
Received: 30 May 2023 Revised: 8 November 2023 Accepted: 20 November 2023

DOI: 10.1002/spe.3297

R E S E A R C H A R T I C L E

SCARS: Suturing wounds due to conflicts between
non-functional requirements in autonomous and
robotic systems

Mandira Roy1,2 Raunak Bag2 Novarun Deb3 Agostino Cortesi2

Rituparna Chaki4 Nabendu Chaki1

1Dept. of Computer Science and
Engineering, University of Calcutta,
Kolkata, India
2Dept. of Environmental Sciences,
Informatics and Statistics, Ca’ Foscari
University, Venice, Italy
3Dept. of Computer Science and
Engineering, Indian Institute of
Information Technology, Vadodara
(IIIT-V), India
4A.K.C School of Information Technology,
University of Calcutta, Kolkata, India

Correspondence
Mandira Roy, Dept. of Computer Science
and Engineering, University of Calcutta,
Kolkata, West Bengal, 700106, India.
Email: mrcomp_rs@caluniv.ac.in

Funding information
EU–NGEU, Grant/Award Number:
PE00000014; PNRR, Grant/Award
Number: ECS 00000043

Abstract
In autonomous and robotic systems, the functional requirements (FRs) and
non-functional requirements (NFRs) are gathered from multiple stakeholders.
The different stakeholder requirements are associated with different compo-
nents of the robotic system and with the contexts in which the system may
operate. This aggregation of requirements from different sources (multiple
stakeholders) often results in inconsistent or conflicting sets of requirements.
Conflicts among NFRs for robotic systems heavily depend on features of actual
execution contexts. It is essential to analyze the inconsistencies and conflicts
among the requirements in the early planning phase to design the robotic
systems in a systematic manner. In this work, we design and experimentally
evaluate a framework, called SCARS, providing: (a) a domain-specific language
extending the ROS2 Domain Specific Language (DSL) concepts by considering
the different environmental contexts in which the system has to operate, (b) sup-
port to analyze their impact on NFRs, and (c) the computation of the optimal
degree of NFR satisfaction that can be achieved within different system configu-
rations. The effectiveness of SCARS has been validated on the iRobot® Create®3
robot using Gazebo simulation.

K E Y W O R D S

autonomous systems, conflicts, contexts, non-functional requirements, optimization

1 INTRODUCTION

Conflicts among functional and non-functional requirements for autonomous and robotic systems may leave open
wounds (or scars) which may have disastrous effects when the system is put into operation. This work is intended to help
developers handle such conflicts by providing appropriate relations specific to different contexts.

Abbreviations: FR, Functional requirement; NFRs, Non-functional requirements; QoS, Quality of service; ROS, Robotic operating system;
SCARS, Specification framework for NFR conflict analysis in Robotic systems.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. Software: Practice and Experience published by John Wiley & Sons Ltd.

Softw: Pract Exper. 2023;1–37. wileyonlinelibrary.com/journal/spe 1

https://orcid.org/0009-0000-1403-6096
https://orcid.org/0000-0002-0946-5440
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/SPE
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.3297&domain=pdf&date_stamp=2023-12-15

2 ROY et al.

Modern-day autonomous and robotic systems (like self-driving cars, industrial or healthcare robots, etc.) are so
designed that they cater to the needs of multiple stakeholders and can self-adapt to changing environments (or con-
texts). The architecture of these systems is inherently complex due to the existence of multiple interacting hardware
(like sensors, actuators, and microcontrollers) and software components (like data processing and route planning).1 Each
component has a set of associated functional goals that it can perform and a set of non-functional properties that it can
strive to achieve (like response time, availability, and security). These components synchronize with each other to achieve
higher-level goals or tasks in different environmental contexts. The functional and non-functional properties of these
(heterogeneous) components require careful analysis in order to determine their compatibilities toward higher-level sys-
tem goals. A change in the non-functional property of one component may have a severe effect on other components.2 An
additional level of complexity results from the need for autonomous and robotic systems to adopt different operational
configurations under different environmental contexts.3,4 This switching to different configurations requires an under-
standing of how contexts affect different NFRs (like low illumination may require high robustness), conflicts among NFRs,
(like between robustness and efficiency in low illumination is likely to be more than in normal conditions), and their
priorities in different scenarios.5 Unlike generic software applications, autonomous and robotic systems are extremely
safety-critical. Negligence of NFRs and their interactions with environmental contexts may cause system failures result-
ing in the loss of human lives.6 Thus the suitable operational configuration of the system in different contexts must be
selected considering these factors.7 This highlights two important research objectives:

Q-1 How conflicts among NFRs associated with different usage contexts can be properly represented for autonomous and
robotic systems?

Q-2 How the requirements for autonomous and robotic systems can be analyzed in the specification phase to tune the
parameters so that the system design can optimally match the actual environmental context?

Formal specifications are well-known for providing non-ambiguous and consistent representations of hardware and
software systems.8,9 Autonomous and robotic systems require different concepts and notations that are generally different
from other general domains. In the existing state of the art, several metamodels10 have been proposed for modeling robotic
systems. Most of the meta-models proposed for autonomous and robotic systems are limited to capturing only some of the
concepts and notations for robotic systems. There are works7,11 that have tried to capture the non-functional properties
of autonomous and robotic systems. However, these are often not quite generic and are applicable to specific NFRs only.
The existing meta-models, devised for the purpose, hardly consider any analysis of important issues including conflicts
among the NFRs, the impact of environmental contexts on system performance, and so forth.

Thus the existing state of the art highlights the necessity of providing solutions for the research issues mentioned in
Q-1 and Q-2. Owing to the critical nature of the robotics systems, it is necessary to have a comprehensive formal specifica-
tion framework that would be capable of capturing all possible concepts and notations required for designing the robotic
system. Further, such a framework needs to analyze NFRs in different contexts, identify inter-NFR conflicts, and evaluate
the optimal system designs, so that it can adapt to different environmental contexts. In this work, we attempted to address
the research issues by introducing an operational framework SCARS. The SCARS framework handles requirement con-
flicts and consistency issues for robotic systems in the requirement engineering phase. The outcome of this framework
might help the system architects to make appropriate design decisions.

The operational framework, named SCARS (Specification Framework for NFR Conflict Analysis in Robotic Systems),
operates in three stages:

1. System and scenario specification: A domain-specific language (DSL) is introduced to support a context-aware specifica-
tion of ROS2*-based robotic autonomous systems. The requirement analysts, in conjunction with the system designers,
specify all concepts associated with their robotic and autonomous system using the proposed DSL. The proposed DSL
metamodel has been developed on the MPS† framework.

2. Requirement analysis: The domain-specific requirements specified using the proposed DSL are then subjected to
different analyses that can identify inconsistencies, incompatibilities and conflicts among the requirements. The
requirements are analyzed in different contexts, by identifying the risks associated with conflicting NFRs. We have
used the in-built model checker in MPS to implement the different types of analyses.

*https://www.ros.org.
†https://www.jetbrains.com/mps/.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.ros.org
https://www.jetbrains.com/mps/

ROY et al. 3

3. NFR optimization: In the final stage, our framework derives the optimum satisfaction values of each NFR in different
contexts, given their conflicts and association with different FRs. These values help the system designers in choosing
the appropriate software operationalizations to fulfill those NFRs while minimizing the risk of system refactoring and
failures in the future.

Stage 1 addresses the first research objective Q-1 by explicitly capturing contexts NFR correlation using the pro-
posed DSL. Stages 2 and 3 addresses the second research objective Q-2 where requirements are analyzed and optimal
non-functional properties in different contexts are determined.

As a proof of concept, we have used the Create®3 robot‡ simulator for conducting experiments. The objective of these
experiments is to assess the whole procedure and to validate the optimal satisfaction values generated by SCARS.

The main contribution of this research work is the proposed SCARS framework that not only provides a generic
structure for specification but also conflict analysis of NFRs. The proposed DSL metamodel is built on top of the ROS2
DSL concepts already proposed in the literature. Reusing concepts ensures backward compatibility. The proposed DSL
metamodel can be adapted for other types of autonomous systems in general with minimal changes, as the classes defined
in the metamodel are also applicable to other autonomous systems.

The rest of the paper is structured as follows. Section 2 elaborates on the existing state-of-the-art. Section 3 recalls
some preliminary notions that will help the reader to better understand the work. Section 4 explains the proposed SCARS
framework. Section 5 discusses the experiments. Section 6 highlights the different threats to the validity of this work.
Section 7 concludes and discusses possible future work.

2 RELATED WORK

General-purpose modeling languages are well-known for system specifications. However, researchers in the robotics com-
munity have widely adopted DSL for system specifications.10 To frame our contribution in the current research context,
we first discuss the different metamodels and domain-specific languages for robotic systems; we then discuss the differ-
ent formal analysis approaches in the literature, and finally, we discuss the different NFR conflict analysis approaches
that have been proposed so far.

2.1 Metamodels and DSL

Researchers in Reference 12 have proposed a domain-specific modeling language known as RoBMEX for the specification
of drone missions. RoBMEX consists of three metamodels- one metamodel for ROS systems (ROSProML), another for
general-purpose operations using ROS variables (RosModL), and the third one for drone missions (ROSMiLan). Authors
in Reference 13 have presented RoboChart, a domain-specific modeling language based on UML for robotic applications.
RoboChart is supported by RoboTool which enables modeling, performs type checking and analysis of well-formedness,
and automatically calculates CSP models. It helps to capture robotic platforms, parallel controllers and machines’ syn-
chronous and asynchronous communications. In Reference 14, a domain-specific language called RobotML suitable to
specify missions, environments and robot behaviors has been proposed. The DSL aims to ease the definition of spe-
cific robotic architecture (reactive, deliberative, hybrid) and specific components that form the architecture (sensors,
actuators, planners, mapping, etc.). The communication mechanisms between components (sending/receiving of event
notifications and data) are also captured in this framework.

In Reference 11 authors have proposed a formal specification framework known as Self Adaptive Framework for
Robotic Systems (SafeRobots). It proposes two models: (1) a functional model capturing behavioral or functional require-
ments that specify the inputs (stimuli) to the system, the outputs (response) from the system, and the behavioral
relationships between them, (2) a non-functional model for specifying non-functional aspects or quality claims of the
system. In Reference 7 authors have proposed an Eclipse-based metamodel known as RoQME. RoQME defines two
meta-models: (1) the RoQME meta-model, responsible for the definition of Non-Functional Properties, contexts and
Observations; and (2) the RoQME-to-RobMoSys mapping meta-model, responsible for binding each context defined in
a RoQME model with the RobMoSys Service Definition acting as the corresponding context provider. Researchers in

‡https://iroboteducation.github.io/create3_docs/.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://iroboteducation.github.io/create3_docs/

4 ROY et al.

Reference 15 have proposed a domain-specific language (DSL) that allows domain experts to specify (i) quality of service
(QoS) requirements of the communication channels; and (ii) QoS capabilities of the software components in robotic sys-
tems. They have developed ROS 2 based DSl and also allow to verify the QoS specification for any incompatibility. Authors
in Reference 16 have argued that most languages for human-machine systems provide support for functional behavior,
while non-functional properties are specified through informal comments. They have proposed a metamodel for mod-
eling non-functional aspects of both human and machine models. In Reference 17 authors have provided an extension
of the UML MARTE profile for modeling and quantitative analysis of robotic-specific non-functional requirements. The
extended UML MARTE profile is used for modeling safety properties for a robot navigation system.

SysML§ requirements module is used to capture requirements, the relations between them and their relationship to
other model elements. The relationships that can be modeled between the requirements are derive, namespace, copy and
refine. These relationships capture how one requirement may be derived, contained or refined from another requirement.
SysML Block diagram captures different hardware, and software components as structural units embedding their proper-
ties, behaviors and constraints. Researchers have used SysML with DSL notations for autonomous system specifications.
Authors in Reference 18 proposed a SysML-based approach for traceability modeling of requirements in UAV command
system-of-systems. Authors in Reference 19 have proposed a new SysML-based modeling language UavSwarmML for
specifying swarm missions of autonomous aerial robots. Researchers in Reference 20 proposed a new SysML profile (Sys-
tems Modeling Language) developed using DSL (Domain Specific Language) to include Robot Operating System (ROS2)
objects and attributes.

Most of the DSL or metamodels proposed in the literature are aimed toward representing the robot behaviors (func-
tional behaviors). There are limited works that have tried to capture different components (different categories of
hardware components) of these systems. Existing literature does not explore how the functional and non-functional
properties of components are related especially when they operate together to achieve a higher-level goal or task. Also,
we find that there is a lack of a generic framework that can model NFR concerns specific to robotic systems and their
inter-relationships in particular.

2.2 Requirements analysis

Researchers in Reference 21 used behavior trees to describe a particular task scenario (or functional goals) for robots. The
behavior tree is further mapped to HFSM (Hierarchical Finite State Machine) and the temporal properties are verified
using NuSMV. This framework also automates code generation and does runtime monitoring of those properties as well.
ForSAMARA¶ is another project where authors have specified robot skills using behavior trees. These are then converted
to a model that can be verified. It uses Octomap to simulate environments in which the robots may operate. The model
and the map are then fed into the model checker along with safety properties (specified using LTL) to be verified. Authors
in Reference 22 have proposed a tool named LTLMoP which includes a parser that automatically translates English
sentences belonging to a defined grammar into LTL formulas. This grammar can capture robot behavior and the environ-
ment in which it can operate. A task that is captured using an LTL formula, is synthesized into an automaton. It builds
an automaton from the specification as long as the assumptions regarding the environment hold true. In Reference 23
a new specification language (LTL based) for reactive systems has been proposed. It comes with the Spectra Tools,23 to
perform analyses, including a synthesizer to obtain a correct-by-construction implementation, and also additional anal-
yses aimed at helping engineers write higher-quality specifications. Starting with the formal specifications, it analyses if
it is realizable and generates the state machine. If the state machine is not realizable then there may be conflicting safety
and liveness properties.

In Reference 24, the author has reviewed different NFRs specific to robotic systems: how they are modeled and
analyzed in the run-time environment? The author has highlighted that existing state-of-the-art focuses only on some
specific NFRs in specific environments. The challenge lies in combining heterogeneous models that analyze differ-
ent non-functional properties. The author has also highlighted how conflicts among NFRs are not addressed in these
works. Authors in Reference 9 have surveyed the state of the art in formal specification and verification for autonomous
robotics and the challenges posed. In Reference 5, authors have discussed the need for system reconfiguration arising

§https://sysml.org//.
¶ForSAMARA–Formal safety analysis in modular robotic applications is cascaded funded by European Horizon2020 project RobMoSys (grant
agreement No. 732410).

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://sysml.org//

ROY et al. 5

out of the relationship between NFRs and the environmental context for autonomous systems. In Reference 25, authors
have studied how unpredictable environments may lead to violation of non-functional properties in robots. They have
suggested self-adaptation strategies to solve this problem. HAROS# framework is another category of work where qual-
ity assurance of robotic software is done using static analysis. It performs design checks for robotic software from a
middleware perspective.

2.3 NFR conflict analysis

NFRs impact the satisfaction (or denial) of other NFRs very frequently. An NFR conflict is identified as a situa-
tion where the fulfillment of two NFRs contradicts each other26 that is, realizing one NFR has a negative impact
on the fulfillment of another NFR. Most of the proposed NFR conflict identification approaches in the literature
are based on either heuristics or ontology. Heuristic conflict identification approaches are mostly explored in liter-
ature and has resulted in creating a knowledge base (conflict catalog27,28) that can be used by industry experts in
system design. Ontology-based approaches are focussed on creating different categories of ontologies and provide
different conflict detection rules.29 Catalog-based approaches for NFR analysis are found to be more useful.30,31 In
Reference 23, authors have tried to address the issue of conflicts among NFRs in robotic systems. They have pro-
vided a conflict resolution approach based on a weighted sum. However, their conflict resolution is not generic
and limited to resolving between time and other non-functional properties only. Authors in Reference 32 have dis-
cussed NFRs of ubiquitous and IOT applications. They have highlighted conflicts among these particular NFRs.
Researchers in Reference 33 have evaluated different NFRs that are of concern for IOT applications. There are lim-
ited works23,24 in the existing state of the art that have tried to analyze conflicts among the NFRs specific to robotic
autonomous systems.

Table 1 provides a detailed comparison of some of the formal approaches for robotic autonomous systems. The table
includes only those works that have at least provided a metamodel or DSL in their proposal.

3 PRELIMINARIES

This section explains some of the preliminary concepts that may be helpful for the readers to better understand the
proposed framework and design challenges for robotic systems.

3.1 Concepts

1. Non-functional requirements of robotic systems
Autonomous systems in particular robotic systems consist of certain specific NFRs of concern like safety, trans-

parency and fairness. Several studies have been conducted in the literature that have listed out the NFRs concerned
with these systems.24,33

Typically, NFRs are classified into two broad categories:34 (1) Architectural NFRs and (2) Run-time NFRs. Archi-
tectural NFRs are those that are not directly measurable from the system’s operational environment. They are more of
a design issue. Run-time NFRs are those that can be directly measured from the system’s operational environment by
observing the performance characteristics. In this research work, we have limited our focus only to run-time NFRs,
as they are measurable both qualitatively and quantitatively. The document provided at|| shows the NFR categoriza-
tion as architectural and run-time NFRs. Each of these run-time NFRs is expressed in terms of one or more metrics.26

However, there are some run-time NFRs for which no specific metrics have been defined in the literature. Keeping this
in mind, we have further refined our run-time NFR list to contain only those NFRs that have a well-defined metric
associated with them (refer to note||).

The run-time NFRs being considered can be further classified into the following two categories:

#https://github.com/git-afsantos/haros.
||https://github.com/RESSA-ROB/SCARS/blob/main/NFR_Catalog.pdf.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/git-afsantos/haros
https://github.com/RESSA-ROB/SCARS/blob/main/NFR_Catalog.pdf

6 ROY et al.

T
A

B
L

E
1

Q
ua

lit
at

iv
e

co
m

pa
ris

on
w

ith
ex

is
tin

g
w

or
ks

.

M
et

am
od

el
co

nc
ep

ts
R

eq
ui

re
m

en
ts

A
na

ly
si

s

R
es

ea
rc

h

w
or

k

R
O

S-

ba
se

d

C
om

po
ne

nt
s

(a
to

m
ic

an
d

co
m

po
si

te
)

C
om

m
un

ic
at

io
n

am
on

g
co

m
po

ne
nt

s

C
om

m
un

ic
at

io
n

Q
oS

pa
ra

m
et

er
s

FR
s

N
FR

s

FR
-N

FR

de
pe

nd
en

cy

C
on

te
xt

-N
FR

co
rr

el
at

io
n

N
FR

co
nf

lic
t

Te
m

po
ra

l

pr
op

er
ty

C
om

m
un

ic
at

io
n

Q
oS

co
m

pa
ta

bi
lit

y

Ra
m

as
w

am
y

et
al

.11
M

en
ti

on
ed

In
cl

ud
ed

In
cl

ud
ed

N
ot

m
en

tio
ne

d
In

cl
ud

ed
In

cl
ud

ed
In

cl
ud

ed
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d

Pa
rr

a
et

al
.15

M
en

ti
on

ed
In

cl
ud

ed
In

cl
ud

ed
In

cl
ud

ed
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
In

cl
ud

ed

La
de

ira
et

al
.12

M
en

ti
on

ed
In

cl
ud

ed
In

cl
ud

ed
N

ot
m

en
tio

ne
d

In
cl

ud
ed

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

M
iy

az
aw

a
et

al
.13

M
en

ti
on

ed
In

cl
ud

ed
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
In

cl
ud

ed
Te

m
po

ra
lN

FR
s

on
ly

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
In

cl
ud

ed
N

ot
m

en
tio

ne
d

C
ris

tin
a

et
al

.7
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

In
cl

ud
ed

N
ot

m
en

tio
ne

d
In

cl
ud

ed
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

D
ho

ui
b

et
al

.14
O

RO
CO

S
ba

se
d

In
cl

ud
ed

In
cl

ud
ed

N
ot

m
en

tio
ne

d
In

cl
ud

ed
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d

Br
ug

al
i17

N
ot

m
en

tio
ne

d
In

cl
ud

ed
In

cl
ud

ed
N

ot
m

en
tio

ne
d

In
cl

ud
ed

In
cl

ud
ed

N
ot

m
en

tio
ne

d
In

cl
ud

ed
N

ot
m

en
tio

ne
d

N
ot

m
en

tio
ne

d
N

ot
m

en
tio

ne
d

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 7

a. Optimistic low (C-1): We assign those NFRs to this category for which a lower value of the associated metric implies
better satisfaction of the NFR. For example, NFRs like response time and cost, are optimistic toward minimum
value that is, lower the response time of the system better is the system performance.

b. Optimistic high (C-2): We assign those NFRs to this category for which a higher value of the associated metric implies
better satisfaction of the NFR. For example, NFRs like accuracy and availability, is optimistic toward maximum
value that is, higher the availability of the system more reliable it becomes.

2. NFR conflict identification
As NFR conflict knowledge base for autonomous systems in particular robotic systems we rely on data collected

from the existing literature (namely, References 27,28,32,33,35–38) and by collating knowledge from domain experts.
The document provided at contains the NFR conflict catalog that we have built and used in this research work.

3. QoS policies
Quality of service policies allows us to tune communication between nodes. ROS2 has defined several QoS

policies** for the communicating nodes. In the definitions, of the QoS policies a publisher refers to the node sending a
message or data and a subscriber refers to the node receiving a message or data. The QoS policies can be captured in
the proposed DSL metamodel.

3.2 Challenges in the design of robotic autonomous system

Autonomous systems in particular robotic systems consist of various nodes deployed internally or externally that coordi-
nate and exchange data to execute some tasks. The components of these systems belong to two categories (i) operational
components (hardware and software) and (ii) communication components. These components are associated with several
constraints like NFRs, dependency (between FR and NFR), compliance with standards, scenario constraints and others.
Such a component-based system that has a variety of operational tasks, non-functional properties and communication
channels gives rise to the following concerns or issues:

I-1 Intra NFR conflict: Whether the non-functional properties of a component are in conflict? If they are in conflict how
they can be operationalized so that all required priorities are met?

I-2 Inter NFR conflict: Whether there exist conflicts among the non-functional properties of a group of components (like
a swarm of robots or a group of heterogeneous components) when they are deployed in a particular environment?

I-3 NFR compliance: How compliance of NFRs with standards can be ensured at design time?
I-4 Context-NFR correlation: How the satisfiability of non-functional properties of the system are affected in different

contexts?
I-5 QoS compatibility: Whether communicating nodes have a compatible set of QoS policies?

These issues are related to the research objective (Q-2). Each of these issues involves different analyses of the system
specification. The SCARS framework addresses in particular the issues I-1, I-2, I-4 and I-5 above.

4 THE PROPOSED APPROACH

This section illustrates the proposed DSL metamodel and the SCARS framework in detail.

4.1 The DSL metamodel

The proposed DSL metamodel is depicted in Figure 1, consisting of three categories of artifacts: (i) Operational Arti-
facts (ii) Communication Artifacts and (iii) Constraints. It is to be noted that operational and communication artifacts
have already been proposed in the literature in different forms. However, a single DSL metamodel in the literature does
not consist of all the artifacts together. We introduce the constraints as the new artifact for making NFR conflicts and
inconsistencies in different environmental contexts explicit. Each of these artifacts consists of one or more classes. The
concepts (or class) of the DSL metamodel are further illustrated using examples created on the MPS platform.

**https://docs.ros.org/en/rolling/Concepts/About-Quality-of-Service-Settings.html.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://docs.ros.org/en/rolling/Concepts/About-Quality-of-Service-Settings.html

8 ROY et al.

F I G U R E 1 DSL metamodel.

1. Operational artifacts: The classes representing the operational artifacts are as follows (marked in blue in Figure 1):
a. AutonomousSystem is the root class of the metamodel. Its instances are characterized by a systemName that

can be used to refer to the domain where robots are deployed. For example the class AutonomousSystem can
represent a Hospital where a swarm of robots are deployed.

b. Components class represents the different components of robotic autonomous systems. Each instance of Compo-
nents class has a Name. The Components class can represent composite components of the system. Hence each
artifact that is defined using Components class, consists of one or more sub-components. These sub-components
can again be composite (defined using Components class) or atomic (defined using Hardware or Software
class). The AutonomousSystem class is composed of one or more Components.

Example 1 in Table 2 captures the specification of a robot that is a composite component defined in MPS
platform. The Sub Components class in this example contains other composite components that make up the robot.

c. The Components class is composed of two subclasses Hardware and Software. The Hardware and Soft-
ware classes are used to represent atomic components.

d. The instances of Hardware class are characterized by its HID (a unique identifier), Type (represent the type
of the device which may be sensors or actuators), and Category (captures the class of devices mechanical or
electrical part).

e. The instances of Software class are characterized by its SID (a unique identifier), ModuleType (that may
be connectivity, power management) and Category (captures the class of software like operating system or
user interface).

Devices like cameras and actuators can be defined as atomic components (using Hardware class) or as com-
posite components (using Components class). This depends upon the level of detail the system engineers need

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 9

T A B L E 2 Examples of operational artifacts.

Operational artifacts
Example 1 Component Name: ROBOT1

Sub Components

CAM1

CAM2

Hardware Components

Actuator: Robot Wheel

Sensor: H1

Controller: H103

Software Components

Path Planner

Functional Objective

FR Name: Fetch

Description: Fetch

clothes from the racks.

FR Name: Deliver

Description: Deliver clothes

to the washer.

Example 2 Component Name: CAM2

Sub Components

≪…≫

Hardware Components

Sensor: Lens 1.2

Software Components

Motion Detector

Functional Objective

FR Name: Object Capture

Description: Records objects even in

low illumination.

Example 3 Hardware component: Robot Wheel

Type: Actuator

Category: Mechanical HID: W101

Functional Objective

FR Name: Rotation

Description: Wheels should

rotate 360 degrees.

to capture. Example 2 in Table 2, a camera is defined as a composite component. Example 3 in Table 2, a wheel
(actuator) is defined as an atomic component. CAM2 and Robot Wheel are the components referred in the
specification of ROBOT1 in Example 1.

f. The FunctionalRequirement class captures the FRs. The instances of FunctionalRequirement are char-
acterized by their FRName (identifier for a functional requirement) and Description. The Hardware, Software
andComponents classes are composed of classFunctionalRequirement. The functional goals of each atomic
and composite component can be captured in the DSL metamodel. Example 1 and Example 3 in Table 2 show some
sample FRs of a robot and a wheel, respectively.

2. Communication artifacts: The classes representing the communication artifacts are as follows (marked in green in
Figure 1):

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

10 ROY et al.

a. The Ports class is used for representing communication ports. The Components class is also composed of one
or more Ports. Each instance of Ports class is characterized by a Port_ID. The attribute Port_ID represents a
unique identification number of each port.

b. The Ports class is a supertype for two subclasses InputPort and OutputPort.
c. The instances of InputPort are characterized by the attributes–Message (data/message component receives) and

ReceiveTopicType (type of message received, for example traffic alert, object detection).
d. The instances of OutputPort are characterized by the attributes–Message (data/message component sends) and

SendTopicType (type of message send).
We have pre-defined some of the plausible topic types15 while implementing the language model in MPS. The

designer can select a topic from the list while creating a specification. This list can be extended as required. Example
4 in Table 3 shows a component’s sample input and output port specification.

T A B L E 3 Examples of communication artifacts.

Communication artifacts

Example 4 (Input Port) ID → IN101

Receive Topic Type: Location

Message: Object Detected.

QoS Profile: Check3

QoS Profile Type: Location

(Output Port) ID → OT101

Send Topic Type: Warnings

Message: Failed to complete tasks.

QoS Profile: Check1

QoS Profile Type: Warnings

Example 5 Connections

Topic Type: Location

OT102 → IN105

Topic Type: Warnings

OT101 → IN108

Example 6 Policy List: Check1

QoS Profile Type: Warnings

Reliability == RELIABLE

Durability == TRANSIENT_LOCAL

Liveliness == MANUAL_BY_TOPIC

Deadline == 12

Lease Duration == 10

Policy List: Check2

QoS Profile Type: Traffic

Reliability == BEST_EFFORT

Durability == VOLATILE

Liveliness == AUTOMATIC

Deadline == 15

Lease Duration == 12

Policy List: Check3

QoS Profile Type: Location

Reliability == RELIABLE

Deadline == 7

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 11

e. The Connections class defines how the information flow occurs between the ports of one device to another. The
instances of this class are associated with attributes iport (refers to input ports), oport (refers to output ports) and
TopicType (records the type of data exchanged). Each instance of Connections class defines data flow from an
output port to an input port. TheAutonomousSystem class is composed of one or more connections. For instance,
Example 5 in Table 3 shows connections defined between pairs of ports. Each connection also includes the type of
data exchanged between the ports.

f. The QoSProfile class represents the different quality of service parameters associated with communicat-
ing nodes. Each instance of QoSProfile consists of–QoSprofileType (this profile type corresponds to the
different topics of input and output ports) and policyList (list of QoS policies). The specification of QoSpro-
fileType is significant as the exchange of different information may require different QoS parameters. The
InputPort and OutputPort classes are associated with one or more QoSProfile classes. Example 6
in Table 3 shows how QoS policies are captured in the proposed DSL. Each QoS policy has a type associ-
ated with it. The type of InputPort and OutputPort that is, attributes ReceiveTopicType and SendTopic-
Type respectively, must match the type of QoS profile (attribute QoSprofileType) assigned to it (as shown in
Example 4 in Table 3).

g. The QoSCompatabilityCheck class captures the compatibility issues between different QoS profiles. The
instances of this class are characterized by the attributes–QosProfilePair (QoS profiles whose policies are incompati-
ble) and ProfileCompatability (records the compatibility issues). The QoSCompatabilityCheck class consists of
the CompatabilityCheck() function that checks for the compatibility of QoS profiles associated with different
ports that communicate to exchange data. The CompatabilityCheck()method refers to the QoS compatibility
rules defined for ROS2h.

3. Constraints: We have defined several constraints as classes in the metamodel (marked in red in Figure 1).
a. The NonFunctionalRequirement class captures the NFRs associated with operational artifacts. The instances

of NonFunctionalRequirement class are characterized by the following attributes:
(i) NFRID: A unique identifier.

(ii) NFRName: It represents the NFR category, such as security.
(iii) MetricName: Captures different metrics that are associated with each NFR category, such as encryption

level for security.
(iv) MinVal: Represents minimum value of an NFR.
(v) MaxVal: Represents maximum value of an NFR.

(vi) MostLikelyVal: Represents the most likely value of an NFR.
(vii) Parameters: It captures other NFRs on which a particular NFR is dependent. This is applicable mostly in

the case of composite components that are made up of several sub-components (atomic or composite).
The satisfaction of the NFR of a high-level composite component may be dependent on the NFRs of its
sub-components.

(viii) Operation: It specifies how the NFRs of lower-level sub-components are related to the NFR of the
higher-level component.
The minimum, maximum and most likely values are expected to be provided by the requirement analyst.
The domain of these values depends on the individual NFR category (refer to Example 11 in Table 4). When
these values are used in computations they are normalized in the same scale. The Hardware, Software
and Components classes are composed of class NonFunctionalRequirement. Example 7 in Table 4
shows the NFRs defined for component ROBOT1 of Example 1 in Table 2. The NFR N601 is related to two
NFRs N101 and N301 and the operation is max. Then the maximum of the most likely values of these two
NFRs must match with the most likely value of NFR N601.

b. The DependencyAssociation class is used to capture the associations between FunctionalRequirement
and NonFunctionalRequirement. NFRs are feature-centric.39 The DependencyAssociation class cap-
tures relevant NFRs associated with functional features that are required to be satisfied. Specification of NFRs for
each functionality ensures that it is realized in such a manner that the required non-functional properties can
be satisfied. Also, it can be used to verify whether the deployed system meets or violates non-functional proper-
ties. The instances of DependencyAssociation class are characterized by FRID, NFRID and DependencyValue.
The attributes FRID and NFRID refers to the attributes FRName and NFRID of FunctionalRequirement and
NonFunctionalRequirement class respectively. The DependencyValue represents the degree of dependency

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

12 ROY et al.

T A B L E 4 Examples of constraints.

Constraints

Example 7 Non-functional objective

Non-functional property

ID: N601

NFR category: Availability –>

Metric: Probability percentage of system uptime

Minimum value: 70 Maximum value: 90

Most likely value: 85

Parameters: N101 NFR category: Availability –>

Metric: Probability percentage of system uptime

N301 NFR category: Availability –>

Metric: Probability percentage of system uptime

Operation

Max

Non-functional property

ID: N602

NFR category: Performance –>

Metric: Response time

Minimum value: 2 Maximum value: 10

Most likely value: 5

Parameters

≪…≫

Operation

≪…≫

Example 8 Deliver->N601 NFR category

Availability –>Metric: Probability percentage of system uptime

Dependency value: 8

Deliver->N602 NFR category

Performance –>Metric: Response time

Dependency value: 9

Fetch->N601 NFR category

Availability –>metric: Probability percentage of system uptime

Dependency value: 8

Fetch->N602 NFR category

Performance –>metric: Response time

Dependency value: 6

(Continues)

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 13

T A B L E 4 (Continued)

Constraints
Example 9 Contexts-NFR association

ID: C1 Name: Lightning values: Dim
Impacted NFR: N601 NFR category
Availability –>metric: Probability
percentage of system uptime N602 NFR category
Performance –>metric: Response time
Contexts-NFR association
ID: C2 crowd: Low
Impacted NFR: N601 NFR category
Availability –>metric: Probability percentage of system uptime
N602 NFR category
Performance –>metric: Response time
Contexts-NFR association
ID: C3 name: Crowd: Heavy
Impacted NFR: N601 NFR category
Availability –>metric: Probability percentage of system uptime
N602 NFR category
Performance –>metric: Response time

Example 10 Scenario
Scenario ID: S1
Contexts–C1–Lightning: Dim, C2–Crowd: Low
Scenario ID: S2
Contexts: C1–Lightning: Dim, C3–Crowd: Medium

Example 11 Scenario-NFR impact
Scenario ID: S1 NFR: N601 NFR category
Availability –>metric: Probability percentage of system uptime
Min value: 60 max value: 80
Most likely value: 70
Scenario ID: S2 NFR: N602 NFR category
Performance –>metric: Response time
Min value: 5 max value: 10
Most likely value: 7

between FRs and NFRs. The domain of DependencyValue is within 1–10, in our framework. These associations are
expected to be identified by the requirement analyst40 using existing frameworks like Reference 41. Dependency-
Value is further used for deriving optimum satisfaction values of NFRs. Example 8 in Table 4 shows an association
among the NFRs of Example 7 with the FRs defined in Example 1 for the component ROBOT1.

c. TheConflictAnalysis class captures the conflict relationship between differentNonFunctionalRequire-
ment. The instances of this class consist of the following attributes:

(i) NFRpairs: The pair of NFRs that are identified to be in conflict by the ConflictIdentification() function.
(ii) ConflictImpactvalue: The degree of conflict among NFRs. The impact values can be of three types: linear,

polynomial and exponential.
(iii) RiskType: The risk imposed by each identified conflict. the risk can be: low, moderate, high.

The ConflictAnalysis class also consists of three functions:
(i) ConflictIdentification(): Identifies pair-wise conflict among NFRs.

(ii) AffectionFunction(): It derives the degree of conflict and risk involved.
(iii) NFROptimzation(): It derives an optimized satisfiability value of each NFR in conflict.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

14 ROY et al.

d. The class ContextNFRAssociation is used to represent the different environmental contexts and correlates
these contexts with NFRs. The context represents environmental conditions in which system has to operate. The
instance of this class is characterized by the ContextName, ContextValue and ImpactedNFRList. The attribute
ContextName and ContextValue defines an environmental context and its label respectively. The attribute Impact-
edNFRList lists the different non-functional properties that may get affected in a particular context. Example 9 in
Table 4 shows instances of sample contexts and impacted NFRs as defined in MPS platform.

e. The Scenario class in the metamodel is used to represent different scenarios in which the system has to operate.
Its instances are characterized by the ScenarioID and ContextList (that is inherited from ContextNFRAssocia-
tion class). Each scenario is a combination of multiple environmental contexts. The attribute ContextList consists
of the set of contexts that makes up a particular scenario. Example 10 in Table 4 shows how the contexts of Example
9 are combined to create different scenarios.

f. The class ScenarioNFRImpact captures how multiple contexts when occur together affects different
non-functional properties of the system. Its instances are characterized by the following attributes: ScenarioID,
NFRID (this NFRs must match with the one defined with the contexts for a particular scenario), MinValue, Max-
Value and MostLikelyValue. The parameters MinValue, MaxValue and MostLikelyValue capture how the NFR values
may undergo changes for a particular scenario. This class addresses the issue I-4 mentioned in Section 3.2.

Example 11 in Table 4 shows the correlation between NFRs and scenarios. The NFR N601 that was defined ear-
lier in Example 7 in Table 4 undergoes a change in its specification in scenario S1 in Example 11. These correlations
are to be determined by system analysts manually.

4.2 The SCARS framework

This section illustrates the overall workflow and different modules of SCARS (refer to Figure 2). We assume that the
following conditions are satisfied:

1. The availability of conflict catalogs (based on state-of-the-art literature). These catalogs must include conflicts between
NFRs specific to the robotic autonomous system (refer to note||).

2. The availability of a QoS policy list for the system under consideration.
3. Relevant data on the environmental contexts under which the system shall operate.

The architecture of SCARS is shown in Figure 2. The end-to-end flow of activities is shown using solid arrows. The
dotted arrows represent some of the optional activities that can be performed by the system designer. The architecture is
partitioned into three modules, namely: (A) System and Scenario Specification (B) Requirements Analysis and
(C) NFR Optimization. The following subsections illustrate each module in detail.

4.2.1 System and Scenario Specification

This module consists of two activities: (1) Requirement Specification using the DSL metamodel; and (2) Integration of
scenario constraints in the requirement specification. The requirement engineer will use the DSL metamodel (describer
earlier) to generate a general requirement specification for the target system. This specification is then embedded with
scenario specific constraints.

Integration of scenario constraints in the requirement specifications
The system specification must include the different scenarios (Scenario constraints in Figure 2) in which the system
has to operate and how in different scenarios the non-functional properties of the system are affected (refer to Example
11 in Table 4). These scenario information will be obtained from different stakeholders of the system. The Integration
and Duplication process in the framework takes the general requirement specification of the target system and augments
them with scenario information. That is for each scenario a scenario-specific requirement specification is created and fed
into the subsequent processes of the framework. Suppose, if there are n scenarios in which the system has to operate, our
framework creates n separate requirement set (one for each scenario) for further analysis (refer to Figure 2). The objective

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 15

F I G U R E 2 The SCARS framework.

of doing this is to separately check the risk factors (conflicts, inconsistencies) associated with different scenarios. This
will assist the system designer to build various configurations of the system with minimum risk. In Example 11 there are
two different scenarios. Each scenario has some effect on the non-functional properties that were specified in Example
7. Hence the Integration and Duplication process creates two separate scenario-specific requirement specifications (say
R1 and R2). In requirement specification, R1 the specification of NFR N601 will be replaced with the one mentioned
for scenario S1 in Example 11. In R1 specification of NFR N602 will remain the same as in Example 7. In requirement
specification, R2 the specification of NFR N602 will be replaced with the one mentioned for scenario S2 in Example 11.
In R2 specification of NFR N601 will remain the same as in Example 7.

It is to be noted that each scenario can impact multiple NFRs. In our examples, we have shown only a single instance
for simplicity. In requirement sets R1 and R2 only NFR specification of different components is changed. Figure 3 shows
the FRs and NFRs description for ROBOT1 in scenarios S1 and S2.

4.2.2 Requirement Analysis

In this module, each of the scenario-specific requirement specifications is subjected to analyses. It includes three differ-
ent processes that check for incompatibilities, inconsistencies and conflicts in the requirement sets respectively. These
processes can be executed in parallel and are explained in the following subsections.

QoS compatibility check
The management of QoS policies is an important aspect of an autonomous system as different devices communicate
among themselves to publish and subscribe to information. The quality parameters associated with the communication

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

16 ROY et al.

F I G U R E 3 Scenario-specific requirement set.

T A B L E 5 Example of Qos profile.

QoS profile

Example 12 Policy List: Profile1

QoS Profile Type: Location

Reliability == BEST_EFFORT

Durability == VOLATILE

Deadline == 5

Policy List: Profile2

QoS Profile Type: Location

Reliability == RELIABLE

Durability == VOLATILE

Deadline == 3

ports of the devices define the characteristic of communication. The QoS Compatibility Check module of the framework
takes as input the system specification (in different scenarios), which includes the devices that are communicating among
themselves to share information. The module generates incompatible QoS profiles for different communicating devices.
The ROS2 community has already defined the set of QoS profiles that are incompatible. We have implemented those rulesh

in the model checker in MPS. This QoS Compatibility Check module addresses the issue I-5 mentioned in Section 3.2.
Let us consider two QoS profiles profile1 and profile2 shown in Example 12 in Table 5 that are associated with ports

OT102 and IN105 respectively (refer to Example 5 in Table 3). The port OT102 is publishing location information that is
subscribed by port IN105. In Figure 4, we can see that the QoS profiles associated with these two ports are incompatible
due to their Reliability and Deadline policy.

NFR consistency check
An autonomous system is built from an aggregation of several atomic and composite components. These heterogeneous
components coordinate among themselves to achieve particular tasks.

Consider the situation where a robot is expected to deliver some goods in the hospital from point A to point B and the
expected response time for the task is tr sec. Now in performing this task the sensing device of the robot (response time
ts sec) will locate the goods, the task and motion planning software modules (response time tm sec) compute a route for

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 17

F I G U R E 4 QoS profile compatability check result.

Algorithm 1. NFR consistency check

Arguments:
1. Ccomp: A set of composite components.
Output:
1. A set of higher-level NFRs incompatible with lower-level associated NFRs.

1: function NFR Consistency Check(Ccomp)
2: for each comp ∈ Ccomp do
3: for each nfr ∈ comp do
4: cvalue ← COMPUTE(nfr.parameters, nfr.operation)
5: result ← COMPARE(cvalue, nfr.mostlikely)
6: Print result.
7: end for
8: end for
9: end function

the robot and the wheels (time required to move from point A to B is tw sec based on wheel velocity) help in the move-
ment. Each of these components has its own individual response times. Hence it is necessary to compare whether these
individual response times (ts, tm, tw) of the components are sufficient to obtain the response time required for the task (tr).

In our DSL metamodel, we have the provision for specifying NFRs for each individual component, and how the NFRs
of different components are related. Algorithm 1 checks whether NFRs associated with high-level composite components
are consistent with the non-functional properties of its constituting components. This consistency check is performed at
the inter-component level that is among different components (both atomic and composite). The COMPUTE function
applies the specified operation on the most likely values of the NFRs in the parameters field and stores it in variable cvalue.
The function COMPARE compares the cvalue with the most likely value of the NFR in concern. This comparison also
depends on the NFR category (refer to Section 3.1).

We have implemented an NFR category check before comparing their values. This consistency check method is exe-
cuted for different requirement sets that exist for different scenarios. This NFR Consistency Check module addresses the
issue I-2 mentioned in Section 3.2

In Example 7 in Table 4 we observed that NFR N601 is related to NFRs N101 and N301 and the Operation is Max.
NFRs N101 and N301 are associated with the sub-components of the ROBOT1 (H1 and H103 respectively). In this case,
the maximum of their most likely values are not consistent with the most likely value of NFR N601. This is analyzed by
the model checker in MPS and shown as an error in Figure 5.

NFR conflict check
NFR conflict check is performed at the intra-component level and it is the most important function of Requirement Anal-
ysis. The NFR Conflict Check module addresses the issue I-1 mentioned in Section 3.2. This module consists of two major
activities: (1) Conflict Identification and (2) Conflict Impact Analysis.

Conflict identification: The Conflict Identification procedure is performed on the NFRs of each component (atomic
and composite) defined in the specification. As mentioned earlier in Section 4.2.1 for each n scenarios in which

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

18 ROY et al.

F I G U R E 5 NFR inconsistency result.

Algorithm 2. NFR conflict identification

Arguments:
1. Spec[n]: An array of requirement specifications for n scenarios.
2. k: Let k be the total number of components in the specification.
Output:
1. Conflicti[k][colsize], i ∈ [1,n]: A set of 2-D arrays storing the conflicts for each component in n scenarios. The colsize is

set to
(m

2

)
, where m is the maximum total number of NFRs of all components.

1: function Conflict Identification(Spec, k)
2: Set index ← 1
3: while index ≤ n do
4: Fetch Specification Spec[index].
5: Set count ← 1
6: while count ≤ k do
7: Fetch specification for component confcount in Spec[index]
8: Set confcount ← 0.
9: for each ⟨ nfri, nfrj ⟩ ∈ confcount do

10: result ← CHECK(nfri, nfrj)
11: if result = 1 then
12: Increment confcount.
13: Add ⟨ nfri, nfrj ⟩ to Conflictindex[count][confcount]
14: end if
15: end for
16: Increment count.
17: end while
18: Increment index.
19: end while
20: end function

the system is likely to operate the framework creates a different specification. Hence conflict identification is per-
formed for each component in n scenarios. A pre-defined conflict catalog is used for detecting conflicts among NFRs
(refer to note||). Algorithm 2 illustrates the steps for conflict identification. It takes a set of n requirement specifi-
cations as input. Then for each specification, it checks for the NFR conflicts in each of the components separately.
The CHECK function checks whether a pair of NFRs are in conflict by referring to the conflict catalog and returns
1 or 0 respectively.

Conflict impact analysis: The objective of this activity is to analyze the risk (or severity) associated with differ-
ent conflicting pairs of NFRs and how a change in the weight of one NFR impacts its conflicting NFR. It involves the
following steps-

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 19

1. Expected value computation: We have used PERT42 for computing an initial expected value of each NFR. Each NFR is
associated with three values- minimum value, maximum value and most likely value (refer to Section 4.1). The PERT
determines the expected value using the following formula-

Expectedvalue =
Oval + Pval + 4Mval

6
(1)

where, Oval refers to the optimistic value, Pval refers to the pessimistic value and Mval refers to the most likely value.
In the case of NFR of the category C-1 (refer to Section 3.1) optimistic value is the minimum value and the pes-

simistic value is the maximum value. Similarly, for NFRs of category C-2 (refer to Section 3.1) optimistic value is the
maximum value and the pessimistic value is the minimum value. The expected values are computed for each NFR
pair that is in conflict. The same NFR can have different expected values in different scenarios.

2. Normalization of values: The metrics of different NFRs have their minimum and maximum values in different ranges.
The initial computed expected values of different NFRs lie in different ranges. These initial expected values are
normalized in the range [0–1] using the following formula-

Xnormalizedval =
X − Xmin

Xmax − Xmin
(2)

where X is any value that has to be normalized, Xmin is the minimum value X can have and Xmax is the maximum value
X can have.

C-1 category NFRs are optimistic towards minimum value and C-2 category NFRs are optimistic towards maximum
value. To make the computation simpler we complement the normalized expected values of C-1 category NFRs (refer
to Equation 3).

Xcomplement = 1 − Xnormalizedval (3)

This step makes all NFRs optimistic toward maximum value. This normalization and complementation help in
comparing the NFRs on a uniform manner.

Let us consider the NFR N602 in Example 7 in Table 4, that belongs to category C-1. Using PERT (Equation 1) the
expected value is 5.33. The normalized value for N602 is 0.41625. Now complementing the normalized value using
Equation (3) we get the value 0.58. It is to be noted that here we have not considered the impact of the scenario on the
NFR N602.

3. Estimating risk of conflict: For every pair of NFR conflicts we classify them into one of the three following classes. This
classification of conflict is done for each of the n requirement specifications. Suppose the NFR pair ⟨ nfri, nfrk ⟩ in
scenario m are in conflict with normalized (and maybe complemented) expected values Ei and Ek respectively. The
expected values computed reflect the desired user expectation from the system. We consider these expected values and
conflict information to determine the risk imposed by the NFR conflicts. If the computed expected values lie between
0 and 0.5 then it is assumed to be in the pessimistic range and that between 0.5 and 1 is to be in the optimistic range.
a. Low risk: If the values of Ei and Ek lies in the range [0.5, 1] then the NFR pair ⟨ nfri, nfrk ⟩ are said to be at low-risk

conflict. Now increasing the expected value of nfri will negatively influence (decrease) the value of nfrk as they are
in conflict. However, since the value of nfrk is in the optimistic range the impact may not be too severe.

b. Moderate risk: The NFR pair ⟨ nfri, nfrk ⟩ are said to be at moderate-risk conflict when one NFR have their expected
value in the pessimistic range and another in the optimistic range. nfri negatively influences nfrk. Suppose Ei lies in
the range [0.5, 1] but Ek lies in the range [0, 0.5]. Now increasing the expected value of nfri will negatively influence
(decrease) the value of nfrk. If the value of nfrk goes below a minimum threshold, it implies that the NFR cannot
be satisfied.

c. High risk: If the values of Ei and Ek lie in the range [0, 0.5] then the NFR pair ⟨ nfri, nfrk ⟩ are said to be at high-risk
conflict. Since both lie in the pessimistic range whenever we try to improve the value of one NFR towards the
optimistic range, it severely affects the other.

In Figure 6, the blue bar represents the initial expected value of Ek and green bar represents the initial expected
value of Ei for low-risk, moderate risk and high-risk case respectively. Δ represents any constant value by which
expected value of nfri is increased. Then expected value of nfrk decreases by a value that is a function ofΔ − (f (Δ)).
The f (Δ) depends on the risk category and it is discussed in the next step.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

20 ROY et al.

(A)

(B)

(C)

F I G U R E 6 Risk associated with NFR conflicts.

4. Impact analysis: We have defined an Affection function that is a mathematical function for analyzing the risk profiles
of different NFR conflicts and determining how a change in the expected value of one NFR negatively impacts the
weight of another NFR. The impact value is computed based on the risk category as follows:
a. When the NFR pair ⟨ nfri, nfrk ⟩ have low risk, increasing the value of NFR nfri will have a linear impact on the

value of nfrk and vice-versa. That is we increase the value of nfri by a constantΔ then the value of nfrk decreases by
Δ ∗ diff, where, diff= Ek − 0.5.

b. When the NFR pair ⟨ nfri, nfrk ⟩ have moderate risk, increasing the value of NFR nfri, decreases the value of nfrk
polynomially and vice-versa. That is we increase the value of nfri by Δ then value of nfrj decreases by Δk∗diff, where
k is any constant of power of 10. The value of diff is determined using the same formula as above. The value of Δ
and diff both lies in the range [0, 1]. Δ to the power of diff will give a very small value. Hence, we are multiplying
diff with k.

c. When the NFR pair ⟨ nfri, nfrk ⟩ have high risk, increasing the value of NFR nfri, decreases the value of nfrk expo-
nentially and vice-versa. That is we increase the value of nfri by Δ then value of nfrj decreases by eΔ∗diff . The value
of diff is determined using the same formula as above.

The value ofΔ lies in the range of [0.1, 1 − Ei]. We assume the minimum value ofΔ to be 0.1 and the maximum
value as 1 − Ei, as the value of NFRs lies in [0, 1] range.
Hence, the Affection function is defined as follows:

f (𝛿) =
⎧
⎪
⎨
⎪
⎩

Δ ∗ diff if risk is low
Δk∗diff if risk is moderate
eΔ∗diff if risk is high

Algorithm 3 demonstrates the above-mentioned steps of conflict impact analysis activity.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 21

Let us consider the NFRs N601 and N602 (refer to Example 7 in Table 4). Their initial expected values are found to
be 0.59 and 0.61 respectively in scenario S2 (refer to Example 11 in Table 4). When trying to improve the value of N601,
the value of N602 degrades linearly as they have low risks. If we increase the value of N601 by Δ then the value of N602
decreases by Δ ∗diff . The value of Δ will lie in the range of 0.1 to 1 − 0.59 that is, 0.41 and diff value is abs(0.5 − 0.61)
that is, 0.11.

All these algorithms have been implemented within the model checker in MPS.

4.2.3 NFR Optimization

In this module, we apply a multi-objective optimization approach to compute the optimal satisfaction values of NFRs in
different scenarios for the various components in a robotic system. This optimization module provides feasible satisfia-
bility values of each NFR given their conflicts and association with various FRs. Based on the output of the optimization
module, system designers can build appropriate configurations of the system in different scenarios. This reduces the cost
and risk of system refactoring.

We have used the pymoo library in python to solve our optimization problem. Each component has one or more
functional goals that it must perform. These functional goals have different degrees of association with one or more NFRs
(refer to Example 8 in Table 4). These NFRs may also have a negative impact on each other. The Affection function
(refer to Algorithm 3) provides the degree of conflict among different pairs of NFRs. Considering the FR-NFR dependency
and NFR conflict relationship we create a multi-objective optimization problem for each component considering their
NFR values in different scenarios. If the system has to operate in n scenarios, then each component will have a different
optimization problem for n scenarios.

Let us again consider the NFR pair N601 and N602. The robot ROBOT1 (refer to Example 1 in Table 2) has two
functional goals Fetch and Deliver. The goal Fetch is also associated with NFR N601 and N602 with dependency
values 8 and 6 respectively. The goal Deliver is associated with NFRs N601 and N602 having dependency values 8 and
9 respectively. Let w1 and w2 be the decision variables for NFRs N601 and N602 respectively. The objective functions
are formed by multiplying the decision variables w1 and w2 with the dependency values corresponding to each FR. Two
objective functions will be created with respect to each functional goal (Fetch andDeliver). The constraints are formed
by the conflict impact relationship derived by Algorithm 3. The constraints show how an increase in the weight of one
NFR affects another NFR. In this case, we know that if we increase the value of N601 by Δ then the value of N602
decreases by Δ*diff . The optimization problem is as follows:

maximize
w1,w2

{
8w1 + 6w2
8w1 + 9w2

s.t.w1 + w2 + 𝛿 − 𝛿 ∗ diff ≥ 0,
w1 + w2 + 𝛿 − 𝛿 ∗ diff ≤ 2,
diff = 0.11, 𝛿 = 0.1 … , 0.41

The values of diff and Δ are explained in the previous section.
By solving this optimization problem using NSGA 2 algorithm with a population size 100 and number of generations

50, we obtain the weights of w1 and w2, respectively. These weights may vary in different scenarios. Based on these weights
system designer can know apriori the optimal satisfaction values of the concerned NFRs in different scenarios. This aids
in the explainability of the system behavior.

5 EXPERIMENTAL EVALUATION

In this section, we demonstrate the experiments performed to validate the proposed SCARS framework. The proposed
approach can be validated on any autonomous system. In this work, we have used a simple ROS-based robotic system to
perform the validation. Through these experiments, we show how the optimal values produced by the framework can be
used in real scenarios. The experiments are executed on a workstation with AMD Ryzen 9 processor, GPU AMD Radeon

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

22 ROY et al.

Algorithm 3. NFR conflict impact analysis

Arguments:
1. Conflicti[k][colsize], i ∈ [1,n]: A set of n number of 2-D arrays storing the conflicts generated by Algorithm 2.
Output:
1. Riski[k][colsize], i ∈ [1,n]: An array storing risk of each NFR conflict.
2. Impacti[k][colsize], i ∈ [1,n]: An array storing impact of each NFR conflict.

1: function Affection(Conflict1[k][colsize].....Conflictn[k][colsize])
2: for spec = 1 to n do
3: for row = 1 to k do
4: for col = 1 to colsize do
5: if Conflictspec[row][col] ≠ ∅ then
6: Fetch NFR pair ⟨ nfri, nfrk ⟩ from Conflictspec[row][col]
7: Ei ← ExpectedValue(nfri)
8: Ek ← ExpectedValue(nfrk)
9: Let Δ be any value between [0.1, (1-Ei)].

10: Let diff ← abs(0.5 − Ek).
11: if 0.5 < Ei, Ek ≤ 1 then
12: Riskspec[row][col]← "Low-Linear"
13: Impactspec[row][col]← Δ*diff
14: else if 0.5 < Ei ≤ 1 and 0 ≤ Ek ≤ 0.5 then
15: Riskspec[row][col]← "Moderate-Polynomial"
16: Impactspec[row][col]← Δ k∗diff , ⊳ where k= 10random(1,10)

17: else if 0 ≤ Ei, Ek ≤ 0.5 then
18: Riskspec[row][col]← "High-Exponential"
19: Impactspec[row][col]← eΔ∗diff

20: end if
21: end if
22: end for
23: end for
24: end for
25: end function

RX, 32GB DDR5 RAM and Ubuntu 20.04 operating system. The experimental scripts and results are available at our
github repository.†† The experimental steps are as follows:

Step 1: Selection of a simulator

We have selected the ROS 2 Gazebo simulation stack for the iRobot® Create®3 Educational Robot for performing our exper-
iments. iRobot® Create®3 Simulator can be used to quickly develop new applications and eventually run them on a real
robot without having to change anything. We have used two different environments in the Gazebo simulation for conduct-
ing the experiments. Figure 7A,B are the two simulation environments. Figure 7A shows a home environment consisting
of two rooms and a single robot. Figure 7B shows a hospital environment with multiple rooms and a single robot.

Step 2: Defining the functional goals

The Create®3 robot can be navigated to a specified odometry position and orientation. In our experiments, we used
middleware APIs for navigating the robot to different positions. We define a simple functional task for the robot:

††https://github.com/RESSA-ROB/SCARS/tree/main/Experiments.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/RESSA-ROB/SCARS/tree/main/Experiments

ROY et al. 23

(A) Home Environment

(B) Hospital Environment

F I G U R E 7 Simulation environments. (A) Home environment, (B) hospital environment.

1. T-1: Robot begins at an initial position A, picks up an object from position B and delivers it as position C.

The Create®3 robot design does not provide the provision for the actual picking up of an object from a place. Thus, in
our experiments, we simply move the robot to a location B and introduce a latency time for object picking. The position
A, B and C were determined randomly. The same task is executed by the robot in both simulation environments (refer to
Figure 7A,B)

Step 3: Determining the NFRs associated with the functional goals

The non-functional parameters that can be manipulated within this simulator are: (i) safety and (ii) speed. The
non-functional parameters like response time and battery discharge can be observed from the logs generated by the
simulator. The NFRs that need to be satisfied for task T-1 are as follows-

1. N-1 response time: The response time associated with task T-1 is a category C-1 NFR.
2. N-2 battery state or battery discharge rate: The battery state of the robot is also category C-1 NFR.
3. N-3 speed: The speed of the robot is a category C-2 NFR.
4. N-4 safety: The safety of the robot is a category C-2 NFR.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

24 ROY et al.

These qualitative definitions of NFRs have been quantified while creating the DSL specification within the SCARS
framework.

Step 4: Determining the scenarios that may occur for task T-1

We have instantiated the task T-1 for 100 different settings in both environments. Thus we have 100 settings for the home
environment (Figure 7A) and 100 settings for the hospital environment (Figure 7B). In each of these settings the positions
A, B and C (defined in Step-2) are unique. The positions A, B and C are randomly generated within the room and hospital
map and the details are discussed in the Annexure section. In Figure 8A, the objects marked in red as Ob1–Ob22 in the
home are the obstacles that the robot has encountered in its path while executing the task T-1. Similarly, in Figure 8B
the objects marked in red as Ob1–Ob31 in the hospital are the obstacles that the robot has encountered in its path while
executing the task T-1. The positions of the obstacles are fixed within the room and hospital map. Now for performing
task T-1 by the robot along the path A-B-C in these 100 different settings (in both environments) different situations can
arise as follows:

1. The path A-B-C does not include obstacle.
2. The path A-B-C has only one obstacle.
3. The path A-B-C has multiple obstacles.

(A) Home Environment

(B) Hospital Environment

F I G U R E 8 Simulation environments with obstacles.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 25

T A B L E 6 Experimental scenario.

Scenario

Contexts

Obstacle Obstacle before pickup Obstacle after pickup
S1 0 0 0

S2 1 1 0

S3 1 0 1

S4 2 2 0

S5 2 0 2

S6 2 1 1

S7 3 1 2

T A B L E 7 NFR parameter values.

NFR Minimum value Maximum value
Most
likely value

Battery discharge (energy efficiency) Battery discharged for moving
the robot at two extreme
points at maximum speed

Battery discharged for moving the
robot at two extreme points at
minimum speed

Based on NFR category C-1

Response time (Performance) Time taken for moving the
robot at two extreme points
at minimum speed

Time taken for moving the robot
at two extreme points at
minimum speed

Based on NFR category C-1

Speed Create®3 robot documentation Create®3 robot documentation Based on NFR category C-2

These different situations form different scenarios. Table 6 illustrates the different scenarios that we have obtained
based on the obstacles in the home and hospital environment and randomly generated positions for A, B and C for both
environments. In the home environment (Figure 7A) we have encountered all seven scenarios in Table 6. In the hospital
environment (Figure 7B) we have encountered only the first six scenarios.

Step 5: Creating DSL specification

In this step, we elaborate on the DSL specification created for this experiment. DSL specification in this case includes
the following-

1. Component specification: In our experiments, only a single robot exists. Create®3 robot consists of different hard-
ware (like mechanical and electrical) and software (sensing and navigation) parts. Figure B1 shows a portion of the
component specification created for the Create®3 robot.

2. Functional goal specification: The task T-1 defined in Step 2 is captured within the DSL specification in Figure B2.
In the DSL specification, we have divided the task T-1 into two parts that are: (i) picking up an object that involves
moving from point A to B (RG101) (ii) delivering the object from point B to C (RG102). This is because in Table 6 we can
observe that robot may collide with an obstacle either before picking up an object or after picking up an object. Hence
the NFR parameter values (like speed) of the robot differ before and after picking up an object in different scenarios.
The functional goal specification in both environments is the same since the same task is executed.

3. NFR specification: Figure B3A,B shows the NFRs specified corresponding to FRs RG101 and RG102. The FRs can
have the same NFR metric values or different ones. Figure B3C shows the corresponding FR-NFR dependencies. We
have defined three NFR parameters in the DSL specification–Speed, Response Time and Energy efficiency (for Battery
State). We have not captured the safety parameter in the DSL specification as in the simulator it takes only fixed
qualitative values (none, back_up_only, full). The SCARS framework only supports quantitative metric values of NFRs.
The specification in Figure B3A–C are for the home environment. The specification for the hospital environment is
different as the NFR priorities vary in different environments. Table 7 illustrates how the maximum, minimum and
most likely values of NFRs are set within the DSL specification.

4. Scenario specification: Figure B4 shows the different contexts and how these contexts can be combined to create sce-
narios in Table 6. Here we have only shown for scenario S3 in home environment. In Context-NFR Association

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

26 ROY et al.

T A B L E 8 Parameters of optimization problem.

Parameters Value

Number of variables 6

Number of objectives 2

Number of constraints 8

Method NSGA-2

Population size 100

Number of generations 50

section in Figure B4, it can be observed that with each context we associate different NFRs that might get affected.
In Scenario-NFR Impact section we define how the values of NFRs N105, N106 and N107 are affected based on
the scenario. These values are determined considering robot safety (To ensure the robot’s safety against damages, the
speed has to be lowered as it reduces the impact of the collision with the obstacle) and the priority of different NFRs.
We are not manipulating the values of NFRs N101, N102 and N103 as they are associated with RG101 and here obstacle
is encountered while achieving RG102. Hence in the scenario-specific requirements specification generated by MPS
for scenario S3 the values of NFRs N101, N102 and N103 will remain the same as in Figure B3A, but the values of
NFRs N105, N106 and N107 will be replaced with the one in Figure B4. The other scenario specifications are available
within the language model at.‡‡

Step 6: Generating optimal values of NFRs

The model checker in MPS identifies the conflicts (refer to Figure B5) among NFRs in the specification. It then uses
this conflict information and FR-NFR dependencies (refer to Figure B3C) to generate a multi-objective optimization
problem. There are a total of seven different optimization problems generated for each of the seven scenarios in Table 6
for the home environment. In the case of the hospital environment, six different optimization problems were generated
for the first six scenarios in Table 6. Figure B6 shows the multiobjective optimization problem created for the requirement
specification of scenario S3 in the home environment. This multi-objective optimization problem is solved using the
Pymoo library in python. We have used the NSGA-2 algorithm for solving this optimization problem. NSGA-2 algorithm
is proven to be computationally efficient for two objective optimization problems.43 Table 8 shows the parameters set for
solving the optimization problem. The population size and the number of generations are subject to vary depending upon
the problem size. Each constraint in Figure B6 is transformed into two constraints one satisfying the lower bound and
another the upper bound. Hence the total number of constraints in Table 8 is 8. The decision variables ws1 and ws2 is for
speed values for FRs RG101 and RG102 respectively. The decision variables wB1 and wB2 is for battery discharge values
for FRs RG101 and RG102 respectively. The decision variables wR1 and wR2 is for response time values for FRs RG101 and
RG102 respectively. The values of variables [ws1, wB1, wR1, ws2, wB2, wR2] are found to be [0.83, 0.71, 0.75, 0.76, 0.75, 0.8].
These values imply the maximum values each of the NFRs can have in that particular scenario (S3). The multi-objective
optimization problems for other scenarios can be visualized by running the language model available atj.

Step 7: Setting the NFR parameter values within the simulator

The values obtained in the previous step are normalized in the 0 − 1 scale and have to be mapped to their respective
ranges. As mentioned earlier, the simulator takes as input speed values and generates response time and battery discharge
values as output. So for goal RG101 the value of the speed metric is 0.45 and for goal RG102 the value of the speed metric
is 0.3. These values are obtained by mapping the optimal speed values (value of ws1 and ws2)) in their respective ranges
using the formula (4). The value of ws1 is mapped in the range of NFR N101 in Figure B3A. The value of ws2 is mapped in
the range of NFR N105 in Figure B1,B4. After setting the values the simulator is executed to record run-time NFR values.

‡‡https://github.com/RESSA-ROB/SCARS/blob/main/DSL_v1.zip.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/RESSA-ROB/SCARS/blob/main/DSL_v1.zip

ROY et al. 27

T A B L E 9 Experimental results for home.

Scenario
Number
of cases

Velocity for
FR RG101

Velocity for
FR RG102

Average
response time

Average
battery discharge

S1 42 0.46 0.46 48.12 0.59

S2 14 0.4 0.46 76.60613571 0.7535714286

S3 33 0.45 0.3 81.53432424 0.7615151515

S4 10 0.33 0.46 109.65545 0.895

S5 0.46 0.24 122.73635 0.87

S6 0.4 0.3 91.33313333 0.7666666667

S7 0.4 0.24 153.1283667 0.9733333333

T A B L E 10 Experimental results for hospital.

Scenario
Number
of cases

Velocity for
FR RG101

Velocity for
FR RG102

Average
response time

Average
battery discharge

S1 52 0.46 0.46 160.2063904 1.430192308

S2 23 0.44 0.46 175.3486217 1.558695652

S3 17 0.46 0.32 192.9473765 1.462941176

S4 8 0.4 0.46 138.9066 1.15

S5 0.4 0.313 212.534925 1.34

S6 0.4 0.32 182.617 1.685

Valnew = ((Valold − oldmin) ∗ newrange)∕oldrange (4)

where, oldrange= oldmax-oldmin and newrange= newmax-newmin.
The code for running the different scenarios within the simulator is made available ati.

Step 8: Obtaining the NFR values from the simulator

This is the final step of the experiment. We record the response time and battery discharge values for the different scenar-
ios. Table 9 provides a summary of the NFR parameter values recorded in different scenarios for the home environment.
Similarly, Table 10 provides a summary of the NFR parameter values recorded in different scenarios for the hospital envi-
ronment. Tables 9 and 10 record the number of times each scenario has occurred in the 100 different settings. The velocity
or speed metric value for FR RG101 and RG102 is determined by Step 5–7 for each scenario independently. Tables 9 and
10 also record the average response time and battery discharge in each scenario. The distribution of the number of times
each scenario occurred depends on the random coordinates generated for executing task T-1 in the two environments.

5.1 Discussion

5.1.1 Analysis of results

The experimental Step 6 generates the optimal values of different NFR parameters (speed, response time and battery
discharge). The optimal speed values are fed to the simulator for executing the tasks in different scenarios. The simulator
generates the response time and battery discharge as log records. This generated response time and battery discharge are
compared with the optimal values (of response time and battery discharge) generated by the optimization algorithm to
validate. It is to be noted that we have run the result in the simulator in each setting three times and taken an average of
them. Now, we analyze the NFR parameter values obtained from the simulator w.r.t each scenario.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

28 ROY et al.

T A B L E 11 Optimal values for NFR parameters in S1.

NFR parameters

FR RG101 FR RG102

Home Hospital Home Hospital

Speed 0.46 0.46 0.46 0.46

Response time 50 units 100 units 70 units 150 units

Battery discharge 0.4% 1% 0.6% 1.5%

(A) Home Environment

(B) Hospital Environment

F I G U R E 9 NFR parameter values in S1. (A) Home environment, (B) hospital environment.

1. Scenario S1: In this scenario, the robot encounters no obstacles in its path. Table 11 shows the optimal values (maximal)
of NFR parameters generated by the optimization algorithm for home and hospital environment. Figure 9A shows the
distribution of total response time and total battery discharge in home for the 100 settings as obtained from the log
records of the simulator. Figure 9B shows the distribution of total response time and total battery discharge in hospital
for the 100 settings as obtained from the log records of the simulator. In both home and hospital environment we
observe that the NFR parameter value from the simulator lies within the maximum optimal value (refer to Table 11)
except for very few cases where a deviation is observed.

2. Scenario S2: In this scenario, the robot encounters a single obstacle before picking up the object. Table 12 shows
the optimal values (maximal) of NFR parameters generated by the optimization algorithm for home and hospital
environment. Figure 10A shows the distribution of total response time and total battery discharge in home for the 100
settings as obtained from the log records of the simulator. Figure 10B shows the distribution of total response time and
total battery discharge in hospital for the 100 settings as obtained from the log records of the simulator. In both home
and hospital environment we observe that the NFR parameter value from the simulator lies within the optimal value
(refer to Table 12) for all the cases.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 29

T A B L E 12 Optimal values for NFR parameters in S2.

NFR parameters

FR RG101 FR RG102

Home Hospital Home Hospital

Speed 0.4 0.44 0.46 0.46

Response time 50 units 199.91 units 70 units 100 units

Battery discharge 0.5% 1.99% 0.6% 1.0%

(A) Home Environment

(B) Hospital Environment

F I G U R E 10 NFR parameter values in S2. (A) Home environment, (B) hospital environment.

3. Scenario S3: In this scenario, the robot encounters a single obstacle after picking up the object. Table 13 shows the
optimal values (maximal) of NFR parameters generated by the optimization algorithm for home and hospital environ-
ment. Figure 11A shows the distribution of total response time and total battery discharge in home for the 100 settings
as obtained from the log records of the simulator. Figure 11B shows the distribution of total response time and total
battery discharge in hospital for the 100 settings as obtained from the log records of the simulator. In both home and
hospital environment we observe that the NFR parameter value from the simulator lies within the optimal value (refer
to Table 13) for all the cases.

4. Scenario S4: In this scenario, the robot encounters two obstacles before picking up the object. Table 14 shows the
optimal values (maximal) of NFR parameters generated by the optimization algorithm for home and hospital environ-
ment. In home environment out of 100 settings this scenario occurred only twice and in hospital only once. In both
home and hospital environment we observe that the NFR parameter value from the simulator lies within the optimal
value (refer to Table 14) for the three cases.

5. Scenario S5: In this scenario, the robot encounters two obstacles after picking up the object. Table 15 shows the optimal
values (maximal) of NFR parameters generated by the optimization algorithm for home and hospital environments.
In the home environment out of 100 settings, this scenario occurred only twice and in the hospital only thrice. In both
home and hospital environments, we observe that the NFR parameter value from the simulator lies within the optimal
value (refer to Table 13) for the five cases.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

30 ROY et al.

T A B L E 13 Optimal values for NFR parameters in S3.

NFR parameters

FR RG101 FR RG102

Home Hospital Home Hospital

Speed 0.45 0.46 0.3 0.32

Response time 50 units 100 units 80 units 249 units

Battery discharge 0.4% 1.0% 1.5% 1.99%

(A) Home Environment

(B) Hospital Environment

F I G U R E 11 NFR parameter values in S3. (A) Home environment, (B) hospital environment.

T A B L E 14 Optimal values for NFR parameters in S4.

NFR parameters

FR RG101 FR RG102

Home Hospital Home Hospital

Speed 0.45 0.4 0.3 0.46

Response time 80 units 200 units 50 units 100 units

Battery discharge 1.2% 2.0% 0.4% 1.0%

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 31

T A B L E 15 Optimal values for NFR parameters in S5.

NFR parameters

FR RG101 FR RG102

Home Hospital Home Hospital

Speed 0.46 0.46 0.24 0.313

Response time 50 units 100 units 100 units 299.17 units

Battery discharge 0.4% 1.0% 1.5% 1.99%

T A B L E 16 Optimal values for NFR parameters in S6.

NFR parameters

FR RG101 FR RG102

Home Hospital Home Hospital

Speed 0.4 0.44 0.3 0.32

Response time 50 units 199.91 units 80 units 249 units

Battery discharge 0.5% 1.99% 1.5% 1.99%

6. Scenario S6: In this scenario, the robot encounters two obstacles, one before picking up the object and another after
picking up the object. Table 16 shows the optimal values (maximal) of NFR parameters generated by the optimization
algorithm for home and hospital environment. In home environment out of 100 settings this scenario occurred only
thrice and in hospital only four times. In both home and hospital environments, we observe that the NFR parameter
value from the simulator lies within the optimal value (refer to Table 16) for the seven cases.

7. Scenario S7: In this scenario, the robot encounters three obstacles, one before picking up the object and two after
picking up the object. This scenario was observed only in the home environment based on the randomly generated
coordinates for the task. The optimal values for speed or velocity are found to be 0.4 and 0.24 for FRs RG101 and
RG102 respectively. The optimal response times are 50 and 100 units for FR RG101 and RG102 respectively. That is
total response time should not be more than 150 units. The optimal values for battery discharge are 0.4 and 1.5 for
FR for RG101 and RG102 respectively. That is total battery discharge should not be more than 1.9 unit. This scenario
has occurred only in two settings. Here in one case, we observe the response time recorded from the simulator to be
slightly more than the derived optimal value.

The total response time and battery discharge depends on the (i) speed (ii) distance covered (iii) number of obstacles
encountered in its path. When the robot collides with an obstacle it stops, moves back and detours to reach the destination.
This detouring requires some additional time and energy which may vary depending upon the size of the obstacle. This
may account to the deviation of NFR values from the optimal values in some cases. In some cases, the distance may be very
small and hence response time appear to be much lower than the maximum (optimal) value produced by our framework.
Since the positions are randomly determined for task T-1. We have obtained only a small number of cases for scenarios
S4–S7. In those small cases, only a single violation of optimal values is observed. However, from this, we cannot conclude
the optimal values derived are perfect for those scenarios.

Through these experiments, we have tried to show how the derived optimal values can be used in building a smart
system that can adapt to various scenarios. We found that the NFR parameter values derived for most of the cases were
satisfied. The values of speed in different scenarios are obtained considering its conflict with other NFRs and different
contexts occurring. The complete set of experimental results are provided at our github repository.

5.1.2 Comparison with existing works

In Table 1, we have provided a summary of different DSL proposed for robotic systems. Most of these works have consid-
ered the specification of components, communication among components and FRs. Some of them allow the specification
of NFRs also, but they have not done any analysis regarding their conflicts. We find only a single work that tried to
correlate NFRs with context information. However, there are not enough research works that have tried to address the
issues of NFRs and the impact of contexts on them. There are few works that have only analyzed temporal NFRs for
robotic systems. The proposed SCARS framework is an integration of specification and analysis. It provides a specification

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

32 ROY et al.

portion that tries to cover all aspects of a robotic system within a single DSL metamodel. The analysis portion checks for
inconsistencies, incompatibilities and conflicts among the non-functional parameters. Additionally, it provides optimal
satisfaction values of different NFRs that are in conflict.

5.1.3 Limitations

The limitations of this experimental evaluation are as follows:

1. The experiments are performed considering static contexts only. There may be dynamic contexts as well (like people
moving in the room). In such scenarios, it will be more challenging to adjust the NFR parameters accordingly. We have
not considered this issue within the scope of this work.

2. The experiments are conducted considering only formal specification and context-NFR impact values are provided
depending on the understanding of the system engineers. It will be interesting if machine learning-based methods are
integrated to study environments and their impact on various non-functional parameters in the system.

3. The optimal values in the experiments are obtained using only one genetic algorithm. It is to be further evaluated
against other genetic algorithms as a part of our future works.

6 THREATS TO VALIDITY

1. The first issue is related to the specification of contexts or scenarios. The framework requires analysts or engineers to
be aware of different contexts and scenarios in which the system is likely to operate. However, there may be always
certain contextual parameters that remain unknown during the design of the system.

2. The second threat to validity is related to the specification of scenario-NFR impact values. These values are often
dependent upon the understanding of the analyst. This may introduce ambiguity or inconsistency in the specification.
This can be resolved by the use of machine-learning-based methods to study scenarios and their impact NFRs. In an
earlier work,44 attempts have been made to provide a framework that qualitatively derives the correlations between
contexts and NFR conflicts. Such frameworks can be useful to predict scenario-NFR impact correlations rather than
manually providing them.

3. Another issue concerns the optimal values produced, that depend upon the conflict relationship between NFRs and
FR-NFR dependency (specified in the objective function). The FR-NFR dependency values can again be subjective
depending upon the understanding of the analyst. Hence a change in these values can result in a variation of the
optimal values.

4. The last threat to validity is related to the use of a simulator for experimental evaluation. A simulation environment
may not be an exact representation of reality. Hence the validity of the results are still subjective. The evaluation needs
to be performed in real settings or in other similar simulation platforms.

7 CONCLUSION

In general, most of the existing formal method based approaches for resolving conflicts in the requirements are con-
cerned with functional requirements only. In spite of being a major factor in deciding the user acceptance and eventual
success of a system, the NFRs are often considered something that someone will eventually take care of. The pro-
posed SCARS framework provides a requirement specification DSL and also analyzes the conflicts, inconsistencies, and
incompatibilities among the NFRs. Further, it provides an optimization module to generate optimum satisfaction values
of different NFRs in various contexts. We have experimentally evaluated our framework using Gazebo simulation and
Create®3 robot. The experimental result shows that the predicted optimum value satisfies the robot’s run-time behavior
(non-functional). Thus, the SCARS framework can be deployed to analyze robotic system behavior before the actual
deployment. The optimum NFR values can help the system designer in building appropriate software operationalizations
and reduce the cost of changes.

The SCARS framework is limited to handling only static contexts. However, in real scenarios, many dynamic objects
like humans exist in the environment in which the robot operates. As a part of future work, we aim to extend our
framework to model and analyze dynamic contextual parameters.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 33

ACKNOWLEDGMENTS
Work partially supported by SERICS (PE00000014) under the NRRP MUR program funded by the EU–NGEU,
iNEST-Interconnected NordEst Innovation Ecosystem funded by PNRR (Mission 4.2, Investment 1.5) NextGeneration
EU–Project ID: ECS 00000043, and SPIN-2021 “Ressa-Rob” funded by Ca’ Foscari University.

AUTHOR CONTRIBUTIONS
All authors equally contributed in this work and writing the manuscript.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Mandira Roy https://orcid.org/0009-0000-1403-6096
Agostino Cortesi https://orcid.org/0000-0002-0946-5440

REFERENCES
1. Fürst S. System/ software architecture for autonomous driving systems. IEEE International Conference on Software Architecture

Companion (ICSA-C). 2019:31–32. doi:10.1109/ICSA-C.2019.00013
2. Nagrath V, Schlegel C. Run-time dependency graph models for independently developed robotic software components. Lecture Notes Netw

Syst. 2022;507:892-909. doi:10.1007/978-3-031-10464-062
3. Hartsell C, Ramakrishna S, Dubey A, Stojcsics D, Mahadevan N, Karsai G. ReSonAte: a runtime risk assessment framework

for autonomous systems. International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
2021:118–129. doi:10.1109/SEAMS51251.2021.00025

4. Zager M, Sieber C, Fay A. Towards a context identification method for autonomous robots. IECON 2022 – 48th Annual Conference of the
IEEE Industrial Electronics Society. 1–6. doi:10.1109/IECON49645.2022.9969063

5. Samin H. Priority-awareness of non-functional requirements under uncertainty. IEEE 28th International Requirements Engineering
Conference (RE). 2020:416–421. doi:10.1109/RE48521.2020.00061

6. Cui J, Liew LS, Sabaliauskaite G, Zhou F. A review on safety failures, security attacks, and available countermeasures for autonomous
vehicles. Ad Hoc Netw. 2019;90:101823. doi:10.1016/j.adhoc.2018.12.006

7. Vicente-Chicote C, Inglés-Romero JF, Martínez J, et al. A component-based and model-driven approach to deal with non-functional prop-
erties through global QoS metrics. In: Hebig R, Berger T, eds. Proceedings of MODELS 2018 Workshop: PAINS co-Located with ACM/IEEE
21st International Conference on Model Driven Engineering Languages and Systems (MODELS). Vol 2245. CEUR-WS.org; 2018:40-45.

8. Yoo J, Jee E, Cha S. Formal Modeling and verification of safety-critical software. IEEE Softw. 2009;26(3):42-49. doi:10.1109/MS.2009.67
9. Luckcuck M, Farrell M, Dennis LA, Dixon C, Fisher M. Formal specification and verification of autonomous robotic systems: a survey.

ACM Comput Surv. 2019;52(5):1-41. doi:10.1145/3342355
10. Nordmann A, Hochgeschwender N, Wrede S. A survey on domain-specific languages in robotics. In: Brugali D, Broenink JF, Kroeger T,

MacDonald BA, eds. Simulation, Modeling, and Programming for Autonomous Robots. Springer International Publishing; 2014:195-206.
11. Ramaswamy A, Monsuez B, Tapus A. Formal specification of robotic architectures for experimental robotics. Metrics of Sensory Motor

Coordination and Integration in Robots and Animals: How to Measure the Success of Bioinspired Solutions with Respect to their Natural
Models, and against More ‘Artificial’ Solutions? 2020:15-37. doi:10.1007/978-3-030-14126-4%2D92

12. Ladeira M, Ouhammou Y, Grolleau E. RoBMEX: ROS-based modelling framework for end-users and experts. J Syst Archit.
2021;117:102089. doi:10.1016/j.sysarc.2021.102089

13. Miyazawa A, Ribeiro P, Li W, Cavalcanti A, Timmis J, Woodcock J. RoboChart: modelling and verification of the functional behaviour of
robotic applications. Softw Syst Model. 2019;18:1-53. doi:10.1007/s10270-018-00710-z

14. Dhouib S, Kchir S, Stinckwich S, Ziadi T, Ziane M. RobotML, a domain-specific language to design, simulate and deploy robotic
applications. Simul Model Program Autonom Robots. 2012;7628:149-160.

15. Parra S, Schneider S, Hochgeschwender N. Specifying QoS requirements and capabilities for component-based robot soft-
ware. Paper presented at: 2021 IEEE/ACM 3rd International Workshop on Robotics Software Engineering (RoSE). 2021:29–36.
doi:10.1109/RoSE52553.2021.00012

16. Ramaswamy A, Monsuez B, Tapus A. Modeling non-functional properties for human-machine systems. AAAI Spring
Symposium-Technical Report. 2014 50–55.

17. Brugali D. Modeling and analysis of safety requirements in robot navigation with an extension of UML MARTE. IEEE International
Conference on Real-Time Computing and Robotics (RCAR). 2018:439–444. doi:10.1109/RCAR.2018.8621699

18. Wang Y, Sun Q, Wang M, Zhang Y. The requirement traceable modeling method and application of UAV command system-of-systems
based on SysML. Paper presented at: 2021 IEEE International Conference on Unmanned Systems (ICUS). 2021:767–772.
doi:10.1109/ICUS52573.2021.9641259

19. Aloui K, Hammadi M, Guizani A, Haddar M, Soriano T. A new SysML Model for UAV Swarm Modeling: UavSwarmML. 2022:1–8.
doi:10.1109/SysCon53536.2022.9773922

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0009-0000-1403-6096
https://orcid.org/0009-0000-1403-6096
https://orcid.org/0000-0002-0946-5440
https://orcid.org/0000-0002-0946-5440
http://info:doi/10.1109/ICSA-C.2019.00013
http://info:doi/10.1007/978-3-031-10464-062
http://info:doi/10.1109/SEAMS51251.2021.00025
http://info:doi/10.1109/IECON49645.2022.9969063
http://info:doi/10.1109/RE48521.2020.00061
http://info:doi/10.1016/j.adhoc.2018.12.006
http://info:doi/10.1109/MS.2009.67
http://info:doi/10.1145/3342355
http://info:doi/10.1007/978-3-030-14126-4%2D92
http://info:doi/10.1016/j.sysarc.2021.102089
http://info:doi/10.1007/s10270-018-00710-z
http://info:doi/10.1109/RoSE52553.2021.00012
http://info:doi/10.1109/RCAR.2018.8621699
http://info:doi/10.1109/ICUS52573.2021.9641259
http://info:doi/10.1109/SysCon53536.2022.9773922

34 ROY et al.

20. Guizani A, Aloui K, Hammadi M, Soriano T, Haddar M. A new SysML profile for autonomous mobile robots development: ROS2ML. Proc
Inst Mech Eng Part C: J Mech Eng Sci. 2023;237(16):3650-3664. doi:10.1177/09544062221149314

21. Colledanchise M, Natale L. On the implementation of behavior trees in robotics. IEEE Robot Autom Lett. 2021;6(3):5929-5936.
doi:10.1109/lra.2021.3087442

22. Finucane C, Jing G, Kress-Gazit H. LTLMoP: experimenting with language, temporal logic and robot control. IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2010:1988–1993. doi:10.1109/IROS.2010.5650371

23. Maoz S, Ringert JO. Spectra: a specification language for reactive systems. Softw Syst Model. 2021;20:1553-1586.
doi:10.1007/s10270-021-00868-z

24. Brugali D. Non-functional requirements in robotic systems: challenges and state of the art. IEEE International Conference on Real-Time
Computing and Robotics (RCAR). 2019:743–748. doi:10.1109/RCAR47638.2019.9044033

25. Alberts E. Development and integration of self-adaptation strategies for robotics software. IEEE 20th International Conference on Software
Architecture Companion (ICSA-C). 2023:131–136. doi:10.1109/ICSA-C57050.2023.00038

26. Mairiza D, Zowghi D, Nurmuliani N. Towards a catalogue of conflicts among non-functional requirements. In: Loucopoulos P, Maciaszek
LA, eds. ENASE-Proceedings of the Fifth International Conference on Evaluation of Novel Approaches to Software Engineering. SciTePress;
2010:20-29.

27. Mairiza D, Zowghi D. Constructing a catalogue of conflicts among non-functional requirements. Evalu Novel Approach Softw Eng. 2011;
230:31-44.

28. Mairiza D, Zowghi D, Gervasi V. Conflict characterization and analysis of non functional requirements: an experimental approach. Paper
presented at: 2013 IEEE 12th International Conference on Intelligent Software Methodologies, Tools and Techniques (SoMeT). 2013:83–91.
doi:10.1109/SoMeT.2013.6645645

29. Liu CL. CDNFRE: conflict detector in non-functional requirement evolution based on ontologies. Comput Stand Interf . 2016;47:62-76.
doi:10.1016/j.csi.2016.03.002

30. Cysneiros LM. Evaluating the effectiveness of using catalogues to elicit non-functional requirements. Workshop Em Engenharia de
Requisitos. 2007.

31. Lawrence C, Brian AN, Eric Y, John M. Non-functional Requirements in Software Engineering. Springer; 2012.
doi:10.1007/978-1-4615-5269-7

32. Carvalho RM. Dealing with conflicts between non-functional requirements of UbiComp and IoT applications. IEEE 25th International
Requirements Engineering Conference (RE). 2017:544–549. doi:10.1109/RE.2017.51

33. Joseane VP, Rossana A, Rainara C. Evaluation of non-functional requirements for IoT applications. Paper presented at: 23rd International
Conference on Enterprise Information Systems (ICEIS 2021). 2:111–119. doi:10.5220/0010461901110119

34. Bass L, Clements P, Kazman R. Software Architecture in Practice. 3rd ed. Addison-Wesley Professional; 2012.
35. Carvalho RM, Andrade R, Lelli V, Silva EG, dKM O. What about Catalogs of non-functional requirements? Proceedings of REFSQ

Workshops. 2020 2584.
36. Carvalho RM, Andrade RMC, Oliveira KM. Catalog of invisibility correlations for UbiComp and IoT applications. Requir Eng.

2022;27(3):317-350. doi:10.1007/s00766-021-00364-2
37. Carvalho RM, Andrade RMC, Oliveira KM. Towards a catalog of conflicts for HCI quality characteristics in UbiComp and IoT applica-

tions: process and first results. Paper presented at: 12th International Conference on Research Challenges in Information Science (RCIS).
2018:1–6. doi:10.1109/RCIS.2018.8406651

38. Zinovatna O, Cysneiros LM. Reusing knowledge on delivering privacy and transparency together. IEEE Fifth International Workshop on
Requirements Patterns (RePa). 2015:17–24. doi:10.1109/RePa.2015.7407733

39. Haindl P, Plösch R. Towards continuous quality: measuring and evaluating feature-dependent non-functional requirements in
DevOps. Paper presented at: 2019 IEEE International Conference on Software Architecture Companion (ICSA-C). 2019:91–94.
doi:10.1109/ICSA-C.2019.00024

40. Dabbagh M, Lee SP. An approach for integrating the prioritization of functional and nonfunctional requirements. Sci World J.
2014;2014:737626. doi:10.1155/2014/737626

41. Chung L, Nixon B, Yu E, Mylopoulos J. Non-Functional Requirements in Software Engineering. Vol 5. Springer; 2000.
42. Institute PM. A Guide to the Project Management Body of Knowledge (PMBOK® Guide). 5th ed. Project Management Institute; 2013.
43. Chaudhari P, Thakur AK, Kumar R, Banerjee N, Kumar A. Comparison of NSGA-III with NSGA-II for multi objective optimization of

adiabatic styrene reactor. Mater Today: Proc. 2022;57:1509-1514. doi:10.1016/j.matpr.2021.12.047
44. Roy M, Das S, Deb N, Cortesi A, Chaki R, Chaki N. Correlating contexts and NFR conflicts from event logs. Softw Syst Model. 2023.

doi:10.1007/s10270-023-01087-4

How to cite this article: Roy M, Bag R, Deb N, Cortesi A, Chaki R, Chaki N. SCARS: Suturing wounds due to
conflicts between non-functional requirements in autonomous and robotic systems. Softw Pract Exper. 2023;1-37.
doi: 10.1002/spe.3297

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://info:doi/10.1177/09544062221149314
http://info:doi/10.1109/lra.2021.3087442
http://info:doi/10.1109/IROS.2010.5650371
http://info:doi/10.1007/s10270-021-00868-z
http://info:doi/10.1109/RCAR47638.2019.9044033
http://info:doi/10.1109/ICSA-C57050.2023.00038
http://info:doi/10.1109/SoMeT.2013.6645645
http://info:doi/10.1016/j.csi.2016.03.002
http://info:doi/10.1007/978-1-4615-5269-7
http://info:doi/10.1109/RE.2017.51
http://info:doi/10.5220/0010461901110119
http://info:doi/10.1007/s00766-021-00364-2
http://info:doi/10.1109/RCIS.2018.8406651
http://info:doi/10.1109/RePa.2015.7407733
http://info:doi/10.1109/ICSA-C.2019.00024
http://info:doi/10.1155/2014/737626
http://info:doi/10.1016/j.matpr.2021.12.047
http://info:doi/10.1007/s10270-023-01087-4

ROY et al. 35

APPENDIX A. GENERATION OF CO- ORDINATE POINTS

First, the coordinates for the extremities of the simulation environment have to be determined. For the environments
used in our experiments, the extremity X and Y coordinates were:

1. AWS small house: (−9, 9) and (−5.5, 5.5)
2. AWS hospital: (−12, 10) and (−32, 10)

Next, a script to generate the desired number of coordinates has to be created. For our experiments, we generated a
set of three random coordinates per iteration, namely for the start, fetch, and deposit positions. These coordinates were
generated using a Python script that leveraged numpy.random.uniform random sampling method. A map of the three
coordinates is generated per iteration as a tuple of the coordinate list.

APPENDIX B. DSL SPECIFICATION FOR EXPERIMENTS

Figures B1,B2,B3,B4,B5, and B6 shows the DSL specifications optimization problem for our experiments.

(A) Create®3 Robot (B) Hardware Component

(C) Hardware Component (D) Software Component

F I G U R E B1 Component DSL. (A) Create®3 robot, (B) hardware component, (C) hardware component, (D) software component.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

36 ROY et al.

F I G U R E B2 Functional goals DSL.

(A) NFR specification (B) NFR specification

(C) FR-NFR Dependency specification

F I G U R E B3 Non-functional parameter specification. (A) NFR specification, (B) NFR specification, (C) FR-NFR dependency
specification.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

ROY et al. 37

F I G U R E B4 Context and scenario DSL.

F I G U R E B5 NFR conflicts.

F I G U R E B6 Multiobjective optimization problem.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3297 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

	SCARS: Suturing wounds due to conflicts between non-functional requirements in autonomous and robotic systems
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Metamodels and DSL
	2.2 Requirements analysis
	2.3 NFR conflict analysis

	3 PRELIMINARIES
	3.1 Concepts
	3.2 Challenges in the design of robotic autonomous system

	4 THE PROPOSED APPROACH
	4.1 The DSL metamodel
	4.2 The SCARS framework
	4.2.1 S<0:sc>ystem and Scenario Specification</0:sc>
	Integration of scenario constraints in the requirement specifications
	4.2.2 R<0:sc>equirement Analysis</0:sc>
	QoS compatibility check
	NFR consistency check

	NFR conflict check
	4.2.3 NFR O<0:sc>ptimization</0:sc>
	5 EXPERIMENTAL EVALUATION
	5.1 Discussion
	5.1.1 Analysis of results
	5.1.2 Comparison with existing works
	5.1.3 Limitations

	6 THREATS TO VALIDITY
	7 CONCLUSION
	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	APPENDIX A. GENERATION OF CO-ORDINATE POINTS
	APPENDIX B. DSL SPECIFICATION FOR EXPERIMENTS

