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Abstract 

Modeling time series of multilayer network data is challenging due to the 

peculiar characteristics of real-world networks, such as sparsity and abrupt 

structural changes. Moreover, the impact of external factors on the network 

edges is highly heterogeneous due to edge- and time-specific effects. 

Capturing all these features results in a very high-dimensional inference 

problem. A novel tensor-on-tensor regression model is proposed, which 

integrates zero-inflated logistic regression to deal with the sparsity, and 

Markov-switching coefficients to account for structural changes. A tensor 

representation and decomposition of the regression coefficients are used to 

tackle the high-dimensionality and account for the heterogeneous impact of 

the covariate tensor across the response variables. The inference is 

performed following a Bayesian approach, and an efficient Gibbs sampler is 

developed for posterior approximation. Our methodology applied to financial 

and email networks detects different connectivity regimes and uncovers the 

role of covariates in the edge-formation process, which are relevant in risk 
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and resource management. Code is available on GitHub. Supplementary 

materials for this article are available online.  

Keywords: multidimensional data; sparsity; nonlinear time series; zero-inflated 

logit  

1 Introduction 

This paper provides a new, flexible model for time series of multidimensional 

binary arrays. Our model accounts for relevant data features emerging in many 

real-world applications, such as high dimension, sparsity, structural changes, and 

entry-specific covariates. The motivation for this paper relies on relevant stylized 

facts about dynamic multilayer networks, where the edge activation over time can 

be represented as a series of binary arrays (Holme and 

Saramäki, 2012; Boccaletti et al., 2014). Specifically, the investigation of 

predictors’ impact and change detection are of paramount importance in the 

analysis of financial (Billio et al., 2012; Diebold and Yilmaz, 2014) and 

communication networks (Fox et al., 2016).  

We illustrate some features of dynamic networks through the preliminary analysis 

of the datasets studied in Section 4. Figure 1 shows the snapshots, at different 

points in time, of a network among 61 European financial institutions (top) and an 

email network among 90 members of a large European research institution 

(bottom). The network structure, that is, the arrangement of nodes and edges 

(Diestel, 2012, ch. 8) considerably changed over time. The differences in terms 

of degree, path length, clustering coefficient, and number of hubs indicate 

deviations from standard random graph models (Diestel, 2012, ch. 11). More 

realistic models include edge-specific covariates, which make the inference and 

modeling tasks more challenging. Besides, the network structure changes can be 

sudden and dramatic, and the structures tend to cluster over time, resulting in the 

persistence of the node degree (compare graphs across columns and see 

Sections S.6–S.7 in the Supplement).  
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Existing models for dynamic networks do not account for heterogeneous effects 

of covariates and structural changes (Smith et al., 2019; Kim 

et al., 2018; Krivitsky and Handcock, 2014; Hanneke et al., 2010; Xing 

et al., 2010; Sarkar and Moore, 2006), but they rely on simplifying assumptions, 

such as parameter pooling (Durante and Dunson, 2014a) and linearity (Zhang 

et al., 2019; Guhaniyogi et al., 2017; Hoff, 2015; Zhou et al., 2013; Hoff, 2011). 

This paper develops a new flexible tensor-on-tensor model to address these 

issues; the novelties of our contribution are discussed in the following.  

One step toward more flexible network models was taken by Durante and 

Dunson (2014a), who proposed a logit specification with exogenous variables for 

the edges that assume the same coefficients over the network. For some real-

world networks, this assumption is too restrictive. In financial networks, 

institution-specific variables, such as size and sector, and common risk factors, 

such as market volatility, are likely to have a heterogeneous impact on 

connections among institutions. Similarly, measuring the persistence of 

connectivity patterns in communication networks is crucial for understanding 

information spread. Users with distinct features, such as group membership, may 

have different persistence levels in their emailing activity. We aim to address 

these issues by including in the proposed model a covariate tensor to account for 

edge- and node-specific predictors and a coefficient tensor to allow for edge-

specific effects. Similar patterns and dependence structures in the data are 

exploited to reduce the scale of the problem. Specifically, we introduce a tensor 

representation of the coefficients and propose a low-rank decomposition to 

achieve a parsimonious parametrization allowing for the partial pooling of the 

parameters.  

Tensor algebra generalizes matrix algebra to multidimensional objects (for a 

review, see Kolda and Bader, 2009; Cichocki et al., 2016) and permits the 

preservation of the intrinsic structure of the data, thus preventing data reshaping 

and manipulation. This is particularly important for dealing with the complex 
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structures of novel data, such as multilayer networks, three-way tables, and 

spatial panels with multiple series observed for each unit (e.g., municipalities, 

regions, and countries). Figure 2 provides a representation of a multilayer 

network as a three-dimensional binary tensor . Each frontal slice 
::k

 of the 

tensor describes the connectivity structure of the kth layer of the network. 

Another advantage of using tensors stems from their decompositions and 

approximations, which provide valuable representations in lower dimensional 

spaces (Hackbusch, 2012, ch.7-8). We exploit the parallel factor (PARAFAC) 

decomposition of the coefficient tensor for reducing the number of parameters to 

estimate, thus making inference on the models feasible.  

Linear models for a real tensor-valued response have been proposed by 

Hoff (2011, 2015), who studied time series of relational data, and by Gerard and 

Hoff (2017), who introduced a regularized estimator for signal extraction from 

noisy tensor data. Linear tensor regression models have been used in 

neuroimaging for predicting scalar indicators with covariate tensor (e.g., Zhou 

et al., 2013; Zhang et al., 2019; Guhaniyogi et al., 2017). Li and Zhang (2017) 

defined a tensor-response linear regression on a covariate vector to study the 

relationship between brain activity and individual control variables and used an 

envelope method for the estimation. To the best of our knowledge, not much 

work has been done so far about developing nonlinear tensor-on-tensor models. 

We contribute to filling this gap by proposing a logit tensor regression with 

tensor-valued covariates that can find a direct application to multilayer network 

data. In addition, the model allows for dynamic coefficients to capture structural 

changes in the data. A hierarchical Bayesian approach based on prior 

regularization is adopted to shrink irrelevant coefficients. This has the advantage 

of not imposing restrictions on the tensor response and easing the interpretation 

compared to the envelope method.  

Many real-world networks, such as those in Fig. 1, exhibit sparsity and time 

variation in the sparsity level. In finance, sparse networks characterize tranquil 

Acc
ep

te
d 

M
an

us
cr

ipt



states of the market and low levels of contagion (Billio et al., 2012), whereas, in 

behavioral and computer science, they correspond to periods of sporadic email 

activity and low probability of email cascades. The sparsity patterns result in a 

large proportion of zeros in the binary tensor representation of the network that 

the covariates cannot explain and could potentially cause the bias in coefficient 

estimation in standard logit models (Harris and Zhao, 2007). Motivated by these 

stylized facts, we propose a zero-inflated logit regression for the edge activation.  

A visual inspection of the datasets in Fig. 1 reveals substantial time variation of 

the network structure, which has also been documented in other network data 

(e.g., Billio et al., 2012; Diebold and Yilmaz, 2014; Bianchi et al., 2019). The 

distinctive features of our data are sparsity clustering over time and abrupt 

structural changes. Discontinuities in time series are usually associated with 

dramatic events, such as financial crises or the initial propagation of viral emails, 

and call for Markov-switching processes. Our novel zero-inflated logit tensor 

regression with Markov-switching coefficients (ZIL-T-MS) enables us to study the 

impact of covariates in the different connectivity regimes.  

To summarize, our logistic tensor model captures relevant features of the edge 

formation process in real-world networks. The results in the financial application 

are of great relevance for policymakers and private institutions interested in the 

assessment and monitoring of systemic risk. Moreover, detecting regimes in 

email and other communication networks is a valuable tool for their maintenance 

and optimization and helps the early detection of a cascade of messages 

between individuals in rapid succession (e.g., viral communications).  

This article is organized as follows. Section 2 presents the model. Section 3 

discusses the Bayesian inference procedure. Section 4 provides an application 

for financial network data. The Discussion summarizes our results and suggests 

possible future directions for this research. Further details and results are 
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provided in the supplementary material. Code is included in a MATLAB package 

available at https://github.com/matteoiacopini/ZIL-T-MS  

2 A Markov-Switching Model for Networks 

We propose a new model for edge activation probability in multilayer temporal 

networks, which accounts for the stylized facts illustrated in Section 1. First, we 

discuss the main model components for each edge; second, we provide a 

compact representation using tensors, which allows for partial pooling and a 

parsimonious parametrization of the coefficients.  

2.1 A Multilayer Network Model 

Let 
1 2

( , , , )
t t

G V V M E  be a multilayer temporal network, where 

1 2
{1, , } , {1, , }V I V J     are two vertex sets, {1, , }M K   is the set of layers, 

and 
1 2

( )
t

E V V M    is the edge set at time 1, ,t T  . The network connectivity 

from node i to j on layer k at time t can be represented with the following 

sequence of binary variables  

,

1 if  { , , }

0 if  { , , } .

t

i jk t

t

i j k E
x

i j k E


 



 (1) 

This general definition includes undirected, directed, and undirected bipartite 

networks. It can be further extended to account for other types of networks 

(Kivelä et al., 2014).  

The first important feature of real networks, such as those in Fig. 1, is sparsity. In 

random graph theory, sparsity is an asymptotic property of networks such that 

the number of edges grows subquadratically with the number of nodes 

(Diestel, 2012, ch.7). In finite graphs, sparsity occurs when there is an excess of 

zeros in the connectivity tensor, that is, when the degree distribution has a peak 

at 0. We account for this feature by assuming that the probability of an edge from 

node i to j on layer k at time t is a mixture of a Dirac mass at 0 and a Bernoulli 

distribution (ZIL specification):  
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, { 0 } , ,
| ( ) , ( ) ~ ( ) ( ) (1 ( )) ( | ( )) ,

i jk t ijk ijk t ijk t ijk
x t t t x t e rn x t     g  (2) 

where ( )t  and ( )
i jk

t  are the time-varying mixing and Bernoulli probabilities, 

respectively. Regarding the proportion of edges whose formation can be 

explained by covariates, we specify a logistic link for the probabilities  

,

,

e x p ( ( ))
( )

1 e x p ( ( ))

i jk t ijk

ijk

ijk t ijk

t
t

t





 

z g

z g
 (3) 

where 
,

Q

ijk t
z R  are edge-specific covariates and ( )

Q

ijk
t g R  are time-varying 

parameters. Motivated by the stylized facts that node degrees are persistent and 

cluster over time, we assume that the mixing probability and the coefficients are 

driven by an L-state hidden Markov chain 
1

{ }
T

t t
s


, that is ( )

t
s

t   and 

,
( )

t
i jk i jk s

t g g , where ρl and 
,i jk l

g  are state-specific parameters (MS specification). 

The transition matrix of the chain is assumed time-invariant and denoted by 

1
( , , )

L
    Ξ ξ ξ , where 

,1 ,
( , , )

l l l L
  ξ  is a probability vector and 

, 1
( | )

i j t t
p s j s i


    is the transition probability from state i to state j.  

2.2 Parsimonious Parametrization Based on Tensors 

Covariates (risk factors in the application) are likely to have similar impacts on 

groups of edges (financial linkages), which calls for modeling them jointly. To this 

aim, we represent the binary multilayer networks and regression coefficients as 

tensors and propose a new tensor-on-tensor regression model. A low-rank 

decomposition of the coefficient tensor enables us to obtain a parsimonious 

parametrization, which induces partial pooling while preserving the heterogeneity 

in the impact of the covariates.  

Let us define a real-valued D-order tensor 1 D
d d 

 R  as a D-dimensional array 

of size 
1

( )
D

d d   . A tensor can be thought of as the multidimensional 

extension of a matrix (i.e., a 2-order tensor), where each dimension is called 

mode. See the Supplement for some background material on tensors and 

Hackbusch (2012) for an introduction to tensor spaces. Following Boccaletti 
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et al. (2014) and Kivelä et al. (2014), we represent a multilayer temporal network 

with a 4-order tensor  of size ( )I J K T   , and binary entries 
,i jk t

x . The 

following remarks provide two tensor representations of the ZIL-T-MS model in 

eq. (2)-(3) and show that it extends to tensors the latent and the switching 

regression models in McFadden (1974) and Frühwirth-Schnatter (2006), 

respectively (see Appendix A for proofs). First, let us introduce the mode-n 

product (Kolda and Bader, 2009; Hackbusch, 2012) between a D-order tensor 

1 D
d d 

 R  and a vector n
d

v R , which is the ( 1)D  -order tensor 

1 1 1n n D
d d d d

 
    

 R  with entries  

1 1 1 1 1 1 1
, , , , , , , , , , , , , ,

1

( ) .

n

n n D n n D n D n

n

d

i i i i n i i i i i i i i

i

y x v
   

     



   v  (4)  

Remark 2.1. Let ( )
I J K IJK Q

t
  

 R  be a coefficient tensor and I J K Q

t

  
 R  a 

covariate tensor. Define the map 1 4 1 4: {0 ,1}
i i i i   

 R  such that *  with 

1 4 1 4

*

, , , ,
( )

i i i i
d x


 


R

1 , where ( )
A

x1  is the indicator function. Equations (2)-(3) are 

obtained as a special case of:  

*

*

4 ,

( ) ( ) ( ) ~ (1 ( ))

( ) v e c ( ) ~ L o g is t ic (0 ,1) ,

i id

t t i jk

i id

t t t i jk t

t b t e rn t

t
















 

 

 (5) 

where  is the Hadamard product, ( ) {0,1}
I J K

t
 

  and I J K

t

 
 R  are tensors 

with entries ( )
i jk

b t  and 
,i jk t

 , respectively. Here, all the covariates in 
t
 have an 

impact on all entries of *

t
 and the coefficients are entry-specific. Assuming the 

covariates 
, 1 , ,

( , , )
i jk t ijk t ijkQ t

z z  z  have an impact only on the corresponding entry 

*

,ijk t
x  yields *

4
( ( ) )

t t Q t
t  1 , where 

Q
1  is Q-dimensional vector of ones, 

and ( )
I J K Q

t
  

 R  is the tensor with entries ( ) ( )
i jk q ijk

g t g t , where 

1 ( 1) ( 1) ( 1) ( 1)i j I k IJ q IJK         .  

Acc
ep

te
d 

M
an

us
cr

ipt



Remark 2.2. Assume 
,i jk t t
z z  for each i, j, k. Let us introduce a dummy coding 

for st through L binary variables 
, { }

( ) , 1, ,
t l l t

s l L   1 . Then model in 

Remark 2.1 can be written as:  

*

*

4 4 ,

1 11

( ) ( ) ( ) ~ (1 ( ))

( ) ( , ) ~ L o g is t ic (0 ,1)

[ | , , ] 0

i id

t t i jk

i id

t
t t t t t t t i jk t

t t tt t

t b t e rn t






  




           


   




z z

Ξ u u u u

ζ ζ ζ

ζ ζ

 (6) 

which is a switching SUR (Bianchi et al., 2019), where ⊗ denotes the Kronecker 

product, { }t t
u  is a martingale difference process, (1, )t

t
  z z , and 

,1 ,
( , , )

t t t L
   ζ .  

The representations in (5)-(6) allow us to propose a parsimonious 

parametrization of the regression coefficients based on a rank-R PARAFAC 

decomposition of the tensor ( )
t

s
t  :  

( ) ( ) ( ) ( )

1 2 3 4

1

( ) ( ) ( ) ( ) ( ) ,

R

r r r r

r

t t t t t



    γ γ γ γ  (7) 

where the vectors ( ) ( )

,
( ) , 1, , 4 , 1, ,

t

r r

h h s
t h r R    γ γ , are called the marginals of 

the PARAFAC decomposition and have length I, J, K and Q, respectively. 

Decomposing the coefficient tensor is more effective in achieving model 

parsimony compared to using a PARAFAC decomposition of the covariates. Our 

specification reduces the number of parameters from IJKQ to ( )R I J K Q   , 

for each state st. Sparsity in the coefficient tensor can be favored through a 

suitable prior distribution for the PARAFAC marginals.  

In summary, the proposed ZIL-T-MS tensor regression provides a joint model for 

network edges with the following features: (i) a ZIL specification, to account for 

sparsity and covariates; (ii) MS coefficients, to deal with structural changes; (iii) a 

parsimonious parametrization, to address the curse of dimensionality.  
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3 Bayesian Inference 

In this section, we discuss the prior assumptions, the data augmentation 

strategy, and a Markov chain Monte Carlo (MCMC) procedure to approximate the 

posterior distribution.  

3.1 Prior Specification 

We assume a global-local shrinkage prior for on ( )

,

r

h l
γ   

( )

,, , , , ,
( | , , ) ~ ( , )

h h

r
r

h lh l r h r l n r h r l n
p w w   Iγ ζ  (8) 

for 1, ,r R  , each 1, , 4h   , and each 1, ,l L  , where 

1 2 3 4
, , ,n I n J n K n Q    . The parameter τ represents the global component of 

the variance, common to all marginals, 
r

  is the level component and 
,h r

w  is the 

local component. The choice of a global-local shrinkage prior, as opposed to a 

spike-and-slab distribution, is motivated by the reduced computational complexity 

and the capacity to handle high-dimensional settings. In what follows we denote 

with ( | , , )p    the joint prior of the ( )

,

r

h l
γ , where 

, , , ,
{ }

h r l h r l
w . We assume the 

following hyperpriors for the variance components1:  

2

, ,
( ) ~ ( , ) , ( ) ~ ( ) , ( | ) ~ ( ) , ( ) ~ ( , ) ,

2

l

h r l l l l l
p a a b p ir p w xp p a a b

   
   α  (9) 

, ,h r l , where ,
R

a R


  α ι , and 
n
ι  is the n-dimensional vector of ones. The 

further level of hierarchy for the local components 
, ,h r l

w  is added with the aim of 

favoring information sharing across local components of the variance (indices h 

and r) within a given regime l. The specification of an exponential distribution for 

the local component of the variance of the ( )

,

r

h l
γ  yields a Laplace (or Double 
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Exponential) distribution for each component of the vectors once the 
, ,h r l

w  is 

integrated out, that is ( )

, ,
| , , ~ L a p la c e (0 , / )

r

h l i l r l r
    γ  for all 1, ,

h
i n  . The 

marginal distribution of each entry, integrating all remaining random components, 

is a generalized Pareto distribution, which favors sparsity. The properness of the 

posterior distribution of 
l
 under the Markov-switching zero-inflated logit 

likelihood follows from prior properness in the following Lemma (proof in the 

Appendix).  

Lemma 3.1 (Properness of the prior). The marginals ( )

,

r

h l
γ  are not separately 

identifiable, nonetheless the parameter of interest, 
l
, is exactly identified. It has 

well-defined prior distribution and finite absolute moments.  

For the state-specific mixing probability it is assumed a Beta prior distribution  

( ) ~ ( , ) .
l l l

p e a b l
 

   (10) 

A well-known identification issue for mixture models is the label switching 

problem (e.g., Frühwirth-Schnatter, 2006). When the specific application provides 

meaningful restrictions on the value of some parameters (e.g., from theory or 

interpretation), they can be used for identifying the regimes. Following this 

approach, we assume 
1 2 L

      , meaning that regime 1 represents the 

sparsest and regime L the densest. Finally, we assume each row 
l

ξ  of the 

transition matrix Ξ  follows a Dirichlet distribution  

( ) ~ ( ) .ll
p ir lcξ  (11) 

Our hierarchical prior distribution is represented by the directed acyclic graph in 

Fig. 3.  

3.2 Posterior Approximation 

We introduce allocation variables for the mixture in eq. (2) and the Pólya-Gamma 

augmentation (see Polson et al., 2013; Wang et al., 2017; Holsclaw et al., 2017), 
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which allows for conjugate full conditional distributions and a better mixing of the 

MCMC chain. Define 
1 0

{ } , { }
T T

t t t t
s

 
 s  and let θ  denote the set of 

parameters. For each 1, ,l L  , we define { : }
l t

t s l  . Define 

, ,
{ } , { }

i jk t ijk t ijk t ijk t
d  Ω  and 

1
( ) # { , , 1, , } , , 1, ,

g l t t
N s g s l t T g l L


      s , with 

#  the cardinality of a set. The complete data likelihood of the model in eq. (5) is  

,

( )

, ,

1 1 1 1 1 1

{ 0 } , , 2

, , ,

1 1 1 1

( , , , | ) ( )

2 ( ) 1
e x p ( ) ( ) .

1 2 2

( ) ( )

( ) ( )

g l

i jk t

l

T I J K L L

N

ijk t g l

t i j k g l

L I J K

dl ijk t i jk tl

t i jk l i jk t t i jk l

l t i j k l

L p

x

 

  




     

    




   



     

    

s

Ω s

z g z g

θ

 (12) 

See Appendix A for details. In the following, we define 
1

{ }
L

l l 
  and 

1
{ }

L

l l



ρ , 

and let 
l

W  and ( )r
W  be the ( 4 )R  and ( 4 )L  matrices representing the l- and 

r-th slices of , along the third and second mode, respectively. The complete 

data likelihood and the prior distributions yield a posterior sampling scheme 

consisting of four blocks (see the Supplement for the Gibbs sampler derivation).  

In block (I) the sampler draws the latent variables from the full conditional 

distribution:  

( , , | , , , ) ( | , , , ) ( | , , , ) ( | , , , ) .p p p ps Ω Ξ s Ξ s Ω sρ ρ ρ ρ  (13) 

Samples of s are drawn via the Forward Filter Backward Sampler (Frühwirth-

Schnatter, 2006, ch. 13). The latent variables 
,i jk t

  are sampled independently 

from  

, , ,
( | , , ) (1, ) .

t t
i jk t ijk t t s t ijkq s

p x s P G  z g  (14) 

The latent variables 
,i jk t

  are sampled in block for each t. The latent variables 

,i jk t
d  are sampled independently from  

, , { 0 } ,

, ,

, ,

,

( 1 | , , , ) ( )

e x p (( ) )
( 0 | , , , ) (1 ) .

1 e x p ( )

t t t

t

t t t

t

i jk t i jk t t s s s i jk t

t i jk q s ijk t

i jk t i jk t t s s s

t i jk q s

p d x s x

x
p d x s

  

 

 


  

 

z g

z g

 (15) 
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The hyperparameters that control the variance of the PARAFAC marginals are 

sampled in block (II) from the full conditional distribution  

( ) ( ) ( ) ( )

, , , , , , , , , , , ,
( , , | { } ) ( | { } , ) ( | { } , , ) ( | { } , , ) .

r r r r

h l h l r h l h l r h l h l r h l h l r
p p p p      γ γ γ γ  (16) 

We enable better mixing by blocking together the parameters  . We set 

1
/ ( )

r r R
       , where the auxiliary variables ψr are sampled 

independently for each r from  

( ) ( )4

, ,( ) ( )

,1 ,

1 1 , ,

( | { } , ) G iG 2 , , ,( )
r rL

h l h lr r

r h h l

h l h r l

p b n
w


 



 

  W
γ γ

γ  (17) 

where G iG ( , , )a b p  is Generalized Inverse Gaussian distribution with parameters 

p  R , a > 0 and b > 0, and 
4

1

h

h

n n



  . The global variance parameter τ is drawn 

from  

( ) ( )4

, ,( )

, , ,

1 1 1 , ,

( | { } , , ) G iG 2 , , ( ) .( )
r rR L

h l h lr

h l h l r

r h l r h r l

p b n R
w


  





  

   
γ γ

γ  (18) 

The local variance parameters 
, ,h r l

w  are independently drawn from  

( ) ( )

, ,( ) 2

, , ,
( | , , , ) G iG , ,1 .

2
( )

r r

h l h lr h

h r l h l r l l

r

n
p w    





 
γ γ

γ  (19) 

Finally, the hyperparameters λl are independently drawn from  

2 4

8 1

, ,

1 1

( | ) ex p .
2

( )l

R

a R l

l l l l l h r l

r h

p b w





  
 

 

    W  (20) 

Block (III) concerns the marginals of the PARAFAC decomposition for the 

tensors 
l
. The vectors ( )

,

r

h l
γ  are sampled independently from  

( )

,,,
( | , , , , , , ) , .( )

h

r r
r

h lh lh l n
p   s Ω Λγ ζ  (21) 
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The coefficient tensor in the regime l is obtained as ( ) ( ) ( ) ( )

1 , 2 , 3 , 4 ,

1

R

r r r r

l l l l l

r 

    γ γ γ γ , and 

the coefficients of the edge (i, j) on layer k are given by ( ) ( ) ( ) ( )

, 1 , , 2 , , 3 , , 4 ,

1

R

r r r r

ijk l l i l j l k l

r

  



 g γ

. In block (IV) the mixing and the transition probabilities, ρl and 
l

ξ , are drawn 

from  

( | , ) ( , ) , ( | ) ( ) .
l l l l

p e a b p ir
 

  s s cξ  (22) 

Blocks (I) and (II) are Rao-Blackwellized Gibbs steps: in block (I) we have 

marginalized over both ( , )Ω  in the full joint conditional distribution of the state s 

and  (together with ρ ) in the full conditional of Ω , while in (II) we have 

integrated out τ from the full conditional of  . The derivation of the full conditional 

distributions is given in Appendix A. Markov-switching models suffer from an 

identification issue arising from the invariance of the likelihood function to 

permutations of the regime labels. A common practice to achieve identification is 

to impose a constraint. As arbitrarily chosen constraints may perform poorly, they 

should have a clear interpretation according to the application at hand. 

Alternative approaches, such as the point process representation of the MCMC 

draws, can be used in the absence of prior information (Frühwirth-

Schnatter, 2001).  

The simulation studies in the Supplement illustrate the effectiveness of the 

inference method in recovering the true values of parameters and latent 

variables. In our experiments, all standard convergence statistics (e.g., 

autocorrelation function, numerical standard errors, relative numerical efficiency) 

suggest that the MCMC chain is mixing well, and a thinning rate of only 2 is 

needed to have MCMC samples close to i.i.d. draws. Overall, this implies that the 

Gibbs sampler is computationally efficient, and the Monte Carlo approximation of 

the posterior mean has low variance.  

3.3 Model Comparison and Diagnostics 
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In the following, we discuss model selection criteria, misspecification diagnostics, 

and model uncertainty for the ZIL-T-MS model. See Sections S.5.2–S.5.3 in the 

Supplement for details.  

In the model selection exercise, to assess the model fit and the statistical 

contribution of the tensor representation, we compare it with several competing 

models. As a baseline, we consider univariate logit and MS logit models, while 

for the tensor models, we assume PARAFAC and pooled parametrizations, 

where the latter imposes parameter pooling across edges for each covariate, that 

is 
,i jk l l
g g , for each , , ,i j k l . We simulate the data according to the general 

specification in eq. (2)-(3) under different forms of heterogeneity in the true 

coefficient values across covariates and blocks of nodes. In all settings, the DIC3 

of Celeux et al. (2006) indicates that our model is able to exploit partial pooling 

along one or more directions of the tensor data to improve the estimation 

efficiency compared to the baseline.  

Selecting the PARAFAC rank and making inference on the resulting ZIL-T-MS 

model on the same dataset leads to a post-selection inference problem. 

Following Dukić and Peña (2005), we address this issue via Bayesian model 

averaging (BMA), where the estimator is a weighted average of the estimators 

obtained for different values of R. We use the DIC to approximate the marginal 

likelihoods in the BMA weights, which accounts for prior information and 

penalizes the log-likelihood (Robert, 2007). In our simulations, as one model’s 

DIC dominates the others, the BMA estimator of 
l
 yields similar results as the 

Bayes estimator of the best model.  

To check model fitness and detect potential misspecification, we apply posterior 

predictive checking (PPC). This approach consists of drawing simulated values 

from the joint posterior predictive distribution of the data and then comparing 

some summary statistics of the simulated and observed data (Gelman 

et al., 2013, ch. 6). We generate synthetic datasets according to the general 
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specification with different sparsity patterns in each regime and, for each dataset, 

we computed the average density, 
,

, ,

1
( )

ij t

i j t

T X
IJT

 X , as a summary statistic. 

Figure 4 reports the approximated posterior distribution of the difference between 

the test quantity computed on the simulated and the original data. As a 

distribution far away from zero signals model misspecification, we find that the 

tensor model has a good performance. In contrast, the baseline model cannot 

replicate the main features of the data, and its performance deteriorates as the 

network size increases. Similar results are obtained using different summary 

statistics and network sizes.  

In conclusion, the ZIL-T-MS model performs well in terms of fit and diagnostics 

compared to a range of alternatives. Our findings suggest that it should be 

applied when prior beliefs, or preliminary results from univariate logit regressions, 

suggest that the impact of the covariates is similar across some of the response 

variables and potentially time-varying.  

4 Real Data Applications 

This section provides an illustration of the proposed ZIL-T-MS model on the 

financial and communication networks introduced in Section 1. The Supplement 

provides further details of the datasets and additional empirical results.  

4.1 Financial Network 

We apply the proposed methodology to a network among 61 European financial 

institutions, including 25 banks, 11 insurance companies, and 25 investment 

companies. The dataset consists of two sequences of 110 binary directed 

networks sampled monthly from December 2003 to January 2013. Following 

Billio et al. (2012), we extract each network using Granger causal analysis; 

therefore, an edge 
,

1
i jk t

x   represents a Granger-causal link from institution i to 

institution j on layer k at time t. The two layers are represented by the return 

(layer 1) and realized volatility (layer 2) linkages among the institutions.  
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The set of covariates 
,i jk t

z  consists of a constant term, the realized covariance 

between the pair of institutions (edge-specific variable), and risk factors usually 

employed in empirical finance. Specifically, we include the credit spread (CRS), 

the term spread (TRS), the change of the VSTOXX index (DVX), the log-returns 

on the STOXX50 index, and the momentum factor. To account for linkage 

persistence, we add the network total degree. All covariates have been 

standardized and included with one lag, except DVX, which is contemporaneous, 

following the standard practice in volatility modeling.  

The purpose of the study is to uncover the role of several risk factors as drivers 

of financial network connectivity across different regimes. This information is 

encoded by the coefficient tensor, 
l
, since each entry 

,i jk q l
g  measures the 

impact of the covariate 
,i jk q t

z  on the probability of the financial linkage 
,

1
i jk t

x   

during regime l. The coefficients can be associated either to common covariates 

or to edge-specific covariates.  

As is common practice, we impose an identification constraint following an 

economic interpretation of the regimes. The constraint 
1 2

   allows us to label 

states 1 and 2 as the sparse (low connectedness risk) and dense regime (high 

connectedness risk), respectively. We choose the tensor rank R = 5 and the 

number of regimes L = 2 according to the DIC3 in Celeux et al. (2006). We 

estimated the ZIL-T-MS model and use the Gibbs sampler of Section 3 to obtain 

5,000 draws from the posterior, after thinning and burn-in.  

The estimated regimes (white and gray areas) and the return-layer total degree 

(black line) are given in the left plot of Fig. 5. The dense regime (gray) is active 

during periods of financial turmoil, such as the aftermath of the dot com bubble 

(2003), the global financial crisis (2008), and the European sovereign debt crisis 

(2010). The local and global connectivity measures (density, average clustering, 

minimum eigenvector centrality) increase during these periods, indicating that the 

dense regime is characterized by more complex and denser network structures. 
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The identification constraint permits recognizing low and high connectedness 

periods and is strongly supported by the data since the posterior distributions are 

well separated (middle plot). In the dense regime, the histogram of the IJQ = 

26047 estimated coefficients (posterior means) across edges and covariates has 

fatter tails (right plot, light gray). This reveals a more substantial heterogeneity 

and a more considerable impact of the explanatory variables during periods of 

financial distress. Moreover, to get new and deeper insights into the impact of 

risk factors on the linkage formation across and within layers, one can inspect the 

posterior distribution of each entry of the coefficient tensor in the two regimes, 

which are the elements of 
,1i jk

g  and 
, 2i jk

g . As it is hard to display all the posterior 

plots, we follow standard practice in global–local shrinkage prior literature and 

report the posterior mean of the coefficients.  

The CRS and TRS are key reference variables to the policymaker, and 

investigating their impact on returns and volatility is crucial for designing more 

effective monetary policies aiming at price, financial, and macroeconomic 

stability. Figure 6 shows their estimated coefficients for each edge and layer in 

the dense regime, that are the entries of 
, 2i jk

g . In the dense regime and the return 

layer the TRS has a negative impact on all linkages to banks (blue color, BA 

columns) and a strong positive effect on connecting to insurance and investment 

companies (red color, IS and IV columns). Conversely, the CRS positively affects 

the probability of being connected to banks, especially from insurance companies 

(red color, IS rows and BA columns), and negatively impacts the edge 

probabilities among investment companies. Besides, higher CRS and TRS 

increase the probability of volatility linkages (layer 2) from insurance to 

investment companies and banks (red color, from IS rows to IV and BA 

columns). Most of our empirical findings cannot be captured with a pooled model, 

which, in contrast, leads to misleading conclusions about the role of risk factors 

on linkage formation (see Fig. S.33 in the Supplement).  
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We investigate the relationships between the estimated coefficients and the node 

degree (see Fig. 7). In the return layer, the linkages of the most central insurance 

companies and banks (squares and triangles) are strongly affected by the risk 

factors in the two regimes, while a weak positive relationship is found on the 

volatility layer for CRS and TRS. Instead, the pooled model under- or 

overestimates the relationships between covariates and linkages (dashed lines). 

In the return layer, increasing the TRS raises the edge probability from banks 

and the most central insurance company to investment companies. There is 

evidence of weak effects on the return linkages between banks and the 

insurance sector and a strong positive impact on the volatility linkages between 

them (see Fig. S.31 in the Supplement).  

4.2 EUcore Email Network 

The analysis of communication flows within an organization, such as emails, and 

its dynamics is of utmost importance for understanding the behavior of 

individuals and the functioning of the organization (Fox et al., 2016; Om 

et al., 2020). Representing the email flow among the employees within an 

organization by a dynamic network enables us to identify individuals’ social roles 

and influence in information spreading and disentangle the factors driving 

communication intensity. Also, the growing volume of email traffic and its 

fluctuations pose several challenges to server performance and productivity, thus 

making the development of accurate models for email workload of primary 

importance.  

The main concern of this study is to examine how email communication changed 

within two departments of a research institution and characterize better the 

information spread in the network, as sending an email can trigger a cascade of 

messages between individuals in rapid succession. Most existing models do not 

account for cross-sectional correlation and time variation, but they focus on the 

marginal distribution of network edges. In contrast, our proposed model can 

reproduce some relevant features of email time series, such as edge 
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persistence, structural changes, and temporal clustering in the flows. It also 

enables us to identify the influence of individuals on information spreading within 

the network.  

Email datasets are difficult to find due to the many privacy concerns involved 

when making such data publicly available. The EUcore email corpus is one of the 

few public email datasets readily available for research and a reference for social 

network analysis of email traffic (Leskovec et al., 2007). We analyze the EUcore 

sender–receiver network among 90 researchers at a European research 

institution in department 3 (layer 1) and department 4 (layer 2). To investigate 

network persistence, we include the lagged degree of both layers as covariates. 

We obtain 5,000 draws from the posterior distribution after selecting rank R = 5 

and L = 3 states based on the DIC3. We assume 
1 2 3

     to identify the states 

as communication regimes characterized by different levels of email activity (Fox 

et al., 2016).  

The estimated states identify long periods of intense communications (state 3, 

expected duration 1.66), alternated by shorter periods of regular activity (state 2, 

1.24), and sporadic events of low traffic (state 1, 1.03). In Fig. 8, short periods of 

very sparse networks are in dark color (low clustering coefficient), gray and white 

shades indicate days of medium and large email flows. In both departments 

(layers), the email connections during ordinary times react very differently to 

changes in the covariates compared to the other communication regimes (larger 

dispersion in the scatterplots of Fig. 9). Reactions are synergistic (positive 

coefficients) or antagonistic (negative), and the covariates can either reinforce 

other covariates’ effects (upward-sloping scatterplot, as layer 2 in state 2) or 

generate conflicting pressure on the communication (downward sloping, as layer 

1 in state 2).  

5 Discussion 

Acc
ep

te
d 

M
an

us
cr

ipt



Motivated primarily by some stylized facts about real-world dynamic multilayer 

networks, we introduce a new logit tensor-on-tensor regression with Markov-

switching coefficients (ZIL-T-MS) for time series of binary arrays. A zero-inflated 

specification accounts for the excess of zeros in the data (sparsity), while the 

coefficient tensor (i) allows for tensor-valued covariates and (ii) captures the 

entry-specific effects of each covariate. A hidden Markov chain accommodates 

for structural changes in sparsity patterns and coefficients. We address the high-

dimensionality issue by assuming partial pooling based on a PARAFAC 

decomposition of the coefficient tensor and a hierarchical shrinkage prior 

distribution. A Gibbs sampler is proposed for posterior approximation and its 

computational efficiency is tested in several simulation experiments. Model 

comparison and misspecification diagnostics suggest that our partial pooling 

framework is effective in coping with high dimensionality and overfitting while 

retaining flexibility compared to univariate logit and MS-logit benchmarks.  

We illustrate the potential of the proposed model and inference with real-world 

datasets from two relevant fields: finance and social network analysis. The ZIL-T-

MS model provided novel insights about the edge formation process, which were 

outside the scope of the previously existing literature. Notably, we find strong 

evidence of two financial connectivity regimes and heterogeneous effects of the 

covariates across linkages, layers, and regimes. Term spread and credit spread 

play an essential role in explaining the connectivity of central institutions. This 

result sheds new light on the return and volatility contagion mechanisms in the 

financial markets. In the email network, we find new evidence of different 

communication regimes and user behavior. The email connections react very 

differently across regimes and the reactions are either synergistic or antagonistic 

in both organizational units. Moreover, the covariates can either reinforce other 

covariates’ effects or generate conflicting pressure on the communication. The 

findings of our motivating applications would help policymakers devise new 

strategies to stabilize financial connectedness and systemic risk. By identifying 

the social role of individuals, the results will also be relevant in providing new 

Acc
ep

te
d 

M
an

us
cr

ipt



opportunities for developing strategies to favor or counteract information 

spreading.  

We believe the proposed approach is a step forward in the literature on tensor-

valued time series and network modeling (Durante and Dunson, 2014b; Wang 

et al., 2017; Chen et al., 2018). Our model can be readily applied to a broad 

spectrum of datasets emerging in other fields, for example, to investigate the 

mechanisms driving the activation of brain cells or the occurrence of an event in 

a geographical area, text mining, and health data.  

Methodological extensions and topics of our ongoing research include adapting 

the proposed framework to alternative specifications of the coefficients dynamics. 

For instance, smooth transition models would allow the parameters to switch 

between regimes smoothly, rather than with sudden jumps, and the change to be 

driven by exogenous factors. Another possibility consists in investigating 

specifications based on mode-n and contracted tensor products to define more 

parsimonious models for very high-dimensional applications. Bayesian 

nonparametric inference procedures combined with shrinkage prior can be used 

to cope with overfitting and account for clustering effects across coefficients. 

Finally, the proposed methods can be adapted to investigate nonnegative and 

count tensor-valued data, which are increasing available in many fields, such as 

epidemic and climate studies.  

Supplementary Materials 

Background material on tensors, the derivation of the posterior, simulation 

experiments, and the description of the data, and further results are given in an 

online Supplement.  
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A Proofs of the Results in the Paper 

This appendix provides the derivation of the results. See the Supplement for 

further details.  

Proof of Remark 2.1. Following the definition of Hadamard product, the first 

equation becomes 
, , ,i jk t ijk t ijk t

x b d , with *

, ,
( )

ijk t ijk t
d x




R

1 , where 

, ,
~ (1 ( )) ,

i jk t ijk t
b ern t x , and *

,ijk t
x  are the (i, j, k)-th elements of the tensors 

*
( ) , ,

t t
t , respectively. From the definition of mode-n product, the second 

equation is  

*

, , ,

1 1 1 1

( )

QI J K

ijk t ijk i j k q t ijk t

i j k q

x g t z 
   

       

      

where 1 ( 1) ( 1) ( 1) ( 1)i j I k IJ q IJK             . By imposing the restrictions 

( ) 0
i jk

g t   when , , a n d  i i j j k k       and defining 
1

( ) ( ( ) , , ( ))
i jk ijk ijkQ

t g t g t  g  

with ( ) ( )
i jk q ijk

g t g t  when 1 ( 1) ( 1) ( 1) ( 1)i j I k IJ q IJK          yields  

*

, , , , ,

1

( ) ( ) .

Q

ijk t ijkq ijkq t ijk t ijk t ijk ijk t

q

x g t z t 



     z g  

By the definitions of Hadamard and mode-n product, *

4
( ( ) )

t t Q t
t  1 . □  

Proof of Remark 2.2. First, define (1, )t
t
  z z  and denote with  the 4-order 

tensor obtained by stacking the 4-th order tensors 
1
, ,

l
  along the 4-th 

dimension. For example, if each 
l
 is a 4-order tensor of size ( )I J K Q   , 
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then  is a 4-order tensor of size ( )I J K Q L   . Finally, recall that ( )
t

s
t  . 

Start by noting that 
4 4

( )
t

t s t
t   z z , hence 

4 4
( )

t l t
t   z z  if st = l. Let now 

introduce the L-dimensional binary vector 
,1 ,

( , , )
t t t L

   ζ  whose l-th entry is 

, { }
( )

t l l t
s  R , and let 

Q
1  be a Q-dimensional column vector of ones. Therefore, 

by the properties of the Kronecker product one has  

4 4 4 4 4
( ) ( ) ( (1, ) ) ( , ) .

t
t t

t s t t t t t t
t                  z z z z zζ ζ ζ ζ  

The dynamics of the Markov chain can be expressed in a VAR-like form as 

follows. Assume the current state of the chain is st = i, then the conditional 

expectation of binary random vector 
t

ζ  is 
1 ,:

[ | ]
t t i

s i


  Ξζ , where 
,:i

Ξ  is the i-th 

column of Ξ . By stacking all states one obtains 
1 1 1

[ | , , ] [ | ]
t t t t t t  

   Ξζ ζ ζ ζ ζ ζ

, where the first equality follows from the Markov property. Thus, the process 
t

ζ  

takes on a finite set of values, is zero on average, and satisfies 
1 tt t
 Ξ uζ ζ , 

where tu  is a martingale difference sequence. □  

Proof of Lemma 3.1. For each 1, ,l L  , let 
, ,

1

R

ijkq l r l

r

g g



  , where 

( ) ( ) ( ) ( )

, 1, , 2 , , 3 , , 4 , ,

r r r r

r l i l j l k l q l
g     , and let 

1 2 3
, ,m i m j m k   , and 

4
m p . The following 

Lemma is an adaptation of the results in Springer and Thompson (1970) using 

our notation.  

Lemma A.1. Under the prior specification in eq. (8), the distribution of 
,r l

g  has 

proper (conditional) probability density function:  

4

4 ,0 2 1

, , 4 ,0 , , , ,

1

( | , , ) · ( 2 ) ,( | )
h

r l l r l r l r h r l m

h

p g K G g w a  




 
0

0
W  

with ,

,
( | )

m n

p q
G x a

a

b
 a Meijer G-function  

1 1,

,

1 1

( ) (1 )
1

d ,
2

(1 ) ( )

( | )

m n

j j
c i

j jm n

p q q p
c i

j j

j m j n

b s a s

G x a s
i

b s a s







 



   

    



    

 



 

b

a
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with , 4 , 0m n p q     a b 0 , and 
4

4 / 2 1

, , , ,

1

( 2 ) ( 2 )
h

r l r h r l m

h

K w 
 



  . The 

absolute moments of 
,r l

g  are bounded:  

( ) ( ) ( ) ( )

, 1, , 2 , , 3 , , 4 , ,
[ | | ] [ | | ]· [ | | ]· [ | | ]· [ | | ] , 0 ,1, 2 , .

r r r r

r l i l j l k l q l
g          

Owing to the conditional independent structure of the hierarchical prior, to prove 

that the joint prior distribution of ( )
l

p  is proper, it suffices to show that 
,

( )
i jk q l

p g  

is proper:  

, ,
( | , , ) ( , , ) d .

i jk q l l l i jk q l
p g p g      W W  

Following Lemma A.1, the 
,r l

g  in the definition of 
,i jk q l

g  has proper distribution 

,
( | , , )

r l l
p g   W . To find the distribution of 

,i jk q l
g , we define the following 

transformed vector zl, with elements 
,

, 1, , 1
r r l

z g r R    , and 
1, ,R l R l

z g g    . 

The Jacobian of the transformation is one and the marginal distribution of zR has 

pdf  

1

1

, 1 1 1 1

1

( | , , ) ( | , , ) ( | , , ) d d .
R

R

R l R l R l r l R

r

p z p z z z p z z z     




 



     W W W
R

 

By Fubini’s theorem one gets  

1

1

11

1 1

1 1

1

1 1

1

( | , , ) d ( | , , ) , , d d d

( | , , ) ( | , , ) d d d 1 .

( ( | ) )

( )

R

R

RR

R l R r l R s l R R

r s

R

r l l R

r

p z z p z p z z z z z

p z p u u z z

     

   









 







  

  

   

 

W W W

W W

R R R

R R

 

The proof is completed by setting 
,R ijkq l

z g  and recalling that the prior 

distributions on τ,  , and 
l

W  are proper and independent. Concerning the 

boundedness of the absolute moments, since 
,

[ | | ]
r l

g    for each , ,r l , by 

Minkowski’s inequality:  

1 / 1 / 1 /

, , ,

1 1

[ | | ] [ | | ] [ | | ] , , , , , , .( ) ( ) ( )
R R

ijkq l r l r l

r r

g g g i j k q l
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□  

A.1 Complete Data Likelihood 

The data augmented likelihood of model (5) is ( , | ) ( | , ) ( | )L L Ls s sθ θ θ , 

where  

, ,
1,

1 1 1 1 , ,

(1 ) ex p ( ) 1
( | , )

1 ex p ( ) 1 ex p ( )
( ) ( )i jk t ijk t

l

L I J K

x xl t ijk l l

l

l t i j k t ijk l t ijk l

L
 




    

  
 

   
    

z g
s

z g z g
θ  

and 
( )

,

1 1

( | )
g l

L L

N

g l

g l

L 

 

  
s

s θ . We now introduce the latent allocation variable for the 

mixture in eq. (2), 
,

{0 ,1}
i jk t

d  , to get the conditional distribution  

, ,

,

,

(1 )

,

, , { 0 } , (1 )

,

e x p ( )
( | , , ) ( ) .

1 e x p ( )

( )
( )

( )

i jk t ijk t

ijk t

ijk t

x d

d t ijk l

ijk t ijk t t l ijk t d

t ijk l

p x d s l x






 

 

z g

z g

 (A.1) 

and the marginal distribution , ,
1

,
( | , ) (1 )

i jk t i jk t
d d

ijk t t l l l
p d s l   



   . Then, we 

decompose the ratio in eq. (A.1) and obtain  

,
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, , , , , ,
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( | , , , ) e x p ( ) ( )

2 2
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      z g z g  

where 
, , ,

(1 )( 1 / 2 )
i jk t ijk t ijk t

d x     and 
,

~ (1, 0 )
i jk t

P G , with PG(b, c) the Pólya-

Gamma distribution with parameters b > 0 and c  R  (Polson et al., 2013, 

Theorem 1). Combining the latter equation with the marginal distribution of the 

latent variables and collecting all the data points, one gets the complete data 

likelihood in eq. (12).  

A.2 MCMC Algorithm 

Sampling 
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Let 
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n n n n n I J K Q        . The posterior full conditional is  
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The integrand is the kernel of the GiG distribution given in eq. (17). Following 

Guhaniyogi et al. (2017), it is possible to sample from the posterior of 
r

 , for 
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Sampling λl 

We apply Hamiltonian Monte Carlo (Neal, 2011) to sample from  

2 2 2 44

1 8 1

, , , ,

1 1 1 1

( | ) ex p ( ) ex p ex p .
2 2 2

( ) ( )l l

RR

a a Rl l l

l l l l l h r l l l h r l l

r h r h

p b w b w
 

 
  

    
  

   

        W

 

Full conditional distribution of 
( )

,

r

h l
γ  

For deriving the full conditional distribution of PARAFAC marginals, ( )

,

r

h l
γ , start by 

defining  , , , , ,
/ , ( ) , ( ) , vec

ijk t ijk t ijk t t ijk t ijk t ijk t ijk t t
u u     Ω u  and 

  d iag v ect
t

Ω Ω . Denoting with ( )
l

p  the joint prior distribution on ( )

, ,
{ }

r

h l h r
γ , one 

gets  
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By the definitions of mode-n product and PARAFAC decomposition, denoting by 

· ,·   the standard inner product in the Euclidean space n
R , we obtain  
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From eq. (A.3) we have:  
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We can now single out a specific component ( )r

l
 of the PARAFAC 

decomposition of the tensor , which is incorporated in 
( )

,

r

l t
g . For each 1, ,l L   

we obtain  
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From eqs. (A.4) to eqs. (A.7) one obtains 
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,
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By Bayes’ theorem and plugging eq. (A.10) and (A.11) into eq. (A.9) we get  
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that is the kernel of a multivariate normal distribution.  

Sampling 
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which follows from  
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Sampling ρl 
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one obtains the posterior full conditional distribution as the kernel of a Beta  
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Sampling 
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ξ  and st 

The posterior full conditional distribution of each row l is  
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which is the kernel of the Dirichlet in eq. (22), and 
, 1 , ,

( )
i j t i t j

t

N  


 s . We update 

s via the Forward Filtering Backward Sampling algorithm (Frühwirth-

Schnatter, 2006).  

Note 

1 We use the shape-rate formulation for the Gamma distribution, such that 

2
( ) / , ( ) /x V ar x     .  
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Fig. 1 Top: dynamic network of Granger-causal linkages (edges) among the log 

returns (layer 1) of 61 European financial institutions (nodes). Bottom: dynamic 

network of email exchanges (edges) among 90 researchers at a European 

institution (nodes), within department 1 (layer 1). Network structures and 

statistics: degree, d, average clustering coefficient, c, average path length, a, and 

number of hubs, h. Node size (black dots) is proportional to total degree. Edges 

(arcs) are clockwise directed (i.e., following the edge clockwise indicates the 

direction of the financial linkage). 

 

Fig. 2 Example of binary tensor  of size ( 4 4 3 )  . Left column: matricized 

form. Right column, top row: multilayer network representation with K = 3 layers 
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(in column). In each graph, node vi represents subject i; a clockwise-oriented 

edge from node j to node i on layer k indicates that the corresponding entry (i, j, 

k) in the binary tensor  is non null. The vertex set is 
1 2 3 4

{ , , , }V v v v v . Right 

column, bottom row: matrix representation of the associated frontal slice of . 

 

Fig. 3 Directed acyclic graph of the model in eq. (5), (8)-(11). Gray circles, white 

solid circles, and white dashed circles denote observables, parameters, and 

hyperparameters, respectively. Directed edges represent the conditional 

independence relationships. 

 

Fig. 4 Posterior predictive checking of the average network density for the ZIL-T-

MS model with rank R = 5 (tensor) and the MS univariate models (univariate). 

Performance on simulated datasets of different sizes with Q = 3 covariates, L = 2 

states, and T = 100 observations. 
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Fig. 5 Left: network density (solid), average clustering (dashed), and minimum 

eigenvector centrality (dotted) of the temporal network, and estimated regimes 

(vertical bars) over time (format mm-yy), where gray (white) vertical bars identify 

the dense (sparse) regime. Middle: posterior distribution of the sparsity 

parameters ρ1 and ρ2. Right: histogram of the estimated coefficients across 

tensor entries. In the middle and right plots, light (dark) gray denotes the dense 

(sparse) regime. 

 

Fig. 6 Posterior mean of the CRS and TRS coefficients, in matricized form, 

across layers in the dense regime. Entry (i, j) represents the effect of the 

covariate on the probability of an edge from institution i to institution j. Black lines 

separate groups of institutions: banks (BA, i and j in {1, , 2 5} ), insurance (IS, 

{2 6 , , 3 6} ), and investment companies (IV, {3 7 , , 6 1} ). Red, blue and white 

colors indicate positive, negative and zero valued coefficients, respectively. Acc
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Fig. 7 Covariate coefficients (columns) for the incoming edge probabilities in the 

two regimes (rows). In each scatterplot: total node degree averaged over time 

within each regime (horizontal axis) versus the sum of the negative (blue) and 

positive (red) node coefficients of a given variable (vertical axis). Nodes: banks (

, ), insurance companies ( , ), and investment companies ( , ). Dashed line: 

pooled coefficient estimation. 

 

Fig. 8 Left: network density (solid), average clustering (dashed), and minimum 

eigenvector centrality (dotted) of the temporal network in department 3, and 

estimated regimes (vertical bars) over time. Right: posterior distribution of the 

sparsity parameters ρl. Vertical bars and colors identify the regime: dense 

(white), sparse (light white), very sparse (dark gray). 
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Fig. 9 Coefficients of the first covariate (
1 , 1t

d


, x-axis) against those of the second 

one (
2 , 1t

d


, y-axis) in layer 1 (left) and 2 (right). States: low (1, • ), regular (2,  ), 

and intense activity (3, ). 
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