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Abstract 
This paper investigates whether the geographical proximity of financial analysts to hubs of 
information and expertise can influence their forecasting accuracy. Recent studies show that the 
financial analyst forecasting process show a systematic difference in earnings forecast accuracy 
dependent on the geographical distance of analysts from the companies which they follow. The 
literature argues that local analysts issue more accurate forecasts because they have an informational 
advantage over analysts who are further away. 
Industrial centres can constitute important knowledge spillovers by creating formal and informal 
networks amongst firms and higher education and research institutions. In such a hub, information can 
easily flow and propagate. Our hypothesis is that physical proximity to these hubs, and not to the 
companies they follow, is an advantage for financial analysts, leading to the issue of more accurate 
forecasts. 
Using a sample of 205 observations related to 33 firms, across seven countries and ten sectors, our 
results are consistent with the hypothesis.  
Even though preliminary, and probably in part biased by sample selection issues, overall, the empirical 
evidence confirms the benefit of being part of a network, formal or informal, in which information, 
knowledge and expertise sharing can flow easily. We try to give some new evidence on what can 
cause variations in financial analyst accuracy by exploring these concepts, well known and analysed in 
other fields, but new in the context of financial analysts 
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1. Introduction 

Does geographical proximity enhance financial analysts’ accuracy? Results from recent literature 

about the financial analyst forecasting process show a systematic difference in earnings forecast 

accuracy dependent on the geographical distance of analysts from the companies which they follow 

(see, e.g. Malloy (2005) and Bae et al. (2008)).   

This paper investigates whether the geographical proximity of financial analysts to hubs of 

information and expertise can influence their forecasting accuracy. 

The literature argues that local analysts issue more accurate forecasts because they have an 

informational advantage over analysts who are further away.1  

In general, financial analysts are ‘intermediaries’ between the managers of the firms which they 

follow and financial markets. They use a heterogeneous set of information (hard and soft, explicit 

and tacit) about the company which they follow, the industry and the economic system in order to 

arrive at earnings forecasts, company value and an investment recommendation. Thus, the 

evaluation process performed by financial analysts has a sequential structure ‘input-processing-

output’.  

In this framework, local informational advantage could be related either to different information 

sets available to local and remote analysts or to the superior skills of local analysts in processing the 

same information set. Specifically, a different set of information could be derived from an analyst’s 

direct contact with company management and premises or from lower information gathering costs. 

In an international setting, the superior skills could be related to better knowledge of the local 

language, culture or customs.  

The purpose of this study is related to this latter idea, introducing a new concept of proximity. 

Drawing on both international- and industrial economics-based research and on network analysis 

and cluster theories, this work aims to explore the role of proximity of analysts to centres of 

production of soft and not structured knowledge in order to explain the performance of financial 

analysts.  

Industrial centres can constitute important knowledge spillovers by creating formal and informal 

networks amongst firms and higher education and research institutions. In such a hub, information 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Alternative explanations are related to incentive arguments, including compensation and career incentives, and not to 
information asymmetries. 



can easily flow and propagate. Our hypothesis is that physical proximity to these hubs is an 

advantage for financial analysts, leading to the issue of more accurate forecasts. 

Prior literature provides mixed results with respect to geographical advantage. We hypothesise that 

unstudied aspects of analysts’ locations may add important evidence to prior literature.  

We test our hypothesis by the collection of both macroeconomic data - to identify the hubs of 

expertise - and financial analyst data, specifically earnings forecasts, dates of research reports and 

details about the financial analysts’ location. The final filtered sample of 205 matched-observations 

related to 33 firms, across seven countries and ten sectors over four years (from 2004 to 2008). 

Specifically, we first establish the location of the hubs of expertise of the country and industry of 

our sample, drawing on concepts from industrial and international economics.  

Secondly, we test whether the accuracy of financial analyst forecasts depends on the location of 

financial analysts in regard to the hubs of expertise identified.  

Our results are consistent with the hypothesis. In order to establish the robustness of this approach, 

we employed different measures of both earnings forecast accuracy and proximity.  

Even though preliminary, and probably in part biased by sample selection issues, overall, the 

empirical evidence confirms the benefit of being part of a network, formal or informal, in which 

information, knowledge and expertise sharing can flow easily. We try to give some new evidence 

on what can cause variations in financial analyst accuracy by exploring these concepts, well known 

and analysed in other fields, but new in the context of financial analysts. 

We believe that the identification of the drivers which affect forecast accuracy is important for at 

least three reasons. First, investors should benefit from being able to identify more accurate 

forecasts (and forecasters) as a good knowledge of these drivers can help them to spot more reliable 

information sources. Second, as earnings forecast are part of the input to analysts’ valuation 

methods and their stock recommendations, more accurate forecasters could issue more profitable 

recommendations. Third, forecast accuracy is also important to brokerage houses and investment 

banks as it enhances the quality of their output. Trading commissions and portfolio performance, 

which are strongly based on analyst ability, in fact generate part of their revenues. Thus, forecast 

accuracy should be important in turn to analysts, who can be rewarded by their brokerage houses 

according to their accuracy.  Finally, the results of this study could also contribute to the 

organisation of the research operations and financial research departments of investment banks and 

brokerage houses.  The identification of a link between hubs of expertise and financial analyst 



performance could induce a change in the structure of financial research, from being country- or 

industry-based to expertise hub-based. 

The paper is organised as follows: Section 2 explains the literature on financial analyst accuracy; 

Section 3 reports the methodology adopted to measure proximity to hubs of expertise; Section 4 

describes the data and research design; Section 5 reports the main results; Section 6 illustrates the 

conclusions of this research, suggesting new patterns of analysis; and the Appendix reports the 

technical details of the procedure used to identify the hubs of expertise. 

 

 

2. Literature Review 

Many papers have investigated the link between geography and information asymmetries in a 

number of financial and economic contexts.  

Focusing on investors, for example, it is well known that they are biased towards their home 

country. The literature explaining this home bias is extensive, but still far from having obtained 

conclusive results. An important stream has underlined the differences in information available to 

domestic and foreign investors. Early papers focused on this area, for example Gehrig (1993) and 

Kang and Stulz (1997). A number of papers attempted to identify more directly whether foreign 

investors have an informational disadvantage. Hau (2001) investigated trading data for professional 

traders and showed that local investors perform better than foreign traders. Choe et al. (2005) and 

Dvorak (2005) found that foreigners trade at worse prices in Korea and Indonesia, respectively. 

On the institutional investors’ side, Grinblatt and Keloharju (2000) and Seasholes (2000) argued 

that better resources and access to expertise allows foreign institutions to perform better than 

domestic institutions. Grinblatt and Keloharju (2000) found that in the Finnish market over a two-

year period, foreign and domestic financial corporations bought more stocks which performed well 

over the next 120 trading days than domestic individual investors. Seasholes (2000) found that 

foreign investors buy (sell) ahead of good (bad) earnings announcements in Taiwan, while domestic 

investors do the opposite. Froot, O’Connell and Seasholes (2001) and Froot and Ramadorai (2001) 

used flow data to show that foreign investors have some ability to predict returns. These papers are 

consistent with the better information and greater sophistication on the part of foreign investors.  

However, evidence on the performance of foreign investors is mixed. For instance, Shukla and van 

Inwegen (1995) showed that UK money managers underperform in comparison with their American 



counterparts when picking US stocks. Using 18 years of annual data, Kang and Stulz (1997) found 

no evidence that foreign investors outperformed domestic investors in Japan. 

A new strand of literature looked at the impact of distance on portfolio choice within countries. 

Coval and Moskowitz (1999), using only U.S. stock returns, provided evidence that investor 

location matters, in that mutual fund managers overweight the stocks of firms located closer to 

them. In another paper, the same authors (2001) found that mutual fund managers are better at 

picking stocks of firms which are closer to where they are located than those from a more distant 

location. Huberman (2001) found local concentration in the ownership of the Baby Bells in the US. 

Ivković and Weisbrenner (2005) used data from a large discount brokerage house and found the 

striking result that one out of six US individuals in their sample only invested in companies 

headquartered within 250 miles of their household. Recent papers show that social networks are 

also important for stock holdings. Hong, Kubik and Stein (2005) showed that mutual fund managers 

were more likely to hold a particular stock when other managers in the same city held the same 

stock. 

With specific regard to financial analysts, a number of papers have investigated how the geography 

of security analysts can affect their forecast performance. Some have analysed whether the country-

related features have an impact on financial analyst accuracy. Chang, Khanna and Palepu (2000) 

and others documented considerable variation across countries in the accuracy of analyst forecasts, 

depending on specific country characteristics. However, the international evidence seems mixed 

and inconclusive.  For instance, while Chang, Khanna and Palepu (2000) found evidence that a 

country’s legal system helps us to understand the accuracy of analysts, Ang and Ciccone (2001) 

reached the opposite conclusion. Hope (2003) found that the enforcement of accounting standards 

and firm-level disclosure were important determinants of forecast accuracy. 

Only a handful of papers investigate, directly or indirectly, how analysts’ physical distance to 

evaluated companies affects the accuracy of their forecasts. Malloy (2005), for instance, found 

evidence that, US analysts located close to the evaluated firm are more accurate than those who are 

further away. He argued that the ability of local analysts to make house calls rather than conference 

calls and the opportunity to meet CEOs and survey company operations directly provide them with 

an opportunity to obtain valuable private information. Following this logic, geographic proximity is 

a proxy for the quality of analyst information.  



In an international setting, analysts cover those countries which are open to foreign investors. Bae et 

al. (2008) showed that the financial opening of a country2 is followed by the increasing interest of 

foreign analysts. Bacmann and Bolliger (2001) directly examined the relative performance of 

analysts from local and foreign brokerage houses in seven Latin American stock markets. They 

concluded that foreign analysts outperformed local analysts in their study which focused on seven 

Latin American countries. When they compared the mean difference in forecast error between local 

and foreign analysts, it was not significantly positive for all of the countries in their sample, with 

the exceptions of Mexico and Colombia. In contrast, Orpurt (2004) found evidence of a significant 

local advantage in a sample of seven European countries. In his study, local analysts were defined 

as resident in that country. He found that his evidence was driven by Germany. However, while 

Bolliger (2004) focused on local versus foreign brokerage houses (not analysts) and found an 

advantage for local brokerage houses in Europe, Orpurt (2004) did not find this type of local 

advantage. Conroy, Fukuda, and Harris (1997) also found a local brokerage house advantage in 

Japan. Finally, Chang (2003) compared specifically the stock recommendations of foreign and 

expatriate analysts covering Taiwanese firms. He found that there was a local advantage, as 

expatriate analysts outperformed foreign analysts. He also found that expatriate analysts 

outperformed local analysts working for domestic firms. This result is consistent with the 

hypothesis that local analysts working for foreign institutions have the advantage of belonging to 

more sophisticated and resourceful organisations. Bae et al. (2008) showed that there is a significant 

local advantage for analysts in a sample of 32 countries. This local analyst advantage holds after 

having controlled for analyst characteristics as well as firm characteristics. However, it varies 

substantially between countries. The local analyst advantage is stronger in countries where 

disclosure is weaker, institutional investors are less important and corporate ownership is more 

concentrated. 

These results are very interesting, consistent with and complement another part of the literature, 

which analyses the information needs of financial analysts. Previts et al. (1994), for instance, 

performing a content analysis of 479 sell-side analyst reports, showed that analyst information 

needs to extend beyond that contained in financial reports and include softer, more subjective 

information.  Breton and Tafler (2001) presented a content analysis of 105 analyst reports in order 

to assess the information used by analysts. Non-financial information seemed to be equally 

important as financial information. The financial analysts were particularly interested in non-

financial information about management and strategy, as well as the trading environment of the 

firm. According to the distance-related literature, this information is probably easily gathered if the 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 By financial opening the authors mean the opening of the country to foreign investors. 



analysts are closer to the firm being evaluated. This is also supported by Barker’s results (1998). 

Performing a survey, he found that analysts considered personal contact to be more important than 

earnings announcements and financial statements. Since proximity can help analysts to keep 

frequent personal contact, according to the local information advantage hypothesis, the accuracy of 

analysts who are close to the evaluated company should improve. The author provided four possible 

reasons underlying this evidence. First, personal contact can improve the timeliness of the 

disclosure of information. Second, analysts can question company managers directly. Third, it helps 

analysts to have comparative advantage over their peers, and, fourth, they can focus on strategic and 

forward-looking issues. 

In summary, prior research has documented significant variation in the quality of analysts’ 

forecasts, with some being more accurate others. According to previous results, Brown et al. (1985) 

and Brown (1993), it is possible to conclude that the accuracy of earnings forecasts depends on the 

difficulty or complexity of the task. Proximity to a source of informational advantage can help and 

simplify the complexity of the valuation task, thus improving the forecasting accuracy. Empirical 

evidence is inconclusive on this issue, but there is some evidence that geographical distance 

between the analyst and the followed company is an important factor in forecast accuracy. Other 

authors argue that local analysts may gather better quality and more timely information about the 

company, thereby gaining an informational advantage over their peers, the so-called local 

information advantage.  

We do not fully agree with this theory. In fact, in such a globalised context, where physical 

presence can be easily substituted by virtual contact and distances are shortened by technology 

which facilitates communication, we argue that the physical proximity of analysts to firms is not 

associated with an informational advantage. Therefore, in our hypothesis, the information advantage 

derives from another form of geographical proximity which is more industry knowledge-related.  

We therefore provide a new concept of proximity related to distance from centres of knowledge, 

which we define as hubs of expertise. While Malloy (2005) measured proximity as the number of 

kilometres between analysts and firms and Bae et al. (2008) defined an analyst as local if he or she 

was located in the same country of the followed firm, in our study, the distinction between local and 

foreign analysts is based on the analyst’s location with respect to the hubs, which are identified by 

looking at the industrial specialisation of countries.3   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 See also Section 3 and the Appendix to the paper. 



According to the comparative advantage theory (Ricardo (1963)), each nation tends to shift its 

resources to its more productive industries, while increasing trade for goods in their less productive 

industries. So, each nation tends to have a specialisation in a specific industry. This is often 

associated with the development of industrial clusters. In the sphere of financial services, for 

instance, previous research has shown that large, medium and small financial service companies 

have a tendency to cluster in metropolitan areas because of the need to access a large pool of 

specialist and support services (e.g. accounting, actuarial, legal etc.), be in close proximity to the 

markets, benefit from agglomeration economies, reduce transactions costs, develop and innovate 

intrinsic skills through the sharing of knowledge and practice (e.g. Davies, 1990). 

Since clusters provide knowledge-rich environments which are associated with innovation, 

knowledge spillover, the building of relationships and synergies, proximity to these centres of 

specialisation may allow financial analysts to improve their knowledge of value-relevant factors and 

use them to their advantage in the evaluation of companies in that industry. Therefore, in our 

opinion, the geographical proximity of financial analysts to hubs of expertise improves the quality 

of industry knowledge and allows analysts to develop unique expertise and skills, resulting in an 

informational advantage and greater forecast accuracy.  

 

3. Hypothesis development and research design 

3.1. Modelling the analyst accuracy 

The set of information that analysts use to evaluate a company can be divided in two groups. A 

first group composed by commercial and structured information, easily collected by all analysts 

and a second group of soft (tacit) information that can be privileged and produced by the 

environment in which analysts work. Therefore, an analyst has an information advantage if it has 

access to the soft information, derived by his context. 

Our basic hypothesis is that analysts located close to sources of soft knowledge have an 

information advantage. Therefore, the primary aim of this research is to test whether the accuracy 

of financial analysts depends of their proximity to hubs of expertise, generating soft knowledge.  

The conceptual model used is therefore: 

Analyst Forecast Accuracy = f (analyst stock of knowledge deriving from the proximity to the 

hubs, other control variables)  

We adopt two estimation techniques in order to investigate the accuracy of financial analysts and 



in both cases we employ the Newey-West procedure4 in order to provide consistent inferences on the 

estimated coefficients.  

The former is a classic OLS regression, assuming a linear relationship between the analyst's 

accuracy, which is our dependent variable, and all of the independent variables. 

The latter is a fixed effects model based on the within transformation. This model allows us to take 

into account the differences between the firms covered which are not controlled by our 

independent variables, thereby allowing us to manage time-series observations and cross-sectional 

units at the same time. We stress that the assumption underlying the fixed effect model is that the 

relationship between the explained and the explanatory variables is assumed to be constant both 

cross-sectionally and over time. 

As a measure of relative forecast accuracy, we initially made two different definitions of accuracy: 

a simple and a more sophisticated one. The simplest one (AFE) is the Absolute Forecast Error 

calculated as: 

     (1)
 

where ACTUAL indicates the actual earnings per share for the company j in the fiscal year t and 

FORECAST is the forecast of earnings per share, issued by the analysts i for the company j in fiscal 

year t, no more than 100 days before the announcement date. As previous research has proved, this 

measure is too naïve and can be biased.5 We also defined another measure, the Proportional Mean 

Absolute Forecast Error (PMAFE), calculated as: 

 (-1)      (2) 

 

This measures the difference between the absolute forecast error (AFE) of analyst i forecasting 

earnings for firm j in the fiscal year t and the average absolute forecast error across all analyst 

forecasts of firm j’s fiscal year t earnings, expressed as a fraction of the average absolute forecast 

error across all analyst forecasts of firm j’s fiscal year t earnings. PMAFE controls for firm-year 

effects by subtracting the mean absolute forecast error, AAFE, from the analyst’s absolute forecast 

error. Deflating by AAFE reduces heteroskedasticity in forecast error distributions across firms 

(Clement (1999)) and multiplying by -1 ensures that higher values for PMAFE correspond to higher 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4Brooks (2008) explains that the Newey-West procedure implies ':HAC:' (Heteroscedasticity and Autocorrelation Consistent) 
standard errors. This adjustment allows us to deal with the coefficients' standard errors since it produces a variance-
covariance estimator which is consistent in the presence of both heteroscedasticity and autocorrelation. 
5 Clement (1998) documented that PMAFE improves the chances of identifying the differences in individual analyst 
forecast accuracy. Jacob et al. (1999) discussed these benefits in more detail. 



levels of accuracy.6 

Jacob et al. (1999) explain that the PMAFE variable is a relative measure of forecasting accuracy 

which is not affected by inter-temporal changes and cross-sectional differences in the price-to-

earnings ratios. We rely on this variable in order to compare data from different firms and 

different years which could therefore allow us to provide more interesting figures on the 

relationship between knowledge and analyst accuracy. 

 

3.2. Modelling analysts’ stock of knowledge and other control variables 
 
In order to assess whether the analyst’s location with respect to hubs of expertise influences the 

quality of their knowledge and enhances the accuracy of their forecasts, we first identify the hubs, 

where the spill-overs of knowledge originate. Secondly, we test whether the accuracy of financial 

analysts’ forecasts depends on their proximity to the source of spill-overs (the hubs) identified. 

Since empirical measurement of knowledge spill-overs would be impossible because “knowledge 

flows are invisible, they leave no paper trail by which they may be measured and track[ed]” 

(Krugman, 1991, 125), we draw on concepts from industrial and international economics to find a 

proxy. 

Specifically, we assume that there are three alternative methods for the study of knowledge 

generation: cluster-, sector- and network-based approaches. All of these three approaches are based 

on the basic assumption that the intensity of knowledge generated by a sector is related to its level 

of production, but they offer different ways to measure it. 

The first approach is based on the idea that the knowledge derives from intensive and privileged 

exchanges amongst industries which are strongly related in agglomerates of sectors (clusters). In 

this approach, the structural relationships among sectors which characterise a cluster produce 

privileged knowledge. Therefore, even though a sector may be small, it is part of a cluster, and 

therefore generates an amount of knowledge dependent on the cluster of which it is part. Cluster 

literature explains how clusters retain privileged knowledge which can be spread amongst their 

members. 

Since Marshall’s (1920) seminal discussion about highly localised districts in the UK, a new 

perspective has been developed about the geographical clustering of firms from similar industries.7 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  As	  in	  all	  the	  regressions	  these	  latter	  accuracy	  measures	  were	  the	  best,	  and	  consistently	  with	  previous	  literature	  (see	  
Clement	  (1999	  and	  1998)	  and	  Jacob	  et	  al.	  (1999)),	  we	  report	  only	  the	  results	  obtained	  using	  this	  accuracy	  measure.	  

7 See Storper (1997) for a review. 



More recently, some pieces of research have conceptualised clusters as sources of enhanced 

knowledge creation (e.g. Lawson & Lorenz, 1999; Lorenzen & Maskell, 2004; and Malmberg & 

Maskell, 2002). In this regard, participating in a cluster would increase the spill-over effects of new 

technologies, knowledge and innovations. For instance, Forni and Paba (2001) show how strong 

linkages induce a relatively fast diffusion of knowledge and new technologies. Cluster analysis 

provides a possible solution to the identification of strongly interrelated sectors. By dividing the 

economic system into clusters of interrelated sectors, the clusters show exactly which sectors are 

closely related to each other. 

Therefore, we associate this kind of ‘clustered’ knowledge with our concept of hubs of expertise, 

the source of shared knowledge.  

The very basic definition of an industrial cluster is “geographical concentrations of industries that 

gain performance advantages through co-location” (Doeringer and Terkla (1995), page 225). This 

definition of clusters is similar to that of agglomeration economies, but in fact it is within industrial 

clusters that agglomeration economies are likely to be observed.  Beyond the basic definition, 

however, there is little consensus on how to define an industrial cluster. Michael Porter extended 

the concept of industrial clusters in his book, The Competitive Advantage of Nations (1990) and 

developed the ‘Diamond of Advantage’, four factors which create a competitive advantage for 

firms.  The four corners of the diamond include factor conditions, demand conditions, industrial 

strategy, and related and supporting industries.  He used this diamond to determine which firms and 

industries had competitive advantage. A more in-depth discussion of the different definitions of 

industry clusters was presented by Jacobs and DeMan (1996) and Rosenfeld (1996, 1997).8  They 

expanded on the definitions of vertical and horizontal industry clusters in order to identify the key 

dimensions which can be used to define clusters.  These include the geographic or spatial clusters of 

economic activity, the horizontal and vertical relationships between industry sectors, the use of 

common technologies, the presence of a central actor (e.g., a large firm, research centre, etc.), the 

quality of the firm’s network and its level of co-operation (Jacobs and DeMan (1996)). In addition 

to vertical and horizontal relationships, Rosenfeld (1997) included criteria for defining a cluster, 

including its size, economic or strategic importance, the range of products produced or services 

used and the use of common inputs.  He did not define clusters exclusively by the size of the 

industries or the scale of employment. 

We assume that analysts have access to enhanced and privileged knowledge on the basis of their 

geographical proximity to clusters and also benefit from a cultural information advantage that 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 Jacobs and DeMan (1996, p. 425) argue that “there is not one correct definition of the cluster concept…different 
dimensions are of interest.”  



improves forecasts issued for companies (local or not) which belong to the same sectors of the 

proximate cluster. To be close to a cluster is in fact a source of informative advantage. 

The second perspective that we use is a sector-based approach.  The theory behind this approach is 

that if a sector is very productive in terms of output, it also has a strong competitive position with 

respect to other sectors. This advantaged position within the national economy generates 

specialisation and greater knowledge generation than other sectors less relevant for the economy. 

To be close to relevant sectors in terms of output can be a source of informational advantage. 

Finally, the third approach is based on network logic. The basic assumption is that knowledge is 

generated by sharing and is the effect of cross-fertilisation between sectors, composing a network., 

The intensity of the knowledge therefore depends on the exchanges between the sectors of the 

network. In this case, proximity to the most relevant nodes of a network could be a source of 

informational advantage.  

Our operational framework is therefore based on three steps in order to assess three proxies of 

knowledge intensity. 

The first step is to define the hubs as industrial clusters. The empirical identification of clusters is 

not a straightforward procedure and the related literature shows how tricky it can be. There are 

no conclusive solutions for this.  

Economic theory suggests several methods for identifying clusters. However, Hoen (2002), after 

describing how cluster analysis contributes to the study of linkages among sectors, shows that the 

cluster identification method based on a block diagonal matrix,9 called the diagonalisation method, 

gives the best results. For this reason, we use this latter method in our analysis. According to this 

approach, we start from the input-output (I-O) matrix of each country. First, we calculate an I-O 

matrix of only the intermediate consumption10 of different industries of a country. Therefore, the 

main diagonal elements, which represent the intermediate consumption of the same industry, are 

zeros. The off-diagonal elements are expressed as a percentage of the largest intermediate 

consumption between two industries, the benchmark for which has been set as equal to 100%. As 

per the literature, we also set a minimum threshold for input and output entries for being part of the 

matrix at 2%. After setting all of the elements that do not satisfy these restrictions to zero, putting 

the matrix in the block diagonal form shows which sectors belong to which clusters.11 Each off-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 A block diagonal matrix can be split up in parts that have no connection with each other. By rearranging sectors 
appropriately (details of this method are reported in Appendix A), the matrix would look like blocks of matrices along 
the main diagonal. 
10 The intermediate consumption is an economic concept that represents the monetary value of goods and services 
consumed or used as inputs in production by firms of a sector in a country. 
11 There are several possible algorithms for making the block diagonal matrix by rearranging sectors. Appendix A 
describes an algorithm which does not involve complex computations and is easy to program. An algorithm based on 



diagonal value (Sij) in the same block (cluster) indicates the intermediate consumption between 

two sectors that is greater than the selected threshold. According to Hoen (2002), Sij represents the 

strength of the link between two industries, i and j, belonging to the same cluster.  

Once the different clusters (hubs) have been identified, we need to attribute a value for the 

knowledge spill-overs coming from each one. Assuming that the level of knowledge spill-over 

depends on the level of total production achieved by related sectors belonging to the same cluster, 

as defined by Hoen’s procedure, we define a first proxy (CLUSTER). It is measured as the log 

transformation of the sum of Sij of each cluster. In more formal terms, CLUSTER is: 

   

     (3) 

where z indicates the country, and i and j two of the sectors composing the cluster x.  

In other words, CLUSTER is a proxy of the level of information spill-over of which local analysts 

can take advantage of and it is based on the relevance of a sector depending on the cluster 

(approximated by the total production) of which it is part. Therefore, focusing on analysts’ 

geographical location, we associate with each of them the value of the CLUSTER variable, 

depending on their location.  

Let us assume, therefore, that a UK-based analyst evaluates (UK or foreign) companies in the oil 

industry. According to our framework, we will attribute to this analyst the stock of knowledge 

measured by the CLUSTER variable assigned to the UK of the cluster containing the oil sector. 

Should a specific sector not be contained in any of the identified UK clusters, the value of the 

variable will be forced to zero. Therefore, analysts located in different countries will benefit from 

different stocks of knowledge assigned to the clusters identified in their own country. 

Analysts close to the most important clusters will show higher CLUSTER values, indicating higher 

spill-overs and informational advantages, which help them to issue more accurate forecasts in 

relation to national or international companies in industries belonging to that cluster. Thus, we 

expect this variable to have a positive impact on the accuracy of earnings forecasts. 

The second approach when dealing with the hub identification issue is sector-based.  Input-output 

tables are a useful tool used in the literature for studying the linkages between industries as they 

allow the measurement of the effect of a specific sector on the other sectors or the effect of each 

sector on the economic system as a whole.  Therefore, by using the input-output tables, we can 

measure the importance of a sector in a country in terms of its production and level of 

specialisation. We can then assume that the value of production of a sector is a proxy for the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
eigenvalues, which has the advantage of ordering clusters according to the strength of their linkages, can be found in 
Dietzenbacher (1996). 



knowledge produced. According to this framework, each sector represents a hub, but hubs with 

higher values of production contain more important sectors for the overall economy of a country.  

We start with a Use table12 and calculate the variable OUTPUT by industry, which is defined as 

the sector output at basic prices (without considering relationships with other sectors). The reason 

for doing this is to measure the total output value produced by each sector. This variable is 

measured as the log transformation of the sum of the intermediate consumption and the value 

added of each sector, scaled for the country’s power purchase parity (PPP), in order to compare 

the same variables across different countries. In more formal terms: 

 

  (4) 

 

where z indicates the country, while i the industry. The informative value of OUTPUT is that it 

shows how much a sector is relevant in terms of production for the economy. 

Therefore, since our framework production is associated with knowledge, a higher value of the 

variable with respect to a certain sector i are in general related to higher levels of knowledge spill-

over spreading to that sector. Hence, similarly to the CLUSTER variable, we predict this variable 

to have a positive impact on the accuracy of local analysts’ forecasts as a higher level indicates a 

greater informative advantage for them. For example, let us assume that a UK-based analyst 

evaluates a (UK or foreign) bank. According to our framework, we attribute to this analyst the 

stock of knowledge, measured by the OUTPUT variable, assigned to the financial sector in UK. 

Therefore, analysts located in different countries benefit from different stocks of knowledge 

depending on the sector’s relevance, in terms of output, for the country. 

Finally, we also apply a third approach in order to identify hubs, based on methods from social 

network analysis. We assume that the economy of a country can be represented as a network of 

sectors (nodes) which are more or less interrelated. The ties among the nodes measure the strength 

of their relationships. 

Similarly to clusters, networks can also produce spill-overs of knowledge. The extensive literature 

on this field has generated a wide set of techniques and related measurements for capturing the 

many facets of information embedded in the network structure. 

One of the primary aims of social network analysis is to identify the ‘important’ actors in the 

network. The concepts of centrality and prestige have been introduced in the network field in order 

to quantify an individual actor’s prominence within a network by summarising structural 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
12 Please see Appendix A for a detailed general definition of this table. 



relationships among the g nodes.  We draw from this literature to assess the prominence of 

economic centres (hubs) across countries, using the tools which it suggests. 

In order to do this, we replicate the procedure proposed by Cetorelli and Peristiani (2009). The 

authors, using methodologies developed in social network analysis, elaborate measures to rank the 

relative degree of dominance of financial centres around the world. With such measures, they were 

able to assess more effectively whether US financial markets have lost their position of global 

leadership and the extent to which competition from other centres may have strengthened over time. 

The most complete measure which they implemented was the ‘prestige index’. In network analysis, 

indices of prestige allow for the measurement of the dispersion or inequality of the prominence of 

all of the actors. Formally, the prestige index (Pr) for a node (in our case, a sector) i (ni) is 

calculated as: 

Pr (ni) = x1i P(n1)+ x2i P(n2)+ …+ xNi P(nN)   (5) 

 

where the weights are represented by the flows from each of the nodes of the network onto ni. 

Therefore, by adapting and applying Cetorelli and Prestiani (2009)’s procedure for financial 

centres, we assess a prestige index for each sector (node) of all the countries (networks) of the 

dataset. 

In order to represent the network, its nodes and the ties between nodes, we assume that the 

production value between sectors and within the same sector can be a proxy of the links of the 

network and indicate its knowledge intensity. Therefore, we measure flows between nodes through 

tables of intermediate consumption and the values added of each country. Specifically, the 

production of each country is represented by a matrix which exhibits the flow of intermediate 

consumption between each pair of sectors on the off-diagonal entries, while the main diagonal 

shows the sum of the intermediate consumption flow within each sector and the sector value 

added. 

We apply the algorithm (5) proposed in the literature by Cetorelli and Peristiani (2009) to the 

whole network. Therefore, we have N equations in N unknowns for each network. 

As shown by Katz (1953), this system has a finite solution if one first standardises the original 

network matrix. For this reason, firstly, we divide each column of the matrix by the column’s 

sum. 

After this standardisation, the system of equations becomes a more common matrix-characteristic 

equation, where the solution (that is, the vector of prestige indicators) is the eigenvector associated 

with the largest eigenvalue of the standardized matrix (SM). Since we do not use any specific 



mathematical software to calculate the eigenvalue of the matrix, we apply the ‘power method’.13 

This is an iterative method and thus does not require any specific software to solve the problem.  

In order to apply this method, we raise each cell value to the nth power until the matrix converges 

into a table of equal vectors (by column) so that we can find out the eigenvector associated with 

the largest Eigen value of the matrix.14 This eigenvector contains the index of prestige associated 

with each sector. We call this eigenvector a NET variable and it is dependent on the flows 

exchanged (approximated to the intermediate consumption) between sectors in the same country. In 

more formal terms, for a country/network z, the variable NET can be calculated as: 

 

NETz = eigenvector of SMz    (6) 

 

A node (sector) will thus have high prestige if it is chosen, in terms of flows, by a low number of 

highly prestigious other nodes or by a high number of other nodes with lower index value.  

NET is therefore also our proxy for the extent of knowledge spill-overs of different sectors in a 

specific country. Its informative value is that it allows the knowledge of how much a sector is 

relevant in terms of exchanged flows of knowledge (approximated by the intermediate 

consumption) between the different sectors of the network. A greater value of this variable is 

associated with higher levels of knowledge spill-overs spreading from the specific sector i. Each 

analyst will be associated with a NET value, depending on their location and the sector which they 

are evaluating. For instance, a UK-based analyst evaluating a (UK or foreign) bank has a stock of 

knowledge measured by the NET variable, which is assigned to the financial sector in UK in 

relation to the ‘prestige’ of this sector with respect to others in the same country. Therefore, 

analysts located in different countries will benefit from different stocks of knowledge depending 

on the sector’s relevance to the country. 

Hence, similarly to the aforementioned proxies, we predict that this variable has a positive impact 

on the accuracy of local analysts’ forecasts as a higher level indicates a greater informative 

advantage for them.  

Therefore, in more formal terms, the model that we test is: 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13	  In mathematics, the power iteration is an algorithm: given a matrix A, the algorithm will produce a number λ (the 
eigenvalue) and a non-zero vector v (the eigenvector), such that Av = λv. The algorithm is also known as the Von Mises 

iteration. 	  
14 Appendix B reports further technical details. 

	  



  (7) 

 

where the ACCURACY variable is defined in Section 3.1 and the STOCK OF KNOWLEDGE is 

alternatively measured by the CLUSTER, OUTPUT and NET variables.  

With regard to the CONTROL VARIABLES, we include in the model a limited number of control 

variables because of the small size of the sample. Specifically, we insert the variable AGE, 

measuring the number of days from the date of the release of the report to the end of the fiscal 

year and VOL, which is a control variable measuring the coefficient of the variation in the firm's 

quarterly EPS over the past three years.  We hypothesise that the greater the variability of the 

actual EPS over time, the greater the complexity of the analysts’ forecasts. Finally, we employ 

dummy variables in order to control for the inter-temporal changes in analyst accuracy.15 We do not 

expect to find any significant results as the PMAFE variable provides an adjustment for the inter-

temporal variability of the analysed topic itself (see Section 3.1.). 

 

4. Data 

The sample construction started with a rich dataset of observations on analyst forecasts collected 

from Factsect over four fiscal years, from 2005 to 2008.  

For each earnings forecast, we have the research date, the recommendation issued, the previous 

research date and forecast by the same analyst, and the type of report issued. We also collected 

information about analyst characteristics, such as their full name, brokerage house and office 

telephone number. The latter allowed me to infer their geographical location. As we had some 

missing data with regard to the last piece of information, we collected some of them by hand from 

Nelson’s Directory of Investment Research, which provides extensive information about analysts, 

which companies they follow and brokerage houses. Each volume of Nelson’s Directory in year t is 

based on the analysts’ information from year t-1. As the 2008 volume is not available, we used the 

2007 volume as a proxy for the 2007 analysts’ missing data. As we did not find any clear 

information on some analysts, we excluded these missing observations. 

These raw data needed to be filtered in order to match the restrictions based on the aim of our 

research. 

Firstly, since the computation of the knowledge variable based either on the cluster or the sector 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 We include D05, which is a dummy variable equal to 1 if the observation obtained was in 2005, 0 otherwise; D06 is a 
dummy variable equal to 1 if the observation obtained was in 2006, 0 otherwise; and D07, which is equal to 1 if the 
observation obtained was in 2007, 0 otherwise. 



concept is only available for specific countries, i.e. Italy, Germany, the United Kingdom and 

France, we eliminate all of the observations associated with analysts who are not located in these 

countries. Moreover, we cancel out all of the observations produced by teams of analysts placed in 

different countries. Following these adjustments, we can manage a dataset which satisfies our 

assumptions about the relevance of the proximity between the location of analysts and the hubs of 

expertise. 

Secondly, we identify the end date of the fiscal year and eliminate all of the analyst reports released 

more than one hundred days before this reference point. We adjust the data in this way in order 

to have homogenous annual EPS forecasts.  

Furthermore, Jacob et al. (1999) point out that each analyst benefits from both public information 

released by firms and previous information released by other analysts. In order to control for 

these sources of information, we compute a control variable which represents the age of the 

forecast, assuming that more recent reports benefit from the information released in earlier firm 

reports and from new public information. 

The CLUSTER variable is adjusted to the data from the 2002 input-output tables because of a lack 

of data availability. Moreover, the OUTPUT variable is also based on these 2002 input-output 

tables. The NET variable is entirely based on data from 2000 and 1995 for the UK. We expect that 

this is not a big issue as our variables capture the structural relationships amongst the sectors which 

should not constantly change over time. 

The final dataset is composed of 205 observations related to 33 firms, from 2005 to 2008.  

The stated variables can be summarised by their descriptive statistics in Table 1. 

 

Insert Table 1. 

 

On the basis of these statistics, we could assert that, on average, analysts provide accurate forecasts 

but with relevant outliers and high variability amongst them. Moreover, in looking at the 

coefficients of variation, we can appreciate how the analyst accuracy variable exhibits a coefficient 

which should require more explanatory variables in order to be almost completely explained. 

However, since this research aims to focus on the role of knowledge in analyst accuracy and the 

sample size is not large, we only focus on the aforementioned explanatory variables. Table 2 reports 

the correlation matrix among variables. 

 



Insert Table 2. 

 

Furthermore, we notice that the literature on the argument provides regressions in which the 

adjusted R-squared hits a value of approximately 0.15, which is an argument for this type of 

research in order to shed more light on the topic. 

The firms which comprise the final sample belong to ten different sectors and seven countries, as 

summarised in Table 3. 

 

Insert Table 3. 

 

The dataset does not have many control variables but we assert that this provision could be 

sufficient since this attempt only represents the preliminary stage of the research on the relationship 

between knowledge and analyst accuracy. 

5. Results 

We start the empirical analysis by applying the OLS technique, running different models in order to 

examine the impact of each knowledge variable on PMAFE, which represents analyst accuracy. 

 

Insert Table 4. 

 

All of the models are somewhat poor in explaining analyst accuracy. Firstly, all of the values of the 

F-statistic only allow us to argue that all of the coefficients are not significantly different from zero. 

Similarly, all of the t-statistics of the knowledge variables only allow us to argue that each 

knowledge variable is not significantly different from zero. Finally, the adjuster R-squared is 

negligible for all of the models; therefore the dependent variable could be better explained by 

looking at its mean. 

From this discussion we could appreciate the apparent relevance of the AGE coefficient, which 

confirms our expectation that more recent reports would benefit from past analyst reports and 

incremental public information. 

We explain these preliminary results by recognising that the OLS estimate does not account for the 

differences between firms. In order to control for these unexplained dynamics, we should analyse 

the analysts’ accuracy conditionally on the firm’s identity. Indeed, by using this perspective, we can 



appreciate the impact of the independent variables in explaining the variability of the analysts’ 

accuracy without the requirement of control variables at the firm level. Moreover, these firm level 

control variables could be regarded as omitted variables, and thus their absence could debase the 

OLS results. 

Since we only have the VOL variable as a control variable at the firm level, we employ a within 

transformation at firm-level in order to tackle this issue. We label the new variables with the suffix 

‘D’ and eliminate the constant term on the basis of the within transformation. 

 

Insert Table 5. 

 

After controlling for company identity, we notice that AGE is still significant, which is consistent 

with our expectation. Indeed, we can confirm that an analyst gains in accuracy when he or she 

provides his or her report close to the actual EPS issue. This figure could be motivated by our 

assumption of the benefits of incremental public information and the information contained in 

reports previously released by other analysts. 

The control variable VOL is not significant. On the basis of this result, we cannot confirm our 

expectation of a negative relationship between the coefficient of variation of the historical actual 

EPS and analyst accuracy. A plausible reason for this result is that the literature refers to the 

variability of the actual EPS only in order to explain the distribution of the analyst forecasts, not the 

topic of analyst accuracy. 

We also note that the dummy variables do not provide any contribution to the explanation of the 

dependent variable. This is probably due to the formulation of the PMAFE variable, since it 

accounts for inter-temporal changes in analyst accuracy. 

This introduction allows us to focus on the explanatory power of our knowledge variables. First of 

all, we notice that CLUSTER_D is not significantly different from zero (Model 2). This result could 

derive from the aforementioned difficulties in measuring cluster boundaries and the knowledge 

contained therein. Therefore, this inconsistency could be caused by the drawbacks in the procedure 

of identification of clusters and in the representation of cluster knowledge. 

Following this argument, we use the NET_D variable, which recognises hubs of expertise at a sector 

level rather than at a cluster level (Model 3). From this setting, we report a coefficient that is 

significantly different from zero. Focusing on knowledge at a sector level allows us to confirm our 



expectations on the role of proximity in increasing analysts’ stock of knowledge. The positive sign 

of the coefficient means that the proximity between the analyst and the hub of expertise represents a 

source of analyst accuracy. Moreover, the adjusted R-squared of Model 3 increases significantly 

after the inclusion of the NET_D variable. Above all, if we multiply the coefficient of NET_D by 

this standard deviation, we can evaluate the variable impact on analyst accuracy between -8% and 

8%. 

This result is a preliminary confirmation of the relevance of analyst proximity to hubs of expertise. 

It is obtained by elaborating on the input-output tables on the basis of network analysis. As 

explained above, we measure sector knowledge on the basis of an index which represents the sector 

prestige recognised by all of the other sectors of the national economy. In order to check the 

usefulness of the network analysis, we define a third variable which considers sector output as a 

proxy of the stock of knowledge within the sector. In reality, this choice of proxy is not arbitrary 

since it represents the variable which we have split in the network information matrix and then 

elaborated in order to obtain the NET_D variable. If we obtained the same results, we could assert 

that all of the information on sector knowledge is contained in the sector attributes. Therefore, the 

analysis of sector ties should not provide incremental information. 

We notice that the coefficient of the OUTPUT variable (Model 4) is not significantly different from 

zero. On the basis of this result, we confirm the benefits of exploiting network analysis in order to 

trace the availability of knowledge amongst units of analysis.  

To sum up, network analysis synthesises network interactions, thereby providing a holistic analysis 

of knowledge amongst sectors within a national economy. Moreover, thanks to this approach, we 

demonstrate the relevance of knowledge about production to explain analyst accuracy on the basis 

of proximity to centres of knowledge. 

 

6. Conclusions 

This research aims to provide new insights on the issue of analyst accuracy, by developing a set of 

variables which should represent part of the stock of knowledge owned by analysts and help them in 

their task. 

First of all, we point out that the analysis of analyst accuracy is essential in order to increase 

employers’ reputations. Investment banks and brokerage houses would offer the services of analysts 

for free in order to benefit from analysts’ reputations, a fact which is recognised by the financial 



markets. 

Secondly, we argue that prior research on analyst accuracy has been  more about analysts’ 

characteristics rather than on the knowledge which is available to them. We recognise the utility of 

the first approach but try to develop the knowledge framework in order to provide a new stream of 

research. 

We point out that each analyst has a certain stock of knowledge available: the firm’s public 

information and the information contained in previous reports. The definition of our knowledge 

variables refers to the analyst’s personal knowledge. We assume that the concept of proximity is 

essential for the detection of this source of personal expertise. 

The results of this research confirm our main expectation since we find some evidence of greater 

accuracy associated with forecasts issued by analysts who are close to so-called hubs of expertise. 

This result is not based on the concept of cluster since the empirical identification of clusters is not 

straightforward. We ground our results by considering that hubs of expertise represent knowledge 

associated with single sectors of a national economy. Using this perspective, we report on the 

relevant role of sector knowledge on production for local analysts, even if they cover firms which 

are established abroad. 

We conclude this research by suggesting plausible steps in order to improve the analysis. Firstly, 

further improvements are needed in terms of cluster identification and the knowledge available to 

the analyst. We have suggested network analysis as a reliable algorithm which could be used to 

detect concentrations of sectors within the input-output framework, thus providing a new approach 

to the evaluation of the stock of knowledge within the clusters. We suggest the development of this 

network analysis in order to measure the stock of knowledge within each unit of analysis. In the 

next steps of this work, each analyst will represent a unit of analysis. 

Secondly, we suggest increasing the number of observations since the size of this sample is only 

reliable for preliminary results and insights. The plausible direction is to expand the group of 

countries analysed, thereby providing a more comprehensive picture of the European continent. 

Furthermore, it would be useful to collect firms’ quarterly EPS’s in order to increase the number of 

observations over time. 

Finally, we propose the merger of these knowledge variables with the explanatory variables based 

on analyst characteristics. Using this, we could verify the relationships between these two classes of 

explanatory variables in order to improve our understanding of analyst accuracy. 



 
Tables 

Table 1: Summary statistics of the main variables of the dataset. 

Statistics PMAFE AGE VOL CLUSTER NET OUTPUT 
Mean 0.0204 50.85 0.2462 6.75 0.0379 11.31 
Median 0.0277 49.00 0.2102 7.90 0.0276 11.36 
Max. 0.9947 100.00 0.9141 10.41 0.2108 12.65 
Min. -2.0789 2.00 00.0267 0.00 0.0023 9.94 
Std. Dev. 0.4667 24.27 0.1928 3.17 0.0433 0.5932 
Coeff. of 
variation 

22.87 0.47 0.78 0.46 1.14 0.05 

Notes: This table reports the main descriptives of the model variables. The PMAFE, representing the analyst 
accuracy, while CLUSTER, NET and OUTPUT are defined above and represent alternatively measures of 
different analysts knowledge. VOL and AGE are 2 control variables indicating, respectively, the company 
earnings volatility and the age of the analysts forecast. 
 

Table 2. The correlation matrix among variables 

Panel A. The Pearson’s correlation. 

 pmafe age lncluster net lnoutput vol 
pmafe 1      
age -0.1489* 1     
lncluster -0.0623 -0.1864* 1    
net 0.0451 0.0458 0.2062* 1   
lnoutput -0.0482 0.0334 0.5081* 0.5157* 1  
vol -0.0025 0.0315 -0.0601 -0.1307* 0.044 1 

 

This table reports the correlation matrix of the different model specification variables. It is based on the Spearman’s 
correlation definition.  

* denotes significance at the 10%. 

Table 2. The correlation matrix among variables 

Panel B. The Spearman’s correlation. 

 pmafe age lncluster net lnoutput vol 
pmafe 1      
age -0.1980* 1     
lncluster -0.1288* -0.0872 1    
net 0.0923 -0.0793 0.0218 1   
lnoutput -0.1431* 0.0071 0.6989* 0.2171* 1  
vol -0.1187* 0.0693 -0.0766 -0.076 0.0222 1 

 

Notes. This table reports the correlation matrix of the different model specification variables. It is based on the 
Spearman’s correlation definition. 

* denotes significance at the 10% 



 

 

 

Table 3: Sector and country weights in the dataset.  

Sector weight % Country weight % 
Banks 24.24% Finland 0.00% 
Insurance 12.12% France 18.18% 

Telecommunications Services 15.15% Germany 18.18% 
Technology 9.09% Italy 9.09% 

Non-Cyclical Consumer Goods 
& Services 9.09% Netherlands 18.18% 

Energy 6.03% Spain 6.06% 

Pharmaceuticals 12.12% Sweden 0.00% 
Utilities 3.03% Switzerland 9.09% 
Healthcare 6.06% United Kingdom 21.21% 

Basic Materials 0.00%   
Cyclical Consumer Goods & 
Services 3.03%   

Notes. This table reports the weights of each industry and country in the whole dataset. 



 

Table 4: The effect of different knowledge variables on the analysts’ accuracy – OLS 
estimation 

Independent 
variables 

Model 1 Model 2 Model 3 Model 4 Model 5 

Constant 0.247*** 0.267*** 0.225** 0.527 0.986 
AGE -0.003** -0.003** -0.003** -0.003** -0.003** 
VOL -0.023 -0.023 -0.007 -0.019 0.015 
CLUSTER  -0.003   -0.0001 
NET   0.697  12.013 
OUTPUT    -0.025 -0.069 
D05 -0.094 -0.088 -0.087 -0.093 -0.081 
D06 -0.104 -0.098 -0.106 -0.099 -0.093 
D07 -0.108 -0.100 -0.124 -0.103 -0.121 
R-squared 0.031 0.032 0.035 0.032 0.041 
Adj. R-squared 0.007 0.002 0.006 0.003 0.002 
Durbin Watson 2.055 2.052 2.056 2.05 2.061 
Prob (F-stat) 0.266 0.366 0.299 0.357 0.397 
OLS Estimates; *, ** and *** denote significance at the 10%, 5% and 1% levels respectively. 
Notes: This table describes the main results obtain by OLS estimations of different model specifications. The 
independent variable is always PMAFE, representing the analyst’s accuracy, while CLUSTER, NET and 
OUTPUT are defined above and represent alternatively measures of different analysts knowledge. VOL and 
AGE are 2 control variables indicating, respectively, the company earnings volatility and the age of the analysts 
forecast. Finally, D05, D06 and D07 are dummy variables controlling for a time effect. 
 
 
 
Table 5: The effect of different knowledge variables on the analysts’ accuracy – Fixed 
effect estimation 

Independent 
variables 

Model 1 Model 2 Model 3 Model 4 Model 5 

AGE_D -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** 
VOL_D 0.060 0.068 0.166 -0.005 0.16 
CLUSTER_D  -0.026   -0.023 
NET_D   9.59*  9.40* 
OUTPUT_D    -0.164 -0.009 
D05 0.0008 0.001 0.007 -0.0005 0.007 
D06 0.0013 0.002 0.016 0.006 0.017 
D07 0.0002 -0.0008 -0.016 -0.003 -0.017 
R-squared 0.041 0.047 0.069 0.045 0.075 
Adjusted R-squared 0.021 0.024 0.045 0.022 0.042 

Durbin-Watson stat 2.084 2.072 2.10 2.08 2.09 
Fixed-effect Estimates; *, ** and *** denote significance at the 10%, 5% and 1% levels respectively. 
Notes: This table describes the main results obtain by Fixed effect estimations of different model 
specifications. The independent variable is always PMAFE, representing the analyst’s accuracy, while 
CLUSTER, NET and OUTPUT are defined above and represent alternatively measures of different analysts 
knowledge. VOL and AGE are 2 control variables indicating, respectively, the company earnings volatility and 
the age of the analysts forecast. Finally, D05, D06 and D07 are dummy variables controlling for a time effect. 



APPENDIX A 

This appendix illustrates how we identify and define the hubs of expertise following a cluster-based 

approach.  

The key point is the definition of an index allowing us to rank the European sectors by knowledge 

intensity. The methodology, based on the literature about cluster theory, is for the identification of 

two different proxies of hub of expertise. 

Firstly, in order to identify the boundaries and size of hubs of expertise, we apply the Hoen 

algorithm (Hoen, 2002), based on symmetric input-output tables.16 Hoen asserts that any sector 

needs linkages with other sectors in order to develop its own business. The symmetric input-output 

tables of different countries should represent these relations. Therefore, by analysing the input-

output tables, we identify the strongest linkages between sectors and thus the clusters, i.e. 

aggregations of sectors within a national economy.  

Input-output analysis can be used to evaluate the impact of different policies on macroeconomic 

variables, such as gross domestic product, employment, consumption, productivity, 

competitiveness, etc, as well as the environment. In the 1930s, the economist Wassily Leontief 

described the inter-industry relations in the economy from which it had developed. The structure of 

each sector’s production activity was represented by appropriate structural coefficients, which 

described in quantitative terms the relationships between the inputs that it absorbs and the output 

that it produces. The input-output framework was based on three types of table: supply tables, use 

tables and symmetric input-output tables. A synthetic description of each table is given below. 

Eurostat defines the supply table as a product-by-industry-based table, in which products are placed 

in the rows and industries and imports in the columns. A simplified illustration can be represented 

in the following way: 

 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
16 The OECD defines an input-output table as a tool for the presentation of a detailed analysis of the process of 
production and the use of goods and services (products), and the income generated in that production for any European 
country. 



Industries Industries 

Product Agriculture Industry Services Activities 

Import Total 

Agricultural 

products 

Industrial 

products 

Services 

Output by product and by industry 
Import by 

product 

Total supply by 

product 

Total Total output by industry Total imports Total supply 

Table A.1. A simplified supply table. Source: Eurostat (Eurostat, 18) 

The supply table’s rows exhibit the supply of goods and services to sectors by the type of product, 

differentiating between domestic supply and imports. The columns indicate the domestic output of 

industries by product. 

The use table is a product-by-industry-based table with products and components of value added in 

the rows and industries, categories of final use and imports in the columns. A use table shows the 

use of goods and services by product and by type of use, i.e. as intermediate consumption by 

industry, final consumption, gross capital formation or export. A simplified illustration is the 

following: 

Industries Final uses Industries 

Product Agriculture Industry Services 

Activities 

Final 

consumption 

Gross 

capital 

formation 

Exports 

Total 

Agricultural 

products 

Industrial 

products 

Services 

Intermediate consumption by 

product and by industry 

Final uses by product and by 

category 

Total use 

by product 

Value 

added 

Value added by component and by 

industry 

 Value 

added 

Total Total output by industry Total final uses by category  

Table A.2. A simplified use table. Source: Eurostat (Eurostat, 20) 

The symmetric input-output tables are analytical tables derived from the supply and use system. An 

input-output table is a quantitative economic tool which represents the interdependencies between 



different branches of the national economy or different, even competing, economies. The 

transformation procedure converts the product-by-industry system of the supply and use tables into 

a product-by-product system or industry-by-industry system. Input-output tables are used to identify 

economically-related industry clusters and also so-called ‘key’ or ‘target’ industries of a specified 

economy. 

Homogeneous units of production Final uses Products 

 

 

Products 

Agricultural 

products 

Industrial 

products 
Services 

Final 

consumption 

Gross 

capital 

formation 

Exports 

Total 

use 

Agricultural 

products 

Final uses by product and by 

category 

Industrial 

products 
 

Services 

Intermediate consumption by 

product and by 

homogeneous units of production 
Final uses by product and by 

category 

Total 

use by 

product 

Value 

added 

Value added by component and by 

homogeneous units of production 
  

Imports for 

similar 

products 

Total imports by product   

Supply 

Total supply by homogeneous 

units 

of production 

Total final uses by category  

Figure A.3. A simplified input-output table. Source: Eurostat (Eurostat, 25) 

Input-output tables often contain an enormous amount of detailed data. In order to deal with these 

data, it is necessary to aggregate the data. One possibility is to search for clusters of sectors with 

strong linkages. The clusters then denote how the sectors may be aggregated (Aroche-Reyes, 2001). 

Hoen (2002) developed an algorithm based on these symmetric input-output tables. His algorithm 

aggregates sectors into clusters after the following rule: two sectors compose a cluster if their 

relations, the so-called linkages, to economic growth, are large, compared to the whole economic 

system.  



This algorithm is based on the matrices of intermediate consumption across industries. Then, to 

identify a cluster empirically, the author uses the block diagonal matrix method17.  

As suggested by Hoen, to apply his procedure we first have to set a threshold of significance level 

for the elements of the input-otput matrix that we use. We use a cut-off point of 2%. Then, we have 

to select all elements that belong to the 2% of largest elements. Elements that do not satisfy this 

restriction are put to zero. 

Then we have to select, check if the intermediate consumption matrix is decomposable and 

rearrange the sectors so that the elements are given in blocks.  

A block diagonal matrix can be split up into parts with no connections to each other. The algorithm 

reported below rearranges the sectors appropriately. All of the elements between sectors which are 

not in the same block are zero. Hence, all off-diagonal blocks would consist entirely of zeros. The 

zeros denote the boundaries of the clusters, while each block of matrix represents a cluster.  

According to Hoen, (Hoen, 2002, 25), the algorithm to use for rearranging sectors and dividing 

them into clusters is the following one:   

Step 1. Start at the upper-left part of the input-output table, with the element in the first column and 

the first row. The sector belonging to this element is the first temporary cluster.   

Step 2. Move to the sector in the next row. Compute the sum of the deliveries from this sector to all 

sectors of the temporary cluster and the deliveries from all sectors of the temporary cluster to this 

sector. If this number is zero, go to step 3. Otherwise, add this sector to the temporary cluster and 

repeat step 2.  

Step 3.  Move to the next sector and compute the sum of the deliveries from this sector to all sectors 

of the temporary cluster and the deliveries from all sectors of the temporary cluster to this sector. If 

this number is zero, go to step 4. Otherwise, repeat step 3.  If the last sector is reached, go to step 5.   

Step 4. Swap the sector just found with the first sector right below the last sector of the temporary 

cluster. (For example, if the temporary cluster consists of the sectors 1, 2, and 3, and sectors 4 and 5 

have no linkages with the first three sectors whereas sector 6 does, swap sectors 4 and 6). Swap the 

rows and the columns. Next, add the sector just found and swapped to the temporary cluster (in the 

example, add sector 6 to the temporary cluster). Continue with the last sector of the temporary 

cluster (in the example, let’s say, sector 6, which is now the fourth row (and column) of the new 

matrix) and move to step 2.   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 Hoen (2002) shows that this method brings to same results also selecting other input-output tables. 



Step 5. The temporary cluster is now a definitive cluster. Go to the first sector directly beneath the 

last sector of this cluster. This sector is the starting sector of the new temporary cluster. Move to 

step 2. 

Hoen’s algorithm allows us to identify hubs by the intermediate consumption flow in a national 

perspective. 

 

APPENDIX B 

 

This appendix illustrates how we identify and define the hubs of expertise following a network-

based approach.  

We base our methodology on Cetorelli and Presotiani (2009)’s approach, which adopted network 

analysis to deal with a comparison of stock exchanges in a global perspective. Following their 

procedure, we determine the so-called prestige index which allows us to compare hubs of expertise 

from different countries. We regard each country as a network and the sectors of tha country as 

nodes of the network. The production patterns are indicates ties between nodes.  

As in the approaches used previously, we start from an input-output matrix and we build a network 

matrix. Each element of the matrix is considered as a bidirectional flow.  

Figure B.1 describes a typical network matrix, used in our framework. The row entries represent the 

origin of the flow, while the column entries present the destination of it. In this way, the main 

diagonal accounts for flows due to the sector activity (measured by the sum of intermediate 

consumption and value added of each sector) and off-diagonal entries represent interactions 

between different nodes. For instance, I.C.11+V.A.11 indicates the flow produced and accumulated 

by industry 1 itself, I.C.12 indicates the flow of intermediate consumption from industry 1 (origin) to 

industry 2 (destination), while I.C.21 is the flow of intermediate consumption from industry 2 to 

industry 1.  

 Industry 1 Industry 2 Industry 3 Industry 4 Industry 5 

Industry 1 I.C.11+V.A.11 I.C.12 I.C.13 I.C.14 I.C.15 

Industry 2 I.C.21 I.C.+V.A. 0 0 0 

Industry 3 I.C.31 I.C.32 I.C.+V.A. I.C.34 0 

Industry 4 I.C.41 0 0 I.C.+V.A. 0 

Industry 5 I.C.51 0 0 0 I.C.+V.A. 

Figure B.1. A network matrix example 



By analysing the matrix by row, we can identify the intensity of the interaction of each unit towards 

other destination nodes. This indicator is called the out-degree index and is calculated as the row 

sum, excluding the main diagonal entry. In examining the matrix by column, it is possible to 

compute the so-called in-degree index, which represents the ability to influence the origin of flows. 

Neither index offers details about where flows are coming from.  

In order to consider the out-degree and in-degree indices simultaneously, Cetorelli and Peristiani 

(2009) suggested using the betweenness index, which exploits network ties and captures the 

uniqueness of a given node in a network. Let mjk(ni) be the maximum flow between nodes (nj ,nk) 

which goes through node ni. Aggregate across all possible pairs of nodes in the network, other than 

ni, and obtain the overall betweenness of node ni as . In order to allow for comparison 

over time, normalisation is recommended, so that the betweenness index of node ni is: 

       (eq. B1) 

 

Therefore, the prestige index of node ni is: 

Pr (ni) = x1i P(n1)+ x2i P(n2)+ …+ xNi P(nN)    (eq.B2) 

where the weights are represented by the flows from each of the nodes onto ni . We have N 

equations in N unknowns for each network. 

This sophisticated and standardised index allows for the judgement of the importance of each node 

in a network, fully exploiting the information contained in the entire network structure.  

This metric allows us to normalise the data from symmetric input-output tables and identify an 

international ranking for hubs of expertise. This index is a proxy for the knowledge level of every 

industry in each country. The greater values in this index are associated with the greater influence 

of the sector in the production of goods and services for the whole economy. 

In basic terms, we dispose the flows of intermediate consumption between every pair of sectors on 

the off-diagonal entries, while the main diagonal includes the sum of the intermediate consumption 

flows within every sector with the sector value added. This matrix represents all of the data on a 

country’s production. We divide every column of the matrix by the column sum and apply the 

power method in order to calculate the eigenvector associated with the largest eigen value of the 

matrix. This eigenvector contains the index of prestige of any sector. Lastly, we identify the main 

sector of each firm and assign to each analyst covering that firm the index of prestige associated 

with that analyst’s country location.  

 



APPENDIX C 

This appendix illustrates and summarises the application of the theoretical framework through an 

illustrative example: calculate the variables CLUSTER, OUTPUT and NET for the UK, assuming 

that this economy has just six sectors. 

 

The cluster-based approach: 

 

We start from the following input-output table18 where the off-diagonal elements are the 

intermediate consumption between two industries. The main diagonal elements are the sum of the 

intermediate consumption and the value added of a sector: 

 

Sectors 1 2 3 4 5 6 
1 33000 200 57 4500 7000 5000 
2 200 500 3000 20000 30000 100 
3 57 3000 10000 300 1000 1500 
4 4500 20000 300 2000 2500 3000 
5 7000 30000 1000 2500 20000 6000 
6 5000 100 1500 3000 6000 45000 

Table C.1. Input-output tables among UK industries. 

 

We calculate an I-O matrix of only the intermediate consumption between a country’s different 

industries. The off-diagonal elements are expressed as a percentage of the largest intermediate 

consumption between two industries, the benchmark for which has been set as equal to 100% (in 

this case, 45,000 is set as 100%). The main diagonal elements, which represent the intermediate 

consumption of the same industry, are zeros. We also set a minimum threshold for input and 

output entries to be part of the matrix at 2%. Therefore we should delete the elements highlighted 

in yellow.  

 

Sectors 1 2 3 4 5 6 
1 0,00 0,44 0,13 10,00 15,56 11,11 
2 0,44 0,00 6,67 44,44 66,67 0,22 
3 0,13 6,67 0,00 0,67 2,22 3,33 
4 10,00 44,44 0,67 0,00 5,56 6,67 
5 15,56 66,67 2,22 5,56 0,00 13,33 
6 11,11 0,22 3,33 6,67 13,33 0,00 

Table C.2. Input-output tables of intermediate consumption among industries express as 

percentages. 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
18 These numbers are hypothetical. This is just an exemplification. 



Hence, the matrix becomes: 

 

Sectors 1 2 3 4 5 6 
1 0,00 0,00 0,00 10,00 15,56 11,11 
2 0,00 0,00 6,67 44,44 66,67 0,22 
3 0,00 6,67 0,00 0,00 2,22 3,33 
4 10,00 44,44 0,00 0,00 5,56 6,67 
5 15,56 66,67 2,22 5,56 0,00 13,33 
6 11,11 0,22 3,33 6,67 13,33 0,00 

Table C.3. Input-output tables of intermediate consumption among industries express as 

percentages and values greater than the threshold. 

 

That can be expressed in absolute values as: 

Sectors 1 2 3 4 5 6 
1 0 0 0 4500 7000 5000 
2 0 0 3000 20000 30000 100 
3 0 3000 0 0 1000 1500 
4 4500 20000 0 0 2500 3000 
5 7000 30000 1000 2500 0 6000 
6 5000 100 1500 3000 6000 0 

Table C.4. Input-output tables of intermediate consumption among industries express in 

absolute values and values greater than the threshold. 

 

Putting the matrix in the block diagonal form by rearranging sectors according to Hoen (2002)’s 

algorithm, the matrix shows which sectors belong to which clusters.  

Let us assume that the diagonalisation technique applied to this example,19 result in the 

identification of the two clusters coloured in the diagonal blocks below. The elements of the matrix 

are the intermediate consumptions. 

  

Sectors 1 6 4 3 2 5 
1 0 5000 4500 0 0 0 
6 0 0 3000 0 0 0 
4 0 0 0 0 0 0 
3 0 0 0 0 3000  
2 0 0 0 0 0 30000 
5 0 0 0 0 0 0 

Table C.5. Input-output tables of intermediate consumption among industries rearranged 

by clusters. 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
19 The diagonalisation procedure implemented by Hoen is reported step by step in the Appendix A. In this example, we 
are not following the indicated steps, because it is difficult to make it effective in this simplified example. Therefore, we 
are assuming its implementation and the results indicated in Table 5. 



We can now calculate the CLUSTER value for each sector composing the cluster. 

Clusters Sector Sum of Sij CLUSTER=LN( Sum of Sij) 
1 12500 9.434 
6 12500  9.434 

Cluster 1 

4 12500 9.434 
3 33000 10.404 
2 33000 10.404 

Cluster 2 

5 33000 10.404 
Table C.6. Input-output tables of intermediate consumption among industries rearranged 

by clusters in UK. 

Cluster 1 is composed of sectors 1, 4 and 6, while cluster 2 contains sectors 2, 3 and 5. We 

associate the sum of the intermediate consumption of the corresponding cluster to each sector and 

by applying the natural log transformation, we obtain the variable CLUSTER. 

The second step is to attribute the CLUSTER values to analysts. Following our hypothesis, analysts 

located in the UK who evaluate companies based either in the UK or in another country, and 

belonging to one of the sectors 1, 4 or 6, will have a stock of knowledge of about 9.43. The same 

analysts who evaluate companies belonging to sectors of cluster 2 (sectors 2, 3 or 5) will have a 

higher stock of knowledge of about 10.40. 

Let us assume that another country, for example Italy, could have the same sectors agglomerated in 

a different way. The stock of knowledge (CLUSTER) values would be different. Let us suppose, 

for instance, that Italy has a cluster value for sector 1, 2 and 3 equal to 5 and for sectors 4, 5 and 6 

equal to 12, as summarized in the following table: 

 

Clusters Sector CLUSTER=LN( Sum of Sij) 
1 5 
2 5 

Cluster 1 

3 5 
4 12 
5 12 

Cluster 2 

6 12 
Table C.7. Input-output tables of intermediate consumption among industries rearranged 

by clusters in Italy. 

 

According to our framework, an Italian analyst evaluating a company belonging to sector 4, 5 or 6 

would perform better than the UK analyst because he or she has a bigger stock of knowledge 

produced by the agglomeration of these sectors (12 vs 10.404), while the UK analyst will issue 

better forecasts for companies in sectors 1, 2 or 3 (9.434 vs 5). 

 



The sector- based approach: 

In order to apply the sector-based approach and calculate the variable OUTPUT, we start with a 

Use table (see Appendix A for a detailed definition)20 using the same numbers used in the previous 

approach: 

 

Sectors 1 2 3 4 5 6 
1 33000 200 57 4500 7000 5000 
2 200 500 3000 20000 30000 100 
3 57 3000 10000 300 1000 1500 
4 4500 20000 300 2000 2500 3000 
5 7000 30000 1000 2500 20000 6000 
6 5000 100 1500 3000 6000 45000 

Intermediate 
consumption 

33000 500 10000 2000 20000 45000 

V.A. 100 150 300 50 20 500 
Total output 

at basic price 
33100 650 10300 2050 20020 45500 

Table C.8. Use table of UK industries. 

 

We then scale the total output values for the country power purchase parity (PPP) in order to 

compare the same variables across different countries.  

If UK PPP is equal to 0.98, applying the formula of OUTPUT, our variable assumes the following 

values for each of the six sectors. 

 

Sectors 1 2 3 4 5 6 
OUTPUT 10,42749127 6,49717507 9,260101882 7,645797779 9,92468976 10,74567031 
Table C.9. Output values for UK industries. 

 

Therefore, we have to associate the OUTPUT variable for each analyst in the dataset.  

According to our framework and to these numbers, an analyst located in UK evaluating a firm 

from sector 1 will have a bigger stock of knowledge (10.42) than a colleague evaluating firms 

belonging to sector 2 (a stock of knowledge equal to 6.49), regardless to the company’s location. 

At the same time, if France, for instance, has different OUTPUT values, all else being equal, 

analysts located in that country will have a different informational advantage in evaluating the 

same companies. It depends on the stock of knowledge produced by France in relation to the six 

sectors. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
20 A Use table is a product-by-industry-based table with products and components of value added in the rows and 
industries, categories of final use and imports in the columns 



The network-based approach: 

Finally, in order to implement this procedure, we assume that the production value between sectors 

and within the same sector can be a proxy of the links of the network. Specifically, the production 

of each country is represented by a matrix which exhibits the flow of intermediate consumption 

between each pair of sectors on the off-diagonal entries, while the main diagonal shows the sum of 

the intermediate consumption flow within each sector and the sector value added. 

 

Therefore, if the matrix we are looking for is the following one: 

Sectors 1 2 3 4 5 6 
1 33100 200 57 4500 7000 5000 
2 200 650 3000 20000 30000 100 
3 57 3000 10300 300 1000 1500 
4 4500 20000 300 2050 2500 3000 
5 7000 30000 1000 2500 20020 6000 
6 5000 100 1500 3000 6000 45500 

Table C.10. Table of the UK production.  

 

We apply the algorithm (5) proposed in the literature by Cetorelli and Peristiani (2009) to the 

whole network.  

As indicated above, we divide each column of the matrix by the column’s sum. 

 

Sectors 1 2 3 4 5 6 
Sum per 
column 

49857 53950 16157 32350 66520 61100 

Table C.11. Sum of the UK production values by column (sector). 

 

And we obtain the standardised matrix (SM): 

Sectors 1 2 3 4 5 6 
1 0,66 0,00 0,00 0,14 0,11 0,08 
2 0,00 0,01 0,19 0,62 0,45 0,00 
3 0,00 0,06 0,64 0,01 0,02 0,02 
4 0,09 0,37 0,02 0,06 0,04 0,05 
5 0,14 0,56 0,06 0,08 0,30 0,10 
6 0,10 0,00 0,09 0,09 0,09 0,74 

Table 12. The standardized matrix (SM) of UK production values. 

 

After this standardisation, the system of equations becomes a more common matrix-characteristic 

equation, where the solution (that is, the vector of prestige indicators) is the eigenvector associated 

with the largest eigenvalue of the standardised matrix. 

Since we do not use any specific mathematical software to calculate the eigenvalue of the matrix, 



we apply the ‘power method’. 

 

Sectors 1 2 3 4 5 6 
1 0,48 0,11 0,02 0,12 0,12 0,13 
2 0,12 0,49 0,16 0,08 0,17 0,08 
3 0,01 0,05 0,42 0,04 0,04 0,04 
4 0,08 0,05 0,09 0,25 0,20 0,05 
5 0,15 0,21 0,17 0,40 0,37 0,12 
6 0,16 0,09 0,14 0,10 0,11 0,58 
       

Sectors 1 2 3 4 5 6 
1 0,29 0,15 0,09 0,16 0,16 0,17 
2 0,16 0,31 0,20 0,16 0,19 0,13 
3 0,03 0,06 0,20 0,06 0,05 0,05 
4 0,10 0,10 0,11 0,16 0,15 0,08 
5 0,21 0,23 0,22 0,30 0,29 0,18 
6 0,21 0,15 0,18 0,16 0,16 0,39 
       

Table 13. First two iterations to calculate the eigenvalue of the SM. 

 

And after a number of iterations, the matrix converges to the following: 

Sectors 1 2 3 4 5 6 
1 0,011 0,011 0,011 0,011 0,011 0,011 
2 0,004 0,004 0,004 0,004 0,004 0,004 
3 0,001 0,001 0,001 0,001 0,001 0,001 
4 0,001 0,001 0,001 0,001 0,001 0,001 
5 0,020 0,020 0,020 0,020 0,020 0,020 
6 0,000 0,000 0,000 0,000 0,000 0,000 

Table 14. The eigenvectors of the SM. 

 

Where all the equal columns are the eigenvectors of the SM. 

NET for the UK is therefore equal to the following vector of values which represents the prestige 

index of each sector in that country: 

 

Sector NET 
1 0,011 
2 0,004 
3 0,001 
4 0,001 
5 0,020 
6 0,000 

Table 15. NET values for UK sectors. 

 

According to this approach, a UK analyst evaluating companies belonging to sector 1 has a stock 



of knowledge equal to 0.011, whereas whilst evaluating companies in sector 6 he or she has an 

informational advantage equal to zero. Each country (network) has a proper NET vector and, 

therefore, analysts located in different countries have different informational advantages deriving 

from the network to which they are closest. 
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