples. The blockwise approach guarantees considerable computational gains over the standard pairwise 

composite likelihood method and our implementation in OpenCL allows us to obtain further improvements in the computa- 

tion of the estimates. Although in this paper we only considered spatio-temporal Gaussian RFs, the proposed methodology 

can be easily extended to the case of the estimation of spatio-temporal non-Gaussian RFs with known bivariate distribution 

as, for example, in Alegría et al. (2017) and Bevilacqua et al. (2020) . 
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Appendix A. Proofs 

In this section we collect the proof of the asymptotic results described in Theorem 1 . Let us introduce some useful

notation: ∇ θ and ∇ λ are the first derivative operators for θ and λ respectively, while ∇ θθ, ∇ λλ and ∇ θλ indicate second

and cross derivatives and are defined accordingly. Similarly, for a certain function R n (θ, λ) defined below, R n, θ(θ, λ) is its

first derivative with respect to θ. Derivatives with respect to λ, second derivatives and cross derivatives are defined in a

similar manner. Let us also define Q(θ) = m (θ) � Σ(θ) −1 m (θ) , the population version of our objective function. 

Proof. We first prove part 1. We have to show that, for some δ > 0 , P (‖ ̂  θ − θ0 ‖ > δ) → 0 as n → ∞ . By continuity of Q(θ)

and the assumption that θ is the unique minimizer, we have that, for some ε > 0 , {‖ ̂  θ − θ ‖ > δ} ⇒ { | Q ( ̂  θ) − Q (θ ) | >
0 0 0 
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ε} . This is, the latter set contains the former. Hence, P (‖ ̂  θ − θ0 ‖ > δ) ≤ P ( | Q( ̂  θ) − Q(θ0 ) | > ε) . By some simple algebraic

manipulation we have 

̂ Q n (θ) − Q(θ) = ̂ m ( θ) 
� ̂ Σ(θ) −1 ̂ m ( θ) − m ( θ) 

� 
Σ(θ) −1 m ( θ) 

= ( ̂  m ( θ) − m ( θ) ) 
� ̂ Σ(θ) −1 ( ̂  m ( θ) − m ( θ) ) + 2 ( ̂  m ( θ) − m ( θ) ) 

� ̂ Σ(θ) −1 m ( θ) 

− m ( θ) 
� (

Σ(θ) −1 − ̂ Σ(θ) −1 
)
m ( θ) . 

Hence, by taking the norm and by triangle inequality 

| ̂  Q n (θ) − Q(θ) | ≤ ‖ ̂

 m ( θ) − m ( θ) ‖ 

2 
∥∥ ̂ Σ(θ) −1 

∥∥ + 2 ‖ ̂

 m ( θ) − m ( θ) ‖ 

∥∥ ̂ Σ(θ) −1 
∥∥‖ 

m ( θ) ‖ 

− ‖ 

m ( θ) ‖ 

2 
∥∥Σ(θ) −1 − ̂ Σ(θ) −1 

∥∥. 

By assumptions A5 and A6 and the continuous mapping theorem we get the following uniform convergence result 

sup 

θ∈ �
| ̂ Q n (θ) − Q(θ) | → p 0 . (A.1) 

Therefore, 

ε < | Q( ̂  θ) − Q(θ0 ) | = | Q( ̂  θ) − ̂ Q n (θ0 ) + 

̂ Q n (θ0 ) − Q(θ0 ) | 
≤ 2 sup 

θ∈ �
| ̂ Q n (θ) − Q(θ) | → p 0 , 

where the latter inequality follows from the triangular inequality and the uniform convergence condition (A.1) . This implies 

that P (‖ ̂  θ − θ0 ‖ > δ) ≤ P ( | Q( ̂  θ) − Q(θ0 ) | > ε) → 0 as n → ∞ . Hence, ̂ θ → p θ0 . Before showing asymptotic normality we

show that the estimate of the Lagrange multiplier 
̂ λ

b 1+ d 
n 

converges to zero in probability. By a mean value argument, the 

uniform convergence results in part 1 and the continuous mapping theorem we get 

̂ λ

b 1+ d 
n 

→ p 0 . 

Let us now prove part 2 and define 

2 R n (θ, λ) = 1 + 2 λ� ̂ m (θ) + 

1 

b 1+ d 
n 

λ� ̂ Σ(θ) � λ. 

The first order conditions of ̂ R ( ̂  θ, ̂  λ) with respect to θ and λ are 

0 = R n, θ( ̂  θ, ̂  λ) = ∇ θ ̂ m ( ̂  θ) ̂  λ + 

λ� 

Nb 1+ d 
n 

∑ 

i ∈I b n 
m i ( ̂  θ) ∇ θm i ( ̂  θ) ̂  λ, (A.2) 

0 = R n, λ( ̂  θ, ̂  λ) = ̂ m ( ̂  θ) + 

1 

b 1+ d 
n 

̂ Σ( ̂  θ) ̂  λ. (A.3) 

Let us now take a mean value expansion of the first order conditions (A.2) and (A.3) about the true values (θ� , λ� ) � =
(θ� 

0 
, 0 � ) � 

0 = R n, θ( ̂  θ, ̂  λ) = R n, θ(θ0 , 0 ) + R n, θλ( ˙ θ, ˙ λ) ̂  λ + R n, θθ( ˙ θ, ˙ λ)( ̂  θ − θ0 ) (A.4) 

= R n, θλ( ˙ θ, ˙ λ) 

√ 

n 

b 1+ d 
n 

̂ λ + 

1 

b 1+ d 
n 

R n, θθ( ˙ θ, ˙ λ) 
√ 

n ( ̂  θ − θ0 ) , 
14 
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Table B.7 

Coverage rates for the Monte Carlo ex- 

periment using a space time Double 

Exponential covariance function. The 

number of Monte Carlo replications is 

set to 10 0 0. 

αs αs σ 2 

95 . 6% 95 . 8% 93 . 8% 

 

0 = R n, λ( ̂  θ, ̂  λ) = R n, λ(θ0 , 0 ) + R n, λλ( ˙ θ, ˙ λ) ̂  λ + R n, λθ( ˙ θ, ˙ λ)( ̂  θ − θ0 ) (A.5) 

= 

√ 

n R n, λ(θ0 , 0 ) + b 1+ d 
n R n, λλ( ˙ θ, ˙ λ) 

√ 

n 

b 1+ d 
n 

̂ λ + R n, λθ( ˙ θ, ˙ λ) 
√ 

n ( ̂  θ − θ0 ) . 

More compactly, (
0 √ 

n ̂

 R λ(θ0 , 0 ) 

)
= −

(
1 

b 1+ d 
n 

̂ R θθ( ˙ θ, ˙ λ) ̂ R θλ( ˙ θ, ˙ λ) ̂ R λθ( ˙ θ, ˙ λ) b 1+ d 
n 

̂ R λλ( ˙ θ, ˙ λ) 

)(√ 

n ( ̂  θ − θ0 ) √ 

n 

b 1+ d 
n 

̂ λ

)
. 

By the unifrom weak law of large numbers we get 1 

b 1+ d 
n 

̂ R θθ( ˙ θ, ˙ λ) → p 0 , b 1+ d 
n 

̂ R λλ( ˙ θ, ˙ λ) → p Σ(θ0 ) and 

̂ R λθ( ˙ θ, ˙ λ) → p 

∇ θm (θ0 ) . Hence, (√ 

n ( ̂  θ − θ0 ) √ 

n 

b 1+ d 
n 

̂ λ

)
= −

(
Ω(θ0 ) Ω(θ0 ) ∇ θm (θ0 ) 

� Σ(θ0 ) 
−1 

Σ(θ0 ) 
−1 ∇ θm (θ0 ) Ω(θ0 ) Λ(θ0 ) 

)(
0 √ 

n ̂  m (θ0 ) 

)
+ o p (1) , 

where 

Ω(θ0 ) = (∇ θm (θ0 ) 
� Σ(θ0 ) 

−1 ∇ θm (θ0 )) 
−1 

and 

Λ(θ0 ) = Σ(θ0 ) 
−1 − Σ(θ0 ) 

−1 ∇ θm (θ0 ) Ω(θ0 ) ∇ θm (θ0 ) 
� Σ(θ0 ) 

−1 . 

The result follows from an application of the central limit theorem and the continuous mapping theorem. �

Appendix B. Standard errors 

In this section we show via simulation the performance of the STBEU estimator for a space-time Gaussian RF with Double

Exponential covariance function in terms of confidence intervals. Theorem 1 gives us an expression for the covariance matrix 

of ̂ θ: 

Ω(θ0 ) = (∇ θm (θ0 ) 
� Σ(θ0 ) 

−1 ∇ θm (θ0 )) 
−1 . 

Using this formula we compute the corresponding standard errors. Table B.7 shows the coverage rates for the parameters of 

interest obtained by the simulation experiment detailed below. 
15 
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In what follows we first show as an example how to simulate a realization of a space-time Gaussian RF with Double

Exponential covariance function and how to calculate the 95% confidence interval. We start by creating the grid and the 

data: 
16 
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We are now ready to estimate the model and calculate the 95% confidence interval: 

In order to determine how close the simulated coverage is to the nominal 95% coverage, we now simulate this process a

10 0 0 times. 
17 
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The final step is to evaluate the coverage rate. 

For reproducible research purposes, we developed the R package STBEU ( Morales-Oñate et al., 2019 ) that includes the

full code for this application. 

Appendix C. Simulated relative efficiency 

This section shows the relative efficiency results for STBEU and PL considering as statistical efficiency measures SRE = 

mse PL 
mse STBEU 

and SRE = 

ndr PL 
ndr STBEU 

, where mse and ndr stand for mean square error and nine decile range respectively. Like the mad, 

the ndr is robust to the presence of outliers (see, for example, Bekker and Crudu, 2015; Hausman et al., 2012 ). Comparing

the results in Tables C.8 , C.9 and C.10 against those in Tables C.11 , C.12 and C.13 we may reasonably conjecture that extreme

values affect the results when the relative performance measure is based on the mse . On the other hand, there seems to be
no substantial qualitative difference when we use the ndr versus the mad. 

18 
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Table C.8 

Simulated relative efficiency (with respect to the PL, i.e. SRE = 

mse PL 

mse STBEU 
) of STBEU estimator under spatial blocking. Relative efficiency is presented for 

different values of the block length, overlapping-non overlapping (in parentheses) and regular-irregular cases. Rows with ST RE caption shows the overall 

performance. 

Double exponential Gneiting 

Regular Irregular Regular Irregular 

b = 2 b = 4 b = 2 b = 4 b = 2 b = 4 b = 2 b = 4 

αs = 1 . 2 / 3 αt = 1 . 2 / 3 αs = 1 . 2 / 3 αt = 1 . 2 / 3 

αs 0.982 0.894 0.545 0.636 1.213 1.055 0.645 0.749 

(1.035) (0.979) (0.354) (0.472) (1.218) (1.23) (0.426) (0.659) 

αt 0.896 0.834 0.339 0.563 1.171 0.998 0.579 0.743 

(0.828) (0.838) (0.216) (0.439) (1.115) (1.109) (0.383) (0.612) 

σ 2 0.934 0.898 0.405 0.662 0.917 0.852 0.402 0.662 

(0.918) (0.957) (0.288) (0.444) (0.898) (0.945) (0.284) (0.544) 

ST RE 0.952 0.901 0.529 0.701 1.054 0.963 0.625 0.778 

(0.939) (0.937) (0.391) (0.536) (1.039) (1.054) (0.47) (0.68) 

αs = 1 . 8 / 3 αt = 1 . 8 / 3 αs = 1 . 8 / 3 αt = 1 . 8 / 19 

αs 1.142 0.928 0.552 0.619 1.791 1.4 0.788 0.881 

(1.192) (1.085) (0.338) (0.532) (1.856) (1.634) (0.502) (0.799) 

αt 1.057 0.886 0.483 0.638 1.58 1.245 0.716 0.848 

(1.027) (0.98) (0.316) (0.538) (1.638) (1.417) (0.475) (0.737) 

σ 2 0.918 0.845 0.386 0.624 0.914 0.851 0.381 0.624 

(0.91) (0.962) (0.27) (0.527) (0.907) (0.954) (0.267) (0.53) 

ST RE 1.038 0.921 0.59 0.723 1.233 1.076 0.69 0.832 

(1.04) (1.01) (0.433) (0.633) (1.253) (1.186) (0.513) (0.742) 

Table C.9 

Simulated relative efficiency (with respect to the PL, i.e. SRE = 

mse PL 

mse STBEU 
) of STBEU estimator under temporal blocking. Relative efficiency is presented for 

different values of the block length, overlapping-non overlapping (in parentheses) and regular-irregular cases. Rows with ST RE caption shows the overall 

performance. 

Double exponential Gneiting 

Regular Irregular Regular Irregular 

b = 2 b = 3 b = 2 b = 3 b = 2 b = 3 b = 2 b = 3 

αs = 3 . 1 / 3 αt = 3 . 1 / 3 αs = 3 . 1 / 3 αt = 3 . 1 / 19 

αs 1.195 0.704 1.121 0.675 1.125 0.694 1.031 0.622 

(0.572) (0.393) (0.516) (0.361) (0.528) (0.377) (0.462) (0.332) 

αt 1.427 0.965 1.359 0.852 2.841 2.022 2.103 1.423 

(0.818) (0.506) (0.665) (0.462) (1.613) (1.12) (1.048) (0.78) 

σ 2 1.02 0.655 1.000 0.624 1.018 0.643 1.007 0.613 

(0.462) (0.32) (0.44) (0.309) (0.454) (0.322) (0.436) (0.304) 

ST RE 1.189 0.841 1.169 0.82 1.325 0.986 1.217 0.884 

(0.706) (0.515) (0.668) (0.486) (0.8) (0.608) (0.701) (0.533) 

αs = 4 / 3 αt = 4 / 3 αs = 4 / 3 αt = 4 / 19 

αs 1.216 0.709 1.147 0.689 1.069 0.648 1.01 0.617 

(0.576) (0.39) (0.535) (0.374) (0.492) (0.352) (0.462) (0.329) 

αt 1.763 1.166 1.544 0.967 3.379 2.365 2.542 1.695 

(1.013) (0.616) (0.764) (0.523) (1.935) (1.318) (1.284) (0.926) 

σ 2 1.012 0.647 1.008 0.63 1.02 0.63 1.015 0.617 

(0.463) (0.323) (0.452) (0.32) (0.45) (0.321) (0.441) (0.304) 

ST RE 1.315 0.916 1.264 0.886 1.401 1.034 1.288 0.936 

(0.776) (0.558) (0.726) (0.52) (0.844) (0.636) (0.746) (0.559) 
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Table C.10 

Simulated relative efficiency (with respect to the PL, i.e. SRE = 

mse PL 

mse STBEU 
) of STBEU estimator under spatio-temporal blocking. Relative efficiency is presented 

for different values of the block length, overlapping-non overlapping (in parentheses) and regular-irregular cases. Rows with ST RE caption shows the overall 

performance. 

Double exponential Gneiting 

Regular Irregular Regular Irregular 

b st = 4 b st = 9 b st = 4 b st = 9 b st = 4 b st = 9 b st = 4 b st = 9 

αs = 3 . 1 / 3 αt = 3 . 1 / 3 αs = 3 / 3 αt = 3 / 19 

αs 1.491 0.634 1.028 0.711 1.622 0.895 1.189 0.918 

(0.826) (0.4) (0.332) (0.406) (1.029) (0.553) (0.428) (0.564) 

αt 1.968 0.896 1.143 0.956 3.257 1.492 1.747 1.422 

(1.08) (0.502) (0.385) (0.534) (1.78) (0.844) (0.647) (0.844) 

σ 2 0.902 0.551 0.557 0.513 0.91 0.543 0.565 0.512 

(0.579) (0.362) (0.205) (0.316) (0.576) (0.356) (0.207) (0.315) 

ST RE 1.398 0.794 1.035 0.846 1.542 0.904 1.095 0.92 

(0.923) (0.535) (0.431) (0.524) (1.02) (0.6) (0.46) (0.582) 

αs = 4 / 3 αt = 4 / 3 αs = 4 / 3 αt = 4 / 19 

αs 1.576 0.666 1.086 0.718 0.776 0.52 1.125 0.799 

(0.854) (0.417) (0.375) (0.417) (0.471) (0.258) (0.381) (0.483) 

αt 2.581 1.165 1.567 1.226 1.675 1.124 2.123 1.575 

(1.435) (0.644) (0.554) (0.688) (0.938) (0.555) (0.811) (0.928) 

σ 2 0.897 0.539 0.568 0.502 0.534 0.463 0.582 0.506 

(0.56) (0.351) (0.222) (0.317) (0.348) (0.23) (0.227) (0.32) 

ST RE 1.624 0.909 1.205 0.939 0.962 0.755 1.177 0.953 

(1.076) (0.61) (0.516) (0.586) (0.633) (0.413) (0.506) (0.605) 

Table C.11 

Simulated relative efficiency (with respect to the PL, i.e. SRE = 

ndr PL 

ndr STBEU 
) of STBEU estimator under spatial blocking. Relative efficiency is presented for 

different values of the block length, overlapping-non overlapping (in parentheses) and regular-irregular cases. Rows with ST RE caption shows the overall 

performance. 

Double exponential Gneiting 

Regular Irregular Regular Irregular 

b = 2 b = 4 b = 2 b = 4 b = 2 b = 4 b = 2 b = 4 

αs = 1 . 2 / 3 αt = 1 . 2 / 3 αs = 1 . 2 / 3 αt = 1 . 2 / 3 

αs 0.929 0.892 0.716 0.789 1.085 1.006 0.779 0.875 

(0.968) (0.979) (0.567) (0.722) (1.082) (1.120) (0.617) (0.797) 

αt 0.944 0.939 0.620 0.795 1.096 0.996 0.777 0.885 

(0.993) (0.941) (0.491) (0.677) (1.075) (1.029) (0.641) (0.819) 

σ 2 0.903 0.969 0.628 0.845 0.950 0.926 0.614 0.843 

(0.918) (0.977) (0.559) (0.753) (0.939) (0.974) (0.548) (0.733) 

ST RE 0.952 0.901 0.529 0.701 1.054 0.963 0.625 0.778 

(0.939) (0.937) (0.391) (0.536) (1.039) (1.054) (0.47) (0.68) 

αs = 1 . 8 / 3 αt = 1 . 8 / 3 αs = 1 . 8 / 3 αt = 1 . 8 / 19 

αs 1.070 0.939 0.721 0.784 1.294 1.120 0.844 0.904 

(1.095) (1.031) (0.558) (0.765) (1.316) (1.203) (0.687) (0.885) 

αt 0.993 0.911 0.737 0.832 1.294 1.116 0.896 0.953 

(0.996) (0.974) (0.571) (0.753) (1.314) (1.209) (0.712) (0.897) 

σ 2 0.975 0.949 0.590 0.753 0.949 0.925 0.577 0.775 

(0.953) (0.990) (0.518) (0.709) (0.912) (0.916) (0.487) (0.725) 

ST RE 1.038 0.921 0.59 0.723 1.233 1.076 0.69 0.832 

(1.04) (1.01) (0.433) (0.633) (1.253) (1.186) (0.513) (0.742) 
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Table C.12 

Simulated relative efficiency (with respect to the PL, i.e. SRE = 

ndr PL 

ndr STBEU 
) of STBEU estimator under temporal blocking. Relative efficiency is presented for 

different values of the block length, overlapping-non overlapping (in parentheses) and regular-irregular cases. Rows with ST RE caption shows the overall 

performance. 

Double exponential Gneiting 

Regular Irregular Regular Irregular 

b = 2 b = 3 b = 2 b = 3 b = 2 b = 3 b = 2 b = 3 

αs = 3 . 1 / 3 αt = 3 . 1 / 3 αs = 3 . 1 / 3 αt = 3 . 1 / 19 

αs 1.109 0.815 1.059 0.843 1.058 0.802 0.976 0.782 

(0.721) (0.616) (0.723) (0.594) (0.728) (0.647) (0.695) (0.584) 

αt 1.193 0.965 1.162 0.953 1.503 1.297 1.270 1.081 

(0.886) (0.672) (0.841) (0.725) (1.177) (0.916) (0.901) (0.782) 

σ 2 1.013 0.844 1.003 0.819 1.037 0.842 0.989 0.809 

(0.680) (0.572) (0.678) (0.587) (0.711) (0.595) (0.685) (0.569) 

ST RE 1.189 0.841 1.169 0.82 1.325 0.986 1.217 0.884 

(0.706) (0.515) (0.668) (0.486) (0.8) (0.608) (0.701) (0.533) 

αs = 4 / 3 αt = 4 / 3 αs = 4 / 3 αt = 4 / 19 

αs 1.139 0.857 1.085 0.814 1.017 0.772 0.997 0.796 

(0.765) (0.628) (0.732) (0.597) (0.708) (0.604) (0.698) (0.587) 

αt 1.263 1.034 1.222 1.009 1.579 1.391 1.360 1.164 

(0.955) (0.746) (0.867) (0.727) (1.241) (0.985) (0.989) (0.850) 

σ 2 1.013 0.825 0.990 0.781 1.032 0.822 0.986 0.782 

(0.684) (0.575) (0.662) (0.587) (0.703) (0.575) (0.684) (0.568) 

ST RE 1.315 0.916 1.264 0.886 1.401 1.034 1.288 0.936 

(0.776) (0.558) (0.726) (0.52) (0.844) (0.636) (0.746) (0.559) 

Table C.13 

Simulated relative efficiency (with respect to the PL, i.e. SRE = 

ndr PL 

ndr STBEU 
) of STBEU estimator under spatio-temporal blocking. Relative efficiency is presented 

for different values of the block length, overlapping-non overlapping (in parentheses) and regular-irregular cases. Rows with ST RE caption shows the overall 

performance. 

Double exponential Gneiting 

Regular Irregular Regular Irregular 

b st = 4 b st = 9 b st = 4 b st = 9 b st = 4 b st = 9 b st = 4 b st = 9 

αs = 3 . 1 / 3 αt = 3 . 1 / 3 αs = 3 / 3 αt = 3 / 19 

αs 1.183 0.754 0.989 0.836 1.351 0.925 1.030 0.875 

(0.861) (0.628) (0.600) (0.627) (0.995) (0.734) (0.595) (0.659) 

αt 1.379 0.987 1.080 1.017 1.756 1.167 1.188 1.124 

(1.073) (0.742) (0.627) (0.730) (1.246) (0.846) (0.712) (0.827) 

σ 2 0.947 0.729 0.754 0.724 0.972 0.737 0.802 0.698 

(0.737) (0.584) (0.461) (0.567) (0.736) (0.595) (0.474) (0.553) 

ST RE 1.398 0.794 1.035 0.846 1.542 0.904 1.095 0.92 

(0.923) (0.535) (0.431) (0.524) (1.02) (0.6) (0.46) (0.582) 

αs = 4 / 3 αt = 4 / 3 αs = 4 / 3 αt = 4 / 19 

αs 1.219 0.777 0.990 0.824 0.908 0.743 1.018 0.863 

(0.910) (0.653) (0.624) (0.613) (0.691) (0.549) (0.591) (0.663) 

αt 1.635 1.112 1.247 1.079 1.191 0.974 1.323 1.147 

(1.214) (0.807) (0.767) (0.810) (0.821) (0.708) (0.827) (0.834) 

σ 2 0.952 0.743 0.763 0.726 0.732 0.695 0.802 0.726 

(0.737) (0.569) (0.494) (0.582) (0.590) (0.475) (0.498) (0.553) 

ST RE 1.624 0.909 1.205 0.939 0.962 0.755 1.177 0.953 

(1.076) (0.61) (0.516) (0.586) (0.633) (0.413) (0.506) (0.605) 
Appendix D. Statistical efficiency 

The following code is for the simulation study using a special case of the spatio-temporal Wendland correlation function 

proposed in Porcu et al. (2020) : 

φ(h , u, θ) = 

σ 2 

(1 + || h || /αs ) 2 . 5 

(
1 − | u | 

αt (1 + || h || /αs ) −β

)
4 . 5 + , 

where θ = (σ 2 , αs , αt , β) � . 
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Appendix E. Application including nugget 

The following code is for the estimation of the parameters in the application data including the nugget. 
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