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Abstract 

In this paper, we propose a discrete time model for a firm asset value 
process, in a context of incomplete accounting information. We model 
the logarithm Z of the firm asset value process as a Markov chain. The 
debtholders do not have perfect information about the actual value of 
the firm: they receive only a discrete noisy stream of reports Y. We 
study the pair { }YZ ,  relying on linear filtering techniques. We also 

characterize the marginal distributions of the filter, discussing some 
significant properties. 

1. Introduction 

In this work, we develop a discrete time model under filtering language 
to provide closed form equation for the conditional densities of the value of 
the asset of a firm, assuming that debtholders have only partial information. 
In Duffie and Lando [1], it is studied the effect of imperfect information on 



Marco Tolotti 136 

the default probabilities and indeed on the term structure of credit spreads. In 
that paper, the logarithm of the firm value process tZ  is modeled as a 

Brownian motion with drift m and volatility σ, assuming that only a stream 
of discrete noisy reports itY  is given to the secondary market. This means 

that the debtholders only have partial information about the real value of the 
firm. An important “shadow information”, available for both shareholders 
and debtholders, is given by the fact that they do know in each time if the 
firm has (or has not) already defaulted. In this model, the default is controlled 
by the stopping time { }.:inf: zZt t ≤=τ  

The problem of computing the density of the unobserved asset price 
process, conditional on public information, has been analyzed by recent 
literature by means of (non-linear) filtering schemes (see, among the others, 
Frey and Runggaldier [2] and Frey and Schmidt [3, 4]). All these models are 
very general and the filter densities can often be recovered relying on particle 
filters (see Runggaldier [6]). 

What we propose in this paper, is a simple linear filter formulation of this 
problem on a discretized time scale ( ),...,,1 ntt  where many computations 

may be explicitly provided. More precisely, we rely on the following system: 
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where ( )nv  and ( )nw  are independent sequences of independent standard 

normal random variables and { },S∈== ntnn BA I  being S  the set of times 

at which the secondary market receives a report. 

We study the system { }YZ ,  via the conditional distributions of Z given 

Y. It turns out that it is not trivial to link the information given by the discrete 
observations with the shadow information given by the no default indicator. 
The final aim is to predict at any time nt  the behavior of ntZ  conditioned on 

the public (and partial) information. Moreover, we provide an estimate of the 
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filter density in the limiting case where the increment between nt  and 1+nt  

tends to zero (i.e., we are back to a continuous time model). 

The remainder of this paper is as follows: In Section 2, we recall the 
related literature. In Section 3, we propose a discretization of the model, 
analyzing some important features of the filter density. Section 4 concludes. 

2. A Structural Model under Partial Information 

In Duffie and Lando [1], it is analyzed the credit risk related to a 
corporate debt, in the case when debtholders are only partially informed 
about the real firm asset value of the company. Partial (or incomplete) 
information leads to the fact that yield spreads on defaultable bonds are non- 
zero even for short time maturity products (when maturity tends to zero). 

Let V represent the asset value of a firm, where 

 ,t
t
t dWdtV

dV
σ+µ=  (1) 

0>σ  and .R∈µ  A solution to (1) is provided by 

 .2;; 2
0 σ−µ=σ++== mWmtZZeV tt

Z
t t  (2) 

The firm is operated by its equity holders. The equity holders’ only 
choice is when to liquidate the firm. Under mild assumptions, it is proved in 
Leland [5] that the optimal liquidation policy τ corresponds to liquidate at the 
first time in which V is at or below a level ,v  so that 

 { }.:inf vVt t ≤=τ  (3) 

Concerning the bond holders, they only receive imperfect and periodic 
signals about .tV  More in details, what they observe is the process 

( ) { },...,,1 nttttY ∈  where ( ) niit ≤  is a stream of imperfect information selected 

times and where 
 ,ttt UZY +=  (4) 

being ntt UU ...,,1  i.i.d. random variables with distribution ( ).1,0N  
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Having introduced the financial model, we now specify the mathematical 
structure behind the asset value process, the stream of reports and the default 
indicator. In particular, it is worth to distinguish two different filtrations, the 
perfect filtration ( )ttF  generated by tV  and the imperfect bond market 

filtration ( )ttH  generated jointly by the noisy accounting report stream and 

by the indicator of no default. 

Definition 2.1 (Imperfect information sigma algebra). Given tY  as in (4), 

the imperfect information sigma algebra is ( ) ,ttH  where 

 ({ { } })tsYY sttt n ≤≤σ= ≤τ 0:,...,,1 IH  (5) 

for the largest n such that ,ttn ≤  and where τ is as defined in (3). 

3. The Discrete Time Model 

In this section, we describe the discrete time model. The final aim is to 
provide a closed formula for the probabilities of default of the firm value 
process. The state variable Z (corresponding to (2) in the Brownian case) has 
the following discrete time evolution from time tn∆  to time ( ) :1 tn ∆+  

 ,1 nnn wtZtmZ ∆σ++∆=+  (6) 

where the process ( ) N∈nnw  is a white noise such that ( )1,0~ Nnw  and m, 

σ are defined as in (2). 00 zZ =  is known. 

In the same way, we consider the evolution of the discrete observable 
variable nY  as the information we receive at discrete times about the real 

value of the unobserved process .nZ  

To be consistent with the continuous time model, we assume that the 
process Y can take place on a subset of the time scale. We call pricing times 
the instants in which the price Z is computed (but not necessarily given to the 
market) and report times the instants when a new signal Y is available to the 
market. Summarizing, we have: 
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 ,nnnnn vBZAY +=  (7) 

where { }Stnn nBA ∈== I  and { } { }.timespricingtimesreport =⊂= IS  

( )nnv  is a white noise with ( )1,0~ Nnv  independent of w, and ≡0Y  

00 zZ =  is perfectly known. We obtain the system 

 






+=

∆σ++∆=+

.

,1

nnnnn

nnn

vBZAY

wtZtmZ
 (8) 

In order to provide an explicit expression for the distribution of YZ |  

(i.e., the distribution of Z conditioned on the observation Y), we first prove 
two lemmas concerning the unconditional distribution of the vector Z. 

Lemma 3.1. The vector ( )kZZ ...,,1=Z  is multivariate normal, ~Z  

( ),, ΣAkN  where BB′=Σ  with 
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Proof. By (6), ( ),10 kk wwkmzZ ++∆σ+∆+=  .k∀  Then =Z  

,WA B+  being ( )kww ...,,1=W  the white noise defined in (6).  

Lemma 3.2. The joint distribution of Z, ( ),...,,11 kk zZzZ ≤≤P  can be 

written as 

( )
{ ( ) ( ) }∫ ⊂

−−++−+
σ∆π

kC kkk
duuuuu

R
,ˆˆˆˆˆexp

2

1 2
1

2
12

2
12

u  

where ( ] ( ]{ }kzzC ,...;;, 1 ∞−∞−=  and .ˆ iii auu −=  

Proof. Put 0A =  (the term A contributes only in a translation of the 
values ,iz  where we compute the joint distribution), so that .ˆ uu =  Being Z 

Gaussian (see Lemma 3.1), it holds 
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( )
( )

{( ) ( )}∫ −Σ′−
π

Σ
=≤≤ −

−

C kkk dzZzZ .exp
2
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11 zAzAzP  

It is easy to see that 

( ) .
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In particular, .11 =Σ−  Moreover, 

 .222 22
221

2
1

1
kzzzzz +++−=Σ′ − zz   

We now provide a matrix representation also for the reports’ vector      
Y. Assume that in the interval [ ],,0 ktt  we see kh ≤  reports at dates 

( )....,,1 htt  To represent this situation in a reduced form, we define a non- 

square 0-1 matrix { } khM ×∈ 1,0  such that 

 ( ) ,ijMM =  where .1 jtM iij =⇔=  (9) 

Consequently, we can write 

 ,vZY += M  (10) 

where ,hR∈Y  kR∈Z  and ( )hh
h I,~ 0v NR∈  is independent from Z. 

We can think of M as a “report policy” a priori decided by the 
shareholders. 

Given M as in definition (9), we introduce some notations: 

,~ kk
kIMM ×∈=′ R  

,hh
hIMM ×∈=′ R  

,1 MMV ′+Σ= −  

( ) .~ 1−+′Σ= hIMMV  
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The square matrix kIMM ~
=′  is diagonal where entries corresponding  

to “no report times” are zero (therefore it is generally not invertible). The 

matrix MM ′  is simply the identity matrix in .hR  

Concerning ,~V  taking a matrix X, the map ,hhkk ×× → RR  ,MMXX ′→  

operates a “cutting” of the rows and the columns corresponding to times 
where we do not see a report. 

Lemma 3.3 (Matrix Inversion Lemma). The following equalities hold: 

  (i) ( ) ( ) ;:~ 11 −− ′Σ=+′Σ= MMVIMMV h  

 (ii) ;~ 1 VV =−  

(iii) ( ) ( ) .11 MVMMVM ′Σ=′Σ −−  

Proof. Notice that, according to the definitions of V and M, 

( ) ( )MIIMMIMMMV kkk ′Σ+=′Σ+Σ=′Σ − ~~1  

,~ MMIMIMMM hk ′Σ+=′Σ+′=  

and this proves (i). Thanks to (i), (ii) corresponds to prove that 

( ) .1 MMMVM ′+Σ=′Σ −  

Since ,1=Σ  we have .11 Σ=Σ′+Σ=′+Σ −− VMMMM  Then 

we must ensure that 

.MMVV ′Σ=Σ  

Thanks to the particular form of the matrix ( ) ( ),~
kk IIV +Σ=Σ  it can be 

shown that the determinant of the reduced one ( )hh×Rin  is the same as the 

initial one. Indeed, consider row k  of ΣV  corresponding to a time of no 

report ( ( ) ).0~i.e., =kkkI  Then ΣkI~  has a zero vector as thk  row. Summing 
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,kI  we obtain a thk  row of the type ( ).0...,,0,1,0...,,0  Then the 

determinant of the original matrix is exactly the same as the determinant of 

the reduced matrix ( ),in 11 −×− kkR  where we have cut the thk  row and 

column. This can be done for all rows of no report. Point (iii) is proved 

arguing in a similar way.  

We are ready to provide a shape for the conditional distribution of .YZ |  

Proposition 3.4. Given a multivariate vector Z and observations Y as in 
equation (10) and a general report time matrix M, we have 

 ( ),, 1−µ| VkN~YZ  (11) 

where ( )MV ′+Σ=µ −− YA11  and ( ).1 MMV ′+Σ= −  

Proof. Recall that ( ).,~ ΣAZ kN  From (10), we have 

( ),, hh IMz~ZY N|  (12) 

 ( )., hh IMMM +′ΣA~Y N  (13) 

We need to prove that 

( )
( )

( ) ( ) .2
1exp

2 



 µ−′µ−−

π
=| zzYZ VVf k  

Note that 
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2
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 −′−−

π
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where ( ) 1~ −+′Σ= hIMMV  is the variance of Y. Relying on Bayes rule, 
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Using the definition of µ and Lemma 3.3, it is not difficult to see that 

( )
( )

[ ]

( ) ( ) ( )
.

2
1exp

22
1exp

2 1

1





 −′Σ′−−





 ′+µ′−′+Σ′−

π
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−

AYAY

zzzYYAA
YZ
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VVVf k  

Thanks to Lemma 3.3(ii) and (iii) all what we have to prove is 

( ) ( ) ( ) .11 µµ′=−′Σ′−−′+Σ′ −− VMMVMM AYAYYYAA  

For simplicity, we suppose .0=A  A more involved calculation provides 

a generalization for .kR∈A  We can rewrite the latter equation as 

( ) .111 YYYYYY MVVMVMVM ′′=′Σ′−′ −−−  

Simplifying and multiplying the first term by ,MM ′  we get 

( ) .11 YYYYYY MMVMVMMM ′′=′Σ′−′′ −−  

Using the definition of V, the l.h.s. can be rewritten as 

( ) ( ) YYYYYYYY MVMMMVVMVMMM ′Σ′−′′=′Σ′−′′ −−− 111  

( ) YYYY MVMMVIM k ′Σ′−′+Σ′= −−−− 1111 ~  

YYYY MMVMVIM k ′′=′′= −− 11~  

which concludes.  
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3.1. Adding the information of no default 

In this subsection, we compute the distribution of the vector Z 
conditioned on both the reports and the new information that default has not 
yet occurred up to the present time. We have 

( ) ( )
( ) { }

( ]( )
( ) .,,, YcZ

YzcZ
YcZ

YcZzZcZYzZ cz |>
|∈=

|>
|>≤=>|≤ > P

P
P

PP I  

Taking the derivative w.r.t. Z, we can write the joint density ( )zfZ nH|  of the 

process as 

 ( ) { }
( )

( ) ,YZ
zzf czZ |>

ϕ= >| cPn IH  (14) 

where ( )zϕ  is the density of the multivariate Gaussian distribution found in 

Proposition 3.4. ( )zfZ nH|  can be computed (at least numerically) given the 

model as in equation (8). 

We will now concentrate on the marginal density of the process nZ  

given { }.;, nkkYkn ≤>τσ=H  We call it ( ),zf n
Z nn H|

 where the superscript 

n indicates that we are looking at the n-dimensional vector. In particular, we 
show that this density is well defined and has some good properties in the 

interior of the domain where it is non-zero (  ,i.e. on { }).czz >|∈= nRC  

Furthermore, we discuss some limit properties of such a density function. 

We first marginalize the distribution 

 ( ) { }
( )

( ) ,∫ ∫ ∫
ζ

∞−

∞+

∞−

∞+

∞−
> |>

ϕ=|ζ≤ zYcZ
z

cz dPZP nn IH  (15) 

then we can compute ( )ζ|
n
Z nn

f H  as 

( ) ( )nn
n
Z ZPd

df
nn

HH |ζ≤
ζ

=ζ|  

{ }
( )
( )∫ ∫

∞+

∞−

∞+

∞−
−

−
> |>

ζϕ
=

−
,,...,, 11

n
n dP

zz
n zYcZczI   (16) 

where 1−
− ∈ n

k Rz  corresponds to z without the kth component. 
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Notice that we are allowed to cut the kth indicator { }c>ζI  because we 

know that we are in the interior of the domain c>ζ  by assumption. 

In order to study correctly the behavior of the densities of the variables 

kZ  when increments tend to zero, we refine the discretization of the interval 

[ ]t,0  that we are considering. 

Definition 3.5. On the interval [ ],,0 t  where ,0>t  define 

• ( )n
nς  a sequence of partitions ( )tttt n =<<<= 100  on [ ];,0 t  

• ;: ntt nn =ς=∆  

• ,: nn
k tkt ∆=  the ( )1+k th time of the partition ;nς  

• 00 ttn =  and ttn
n =  for all n; 

• .,2 N∈= ln l  

For a fixed ,nς  define 

 ( ) ( ( ) ),:, n
kt

n
k

n
k

n dztZPtzf H|∈=  (17) 

as the conditional density of kZ  under the partition nς  given the available 

information up to time .n
kt  We denote by 

( ) ( ( ) ),:, tdztZPtzf H|∈= ∗  

the density of a Brownian motion ( )tZ∗  with drift m and volatility σ, 

knowing that the trajectory of the Brownian motion up to time t has not 
fallen under the threshold level c. Notice that, for any ,nς  we have the 

equality in distribution ( ).n
k

d
t

tZZ n
k

∗=  

Proposition 3.6. Given the vectors nR∈Z  and ,hR∈Y  where h is 
finite and ;hn ≥  
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 (i) the conditional densities ( )n
k

n tzf ,  of kZ  exist and are continuous 

for each k on the closed domain [ );, ∞+c  

(ii) ( )n
k

n tzf ,  are analytic functions on the open set ( )., ∞c  

Proof. First, we want to show that the probability ( )YZ |> cP  is strictly 

positive, independently of the dimension n of the vector Z. Indeed, 

 ( ) ( ( ) ) ,,0~:, nPtctZPcP ∀>=∀>≥> ∗∗Z  (18) 

where ( )tZ∗  is a Brownian motion with drift m and variance σ. We can, in 

fact, see ( )nZZ ...,,1=Z  as observations of ∗Z  made at ( )....,,1 ntt  Indeed, 

for each n, it is true that 

( )

( )
.

11

















=
















∗

∗

n

d

n tZ

tZ

Z

Z
 

As a consequence, the event { }cZ >  contains the event { ( ) }., tctZ ∀>∗  
∗P~  in (18) is defined as the hitting probability of a Brownian motion, which 

is always strictly positive. 

Notice that this idea can be used only in the case when the increment t∆  
between two pricing times converges to zero when .∞→n  

This implies that, if we fix a final time ,t  then the discretization 

( )ttt n == ...,,0 0  converges to the continuous interval [ ].,0 t  

We can now substitute the unconditional probabilities in (18) with the 
corresponding conditional ones, obtaining 

 ( ) ( ( ) ) .,0:, nPtctZPcP ∀>=|∀>≥|> ∗∗ YYZ  (19) 

To prove (i), let us define ( )ζn
Zk

g  as the marginal density of the variable 

kZ  conditioned only on Y (see Proposition 3.4), meaning 
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 ( ) ( )∫ ∫
∞+

∞−

∞+

∞−
−ζϕ=ζ ....,,...,,1 kn

n
Z dzzg

k
z  (20) 

Then from (15) and (16), we can bound ( )n
k

n tf ,ζ  as follows: 

( ) { }
( )

( )∫ ∫ ∫
∞+

∞−

ζ

∞−

∞+

∞−
> |>

ϕ
ζ∂
∂=ζ≤ zYZ

z
cz dcPtf n

k
n I,0  

{ }
( )

( )∫ ∫
∞+

∞−

∞+

∞−
−> |>

ζϕ
=

− k
n dcP

zz
k zYZcz

...,,...,,1I  

( )
( )∫ ∫

∞+

∞−

∞+

∞−
−|>

ζϕ
≤ k

n dcP
zz zYZ

...,,...,,1  

( ) ( ) ( ) .11 ∞<ζ≤ζ
|>

= ∗
n
Z

n
Z kk

g
P

gcP YZ  

The first inequality follows from the fact that we are integrating a positive 
function on a bigger domain and the second from (19). 

Continuity of the density ( )n
k

n tf ,ζ  on the open domain { }c>ζ  is 

ensured by the continuity of ( ).⋅ϕ  So that point (i) is proved. 

Notice also that, being the function ( )ζ⋅ϕ ,  uniformly bounded by an 

integrable function, point (i) can be extended to the closed domain { }.c≥ζ  

Indeed, consider the limit .cζ  By the continuous version of Lebesgue’s 

Theorem of Dominated Convergence, we can interchange limit and integral 
operator. 

To prove point (ii), we rely on a recursive argument for ( )n
k

n tzf ,  in the 

time variable. Since ( )zn,  is fixed in this context, to simplify the notation, 

we will use the notation kf  in place of ( )., n
k

n tzf  

We can construct nf  starting from 0f  using a three step recursion: we 

start from .0
0

zf δ=  The first step is to use equation (8) to pass from 1−kt  

to .kt  Then we add the information given by the variable kY  and finally the 
information given by the no default indicator. 
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We now describe this algorithm, noticing that it preserves the analyticity 
on the open set ( )., ∞c  

(1) For any ,...,,1 nk =  define ( )n
n

n tzf ,~  the convolution of the two 

densities: ( )n
n

n tf 1, −⋅  and ( ),zgn  where the latter is the density of ,~
nw  i.e., 

( )

2

2
1

2
1:












∆σ

∆−−

∆σπ
=

n

n

t
tmz

nk e
t

zg  

so that 

( ) ( ) ( )∫
∞+

∞−
−−= .,,~

1 dxtxzfxgtzf n
k

n
k

n
k

n  

Note that this is the density function we obtain using the algorithm suggested 
by the first equation in (8). 

After the first run ( ),1=k  we obtain 1~f  which is analytic because it is a 

convolution of a delta function with an analytic function. For ,1>k  kf~  is 

again always analytic thanks to the convolution with the Gauss kernel. 

(2) Conditioning on ,kY  we obtain a density kf̂  which is again Gaussian 

with different mean and variance (see Proposition 3.4). This step again 
preserves the analyticity. 

(3) In order to obtain ,kf  we have to take into account the no default 

information. We operate a “truncation” at the level c. This implies that all the 
mass of the interval ( ]c,∞−  is moved to the complementary set ( )., ∞+c  

( )
( ) ( )




>
≤

=
cztzfnkC
cz

tzf n
k

n
n
k

n
if,,ˆ,

,if,0
,  

for some strictly positive constant ( )., nkC  On the set { },cz >  the mass 

changes but the properties of the function are left unchanged. This proves 

that ( )n
k

n tzf ,  is analytic for any k and .cz >   
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We now extend the results of Proposition 3.6 also to the limit case where 
n is letting go to infinity. We prove in particular a weak convergence “in 
distribution” for the density functions when the increments go to zero. 

Proposition 3.7. For any measurable set R∈C  and ,0>η  there exists 

n  big enough such that for any ,nn >  

 ( ) ( ) η≤ζζ−ζζ∫ ∫C C
n dtfdtf ,,  a.s. (21) 

Proof. As already noticed, ( ),n
k

d
t

tZZ n
k

∗=  where ( )tZ∗  is a Brownian 

motion with drift m and volatility σ. We thus identify n
kt

Z  with ( ).n
ktZ∗  

Take any measurable set ,R∈C  by definition of kH  and since ttn
n =  

for all n, we can write 

( ) ( )
( )YcZ

YcZ
|>

|>∈
=|∈ P

CZPCZP t
tt n
n

n
n

∩
H  

({ ( ) } { ( ) } )
({ ( ) } )

.
,

,
Y

Y
|≤∀>

|≤∀>∈
= ∗

∗∗

nkctZP
nkctZCtZP

n
k

n
k∩  (22) 

Note that the event { ( ) }nkctZ n
k ≤∀>∗ ,  is the union of two disjoint 

events: 

[{ ( ) } { ( ) }]tctZnkctZ n
k ∀>≤∀> ∗∗ ,, ∩  

[{ ( ) } { ( ) }].,, n
k

n
k ttctZnkctZ ≠∃<≤∀> ∗∗ ∩∪  

It can be rewritten as 

[{ ( ) }] [{ ( ) } { ( ) }].,,, n
k

n
k ttctZnkctZtctZ ≠∃<≤∀>∀> ∗∗∗ ∩∪  
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We use this equivalence in (22), obtaining 

({ ( ) } { ( ) } )
({ ( ) } )Y

Y
|≤∀>

|∀>∈
∗

∗∗

nkctZP
kctZCtZP

n
k ,

,∩  

({ ( ) } [{ ( ) } { ( ) }] )
({ ( ) } )

.
,

,,
Y

Y
|≤∀>

|≠∃<≤∀>∈
+ ∗

∗∗∗

nkctZP
ttctZnkctZCtZP

n
k

n
k

n
k ∩∩  (23) 

Now we take the limit for ∞→n  on both sides. Notice that, defining 

[{ ( ) } { ( ) }] ,,, n
n
k

n
k AttctZnkctZ =≠∃<≤∀> ∗∗ ∩  

then 

.0lim =






∞→
n

n
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Thus, the second term in (23) tends to zero (the denominator is always 
positive). Similarly, we can see that 

({ ( ) } { ( ) }) ,1,, =∀>→≤∀> ∗∗ tctZnkctZP n
k  

so that 

( ) ({ ( ) } { ( ) })
( ){ }( ) .,

,,lim tctZP
tctZCtZPCZP n

ntn ∀>
∀>∈=>∈

∗

∞→

∩cZ  

The r.h.s. can be rewritten as ( ( ) ( ) )ttctZCtZP H|∀>∈ ∗∗ ,,  and this is 

exactly the distribution of the geometric Brownian motion conditioned on 
({ { } })tsYY sttt n ≤≤σ= ≤τ 0:,...,,1 1H  defined in the original continuous 

time model. We obtain 

( ) ( ( ) ).lim tttn
CtZPCZP n

n
HH |∈=|∈ ∗

∞→
 

For any measurable set C, there exist n big enough and η such that 

 ( ) ( ) η≤ζζ−ζζ∫ ∫C C
n dtfdtf ,,  a.s.  
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4. Conclusions 

We showed how to explicitly compute the filtering density of a 
discretized version of a classical structural firm value model. In particular, 
assuming that the firm value is not perfectly observable, one has to consider 
an imperfect filtration generated by a noisy stream of discrete report times. 
Relying on classical linear filter theory, we provided analytical expressions 
for the filtering densities and we discussed some interesting properties. In 
particular, we provided regularity conditions of the density functions and 
convergence results when the time increments tend to zero. 
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