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ABSTRACT. In many different fields such as hydrology, telecommunications, physics of con-
densed matter and finance, the gaussian model results unsatisfactory and reveals difficulties in
fitting data with skewness, heavy tails and multimodality. The use of stable distributions allows
for modelling skewness and heavy tails but gives rise to inferential problems related to the es-
timation of the stable distribution’s parameters. The aim of this work is to generalise the stable
distribution framework by introducing a model that accounts also for multimodality. In particu-
lar we introduce a stable mixture model and a suitable reparameterisation of the mixture, which
allow us to make inference on the mixture parameters. We use a full Bayesian approach and
MCMC simulation techniques for the estimation of the posterior distribution.

1 INTRODUCTION

Stable distribution has been introduced, in many different fileds, as a generalisation
of the Gaussian model because it allows for infinite variance, skewness and heavy
tails. For a summary of the properties of the stable distributions see Samorodnitsky
and Taqqu (1994). In finance, the first studies on the hypothesis of stable distributed
stock prices can be attributed to Mandelbrot (1963), Fama (1965). For other references
see Casarin (2003). A recent work treating the use of stable distributions in finance is
due to Rachev and Mittnik (2000). Early financial studies, suggest to use mixtures of
distributions in order to modelling the financial markets heterogeneity, see for example
Fieltz and Rozelle (1983). Different estimation methods for stable distributions have
been proposed in the literature. See Buckle (1995) for a full Bayesian approach, while
Casarin (2003) provide a brief review of other estimation methods.

The first aim of our work is to propose a stable distributions mixture model in
order to capture the multimodality, which is present, for example, in financial data.
The second goal of the work is to provide some inferential tools for stable distribu-
tions mixtures. We adopt the data augmentation principle (see Robert (1996)) in a
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full Bayesian approach, using MCMC simulation techniques in order to estimate the
parameters. As pointed out by Stephens (1997) the Bayesian framework avoids some
theoretical and numerical difficulties related to the maximum likelihood approach.

The structure of the work is as follows. Section 2 presents the Bayesian model and
the Gibbs sampler for a stable distribution. Section 3 describes the Bayesian model for
stable mixtures and the missing data structure. Moreover the Gibbs sampler for stable
mixture is developed in the case where the number of components is fixed. Section 4
provides some simulation results and concluding remarks.

2 BAYESIAN INFERENCE FOR STABLE DISTRIBUTIONS

In order to make inference on the parameters of a stable distribution in a Bayesian
approach it is necessary to specify a hierarchical model (see Fig. 1) on the param-
eters of the distribution. The resulting posterior distribution of the Bayesian model
cannot be calculated analytically, thus it is necessary to chose a numerical approxima-
tion method. Monte Carlo simulation techniques provide an appealing solution to the
problem because, in high dimensional spaces, they are more efficient than traditional
numerical integration methods and furthermore they require the densities involved in
the posterior to be known only up to a normalising constant (see Casella and Robert
(1999) for an introduction to MCMC methods and to convergence control techniques).

In the following we describe the Gibbs sampler for stable distributions (see Buckle
(1995)). The stable density is obtained by integrating the bivariate density of the pair
(x,y), with respect the auxiliary variable y:
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(x,y) ∈ (−∞,0)× (−1/2, lα,β)∪ (0,∞)× (lα,β,1/2)

where z = x−δ
σ , while the functions τα,β(y), ηα,β and lα,β are defined in Buckle (1995).

Previous elements allow to perform simulation based Bayesian inference on the pa-
rameters of the stable distribution. The Bayesian model for stable distributions is
described through the Directed Acyclic Graph (DAG) in Figure 1.a. Parameters are
estimated by simulating from the complete posterior distribution and by averaging
simulated values. Suppose to observe n realizations x = (x1, . . . ,xn) from a stable dis-
tribution Sα(β,σ,δ) and simulate a vector of auxiliary variables y = (y1, . . . ,yn), then
the Gibbs sampler is defined through the following steps:

(i) Update the completing variable:
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(ii) Simulate from the complete full conditional distributions:
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where π(α), π(β), π(δ), π(σ) are the prior distributions on the parameters and y is a
vector of auxiliary variables (y1, . . . ,yn). The simulation strategies for the steps of the
Gibbs sampler and the joint prior distribution are given in Casarin (2003).

3 BAYESIAN INFERENCE FOR MIXTURES OF STABLE
DISTRIBUTIONS

In this section we extend the Bayesian framework, introduced in the previous sec-
tion, to the mixtures of stable distributions. A way to simultaneously modelling heavy
tails, skewness, and multimodality, is to introduce stable mixtures. Moreover stable
mixtures are appealing also because they have normal mixtures as special case, which
are a widely studied topic, see for example Stephens (1997), Richardson and Green
(1997). We assume that the stable mixture model m(x|θ, p) has a known and finite
number, L, of components. Let f (x|αl ,βl ,δl ,σl) be the l-th stable distribution in the
mixture, then:

m(x|θ, p) =
L

∑
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where θl = (αl ,βl ,δl ,σl), l = 1, . . . ,L are the parameter vector and θ = (θ1, . . . ,θL).
In order to perform Bayesian inference two steps of completion are needed. First,

the auxiliary variable, y, is introduced in order to obtain an integral representation of
the mixture distribution. A second step of completion is needed to reduce the com-
plexity problem, which arises in the inference for mixtures. The completing variable
(or allocation variable), ν = {ν1, . . . ,νL} is defined as follow: νl = 1 if x ∼ f (x,y|θl)



and 0 otherwise. It is used to select the mixture component and is not observable.
The resulting missing data structure can be estimated by following a simulation based
approach. Note that the demarginalized mixture model is:

m(x,ν|θ, p) =
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This completion strategy is now quite popular in Bayesian inference for mixtures
(see Robert (2001), Robert and Casella (1999)). For a discussion of the numerical and
identifiability problems in mixtures inference see Richardson and Green (1997) and
Celeux et al. (2000).

The Bayesian model for inference on stable mixtures is represented through the
DAG in Figure 1.b. As suggested in the literature on gaussian mixtures, we assume
a multinomial prior for the completing variable: ν ∼ ML(1, p1, . . . , pL) and the stan-
dard conjugate Dirichlet prior: (p1, . . . , pL)∼DL(δ1, . . . ,δL), for the parameters of the
discrete part of the mixture distribution.
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Figure 1. DAG of the Bayesian hierarchical model for inference on stable mixtures. It ex-
hibits the hierarchical structure of priors, and hyperparameters. A single box around a quantity
indicates that it is a known constant, a double box indicates the variable is observed and a cir-
cle indicates the random variable is not observable. The directed arrows show the dependence
structure of the model. Note that the completing variable ν is not observable. Thus, two levels
of completion, y and ν, are needed for a stable mixture model.

Given n independent values, x = (x1, . . . ,xn), from a stable mixture the complete
posterior distribution of the Bayesian mixture model is:

π(θ, p|x,y,ν) ∝
n

∏
i=1
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Bayesian inference on the mixture parameters requires the calculation of the ex-
pected value from the posterior distribution. A closed form solution of this integration
problem does not exist, thus numerical methods are needed. More precisely, the aux-
iliary variables can be replaced by simulated values and the simulated completed like-
lihood can be used for calculating the posterior distributions. Then the Gibbs sampler
for mixtures of stable distributions allows us to simulate from the posterior distribu-
tion:

(i) Simulate initial values: ν(0)
i ,y(0)

i , i = 1, . . . ,n and p(0) respectively from:

ν(0)
i ∼ ML(1, p1, . . . , pL), y(0)

i ∼ f (yi|θ,ν,xi), p(0) ∼ DL(δ, . . . ,δ). (10)

(ii) Simulate from the full conditional posterior distributions:

π(θl |θ−l , p,x,y,v) ∝
n

∏
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π(p1, . . . , pL|θ,x,y,v) = D(δ+n1(ν), . . . ,δ+nL(ν)) (12)

(iii) Update the completing variables:
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π(νi|θ, p,x,y,v−i) = ML(1, p∗1, . . . , p∗L) (14)

for i = 1, . . . ,n, where:
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σ
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n

∑
i=1

νil , p∗l =
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, l = 1, . . . ,L.

Observe that simulations from the conditional posterior distribution of Eq.(11) can
be obtained by running the Gibbs sampler given in equations (3)-(6), conditionally to
the value of the completing variable ν. For a detailed description of the Gibbs sampler
see Casarin (2003).

4 SIMULATION RESULTS AND CONCLUSIONS

We verify the efficiency of the Gibbs sampler on synthetic data simulated from a
two components stable mixture. For each component we assume uniform priors for
α and β and informative priors for δ and σ (see Casarin (2003)). Results (see Tab. 4)
are obtained on a PC with Intel 1063 MHz processor, using routines implemented in
C/C++.

In this paper we have described a method for performing Bayesian inference for
mixture of stable distributions. The approach to the mixture models estimation is quite
general and works well in our simulation studies, but a deeper analysis is needed both
on synthetic data and on real data.



Table 1. Numerical results - Ergodic Averages over 15,000 Gibbs realisations.

Dataset: 0.5S1.7(0.3,1,1) + 0.5S1.3(0.5,30,1)

Par. True Value Starting Value Estimate(∗) Std.Dev. Acc. Rate
α1 1.7 1.9 1.66 0.09 0.32
α2 1.3 1.9 1.36 0.07 0.41
β1 0.3 0.8 0.28 0.09 0.41
β2 0.5 0.8 0.37 0.10 0.42
p1 0.5 0.4 0.52 0.02 -

(*)Time (sec):9249
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