
International Journal of Computer Information Systems and Industrial Management Applications.

©MIR Labs, www.mirlabs.net/ijcisim/index.html

Observation-based Fine Grained Access
Control of Data
Raju Halder1 and Agostino Cortesi2

1Department of Computer Science and Engineering,
Indian Institute of Technology Patna, India

halder@iitp.ac.in

2DAIS, Università Ca’ Foscari Venezia, Italy
cortesi@unive.it

Abstract: In this paper, we propose an observation-based
fine grained access control (OFGAC) mechanism where data
are made accessible at various levels of abstractions accord-
ing to their sensitivity levels. In this setting, unauthorized
users are not able to infer the exact content of the confiden-
tial data, while they are allowed to get partial information
out of it, according to their access rights. The traditional
fine grained access control (FGAC) can be seen as a special
case of the OFGAC framework.
Keywords: Access Control, Abstract Interpretation,
Databases

I. Introduction

Fine Grained Access Control (FGAC) mechanism [9, 16,
18, 21, 23, 25, 28, 31, 32] is one of the most effective so-
lutions to ensure the safety of information in databases
even at lower levels such as individual tuple/cell level
(in case of relational databases) or element/attribute
level (in case of XML documents) without changing
their original structure. The traditional fine grained
disclosure policy p splits any database state into two
distinct parts: a public one (insensitive data) and a pri-
vate one (sensitive data). Generic users are able to see
the information from public part only, while the private
part remains undisclosed. We denote a database state
σ under a disclosure policy p by a tuple σp = 〈σh, σl〉,
where σh and σl represent the parts of the state cor-
responding to the private and public part respectively.
Given a database stateσp under a policy p and a query Q,
the execution of Q on σp returns the result ξ= S[[Q]](σp).
In reality, p depends on the context in which queries
are issued, for instance the identity of the issuer, the
purpose of the query, the data provider’s policy, etc.
As far as the security of the system is concerned,
the disclosure policy should comply with the non-
inter f erence policy [24], i.e. the results of admissible
queries should not depend on the confidential data in
the database. The non-inter f erence says that a variation
of private (sensitive) database values does not cause
any variation of the public (insensitive) view (see
Definition 1).

Definition 1 (Non-interference) Let σp = 〈σh, σl〉 and
σ′p = 〈σ′h, σ

′

l〉 be two database states under the disclosure
policy p. The non-inter f erence policy says that

∀Q,∀σp, σ
′

p : σl = σ′l =⇒ S[[Q]](σp) = S[[Q]](σ′p)

That is, if the public (insensitive) part of any two database
states under disclosure policy p are the same, the execution
of any admissible query Q over σp and σ′p return the same
results.
In the context of information flow security, the notion
of non-interference is too restrictive and impractical in
some real systems where intensional leakage of the in-
formation to some extent is allowed with the assump-
tion that the power of the external observer is bounded.
Thus, we need to weaken or downgrading the sensitiv-
ity level of the database information, hence the notion
of non-interference which considers weaker attacker
model. The weaker attacker model characterizes the
observational characteristics of the attacker and can be
able to observe specific properties of the private data.
Example 1 illustrates this situation with a suitable ex-
ample.
Example 1 Consider an XML document that stores cus-
tomers’ information of a bank. Figure 1(a) and 1(b) rep-
resent the Document Type Definition (DTD) and its in-
stance respectively. According to the DTD, the document
consists of zero or more “customer” elements with three dif-
ferent child elements: “PersInfo”, “AccountInfo”, “Credit-
CardInfo” for each customer. The “CreditCardInfo” for a
customer is optional, whereas each customer must have at
least one bank account represented by “AccountInfo”. The
element “PersInfo” records the personal information of cus-
tomers.
Suppose, according to the access control policy, that employ-
ees in bank’s customer-care section are not permitted to view
the exact content of IBAN and credit-card numbers, while
they are allowed to view only the first two digits of IBAN
and the last four digits of credit card numbers, keeping other
sensitive digits hidden. For instance, in case of the 12 digits
credit card number “4023 4581 8419 7835” and the IBAN
number “IT10G 02006 02003 000011115996”, a customer-

671-684ISSN2150-7988,Volume 5 (2013) pp.

MIR Labs,USA

<?xml version=“1.0”? >
<! DOCTYPE BankCusomers [>
<! ELEMENT BankCusomers(Customer*) >
<! ELEMENT Customer(PersInfo, AccountInfo+, CreditCardInfo?) >
<! ELEMENT PersInfo(Cid, Name, Address, PhoneNo) >
<! ELEMENT Cid (# PCDATA) >
<! ELEMENT Name (# PCDATA) >
<! ELEMENT Address (street, city, country, pin) >
<! ELEMENT street (# PCDATA) >
<! ELEMENT city (# PCDATA) >
<! ELEMENT country (# PCDATA) >
<! ELEMENT pin (# PCDATA) >
<! ELEMENT PhoneNo (# PCDATA) >
<! ELEMENT AccountInfo (IBAN, type, amount) >
<! ELEMENT IBAN (# PCDATA) >
<! ELEMENT type (# PCDATA) >
<! ELEMENT amount (# PCDATA) >
<! ELEMENT CreditCardInfo (CardNo, ExpiryDate, SecretNo) >
<! ELEMENT CardNo (# PCDATA) >
<! ELEMENT ExpiryDate (# PCDATA) >
<! ELEMENT SecretNo (# PCDATA) >
<! ATTLIST Cid IBAN CDATA #REQUIRED]>

(a) DTD

<?xml version=“1.0”? >
<BankCusomers>
<Customer>
<PersInfo>
<Cid> 140062 </Cid>
<Name> John Smith </Name>
<Address>
<street> Via Pasini 62 </street>
<city> Venezia </city>
<country> Italy </country>
<pin> 30175 </pin>
</Address>
<PhoneNo> +39 3897745774 </PhoneNo>
</PersInfo>
<AccountInfo>
<IBAN> IT10G 02006 02003 000011115996 </IBAN>
<type> Savings </type>
<amount> 50000 </amount>
</AccountInfo >
<CreditCardInfo>
<CardNo> 4023 4581 8419 7835 </CardNo>
<ExpiryDate> 12/15 </ExpiryDate>
<SecretNo> 165 </SecretNo>
</CreditCardInfo>
</Customer>
</BankCusomers>

(b) XML document

Figure. 1: A Document Type Definition (DTD) and its instance

care personnel is allowed to see them as “**** **** **** 7835”
and “IT*** ***** ***** ************” respectively, just to fa-
cilitate the searching of credit card number and to redirect
the account related issues to the corresponding country (viz,
“IT” stands for “Italy”). In addition, suppose the policy spec-
ifies that the expiry dates and secret numbers of credit cards
and the deposited amounts in accounts are fully-sensitive
and completely hidden to them. The traditional FGAC mech-
anisms are unable to implement this scenario as the IBAN
numbers or credit card numbers are neither private nor pub-
lic as a whole. To implement traditional FGAC, the only
possibility is to split the partial sensitive element into two
sub-elements: one with private privilege and other with pub-
lic. For example, the credit-card numbers can be split into
two sub-elements: one with first 12 digits which is made
private and the other with last 4 digits which is made public.
However, practically this is not feasible in all cases, as the
sensitivity level and the access-privilege of the same element
might be different for different users, and the integrity of data
is compromised. For instance, when an integer data (say, 10)
is partially viewed as an interval (say, [5, 25]), we can not
split it.
To cope with this situation, we propose an Observation-
based Fine Grained Access Control (OFGAC) mecha-
nism where data are made accessible at various levels of
abstractions according to their sensitivity levels, based
on the Abstract Interpretation framework. In this set-
ting, unauthorized users are not able to infer the exact
content of a data cell containing partial sensitive infor-
mation, while they are allowed to get a relaxed view of
it, according to their access rights.
The structure of this paper1 is as follows: section II
recalls some basics on Abstract Interpretation theory
and on the concrete and abstract semantics of database
query languages. We describe the proposed OFGAC

1The paper is a revised and extended version of [10, 12]

framework to the context of RDBMS and XML docu-
ments in sections III and IV respectively. In section V,
we discuss the related works in the literature. Finally,
in VI, we conclude our work.

II. Preliminaries

In this section, we recall some basics on the Abstract
Interpretation theory [6, 7] and on the concrete and ab-
stract semantics of database query languages [5, 11].

A. Abstract Interpretation Theory

The basic idea of abstract interpretation is that the pro-
gram behavior at different levels of abstraction is an
approximation of its formal concrete semantics. Ap-
proximated/abstract semantics is obtained from the con-
crete one by substituting concrete domains of computa-
tion and their basic concrete semantic operations with
abstract domains and corresponding abstract seman-
tics operations. The basic intuition is that abstract do-
mains are representations of some properties of interest
about concrete domains’ values, while abstract opera-
tions simulate, over the properties encoded by abstract
domains, the behavior of their concrete counterparts.
Abstract interpretation formalizes the correspondence
between the concrete semantics Sc[[P]] of syntactically
correct program P ∈ P in a given programming lan-
guage P and its abstract semantics Sa[[P]] which is a
safe approximation of the concrete semantics Sc[[P]].
The concrete and abstract semantics domain Dc and
Da respectively often enjoy stronger properties, such
as being complete partial orderings (CPO) or complete
lattices.

A CPO is a poset (D,v) where the set D is
equipped with an ordering relation v and satisfies
the following property: every sequence of elements

672 Halder and Cortesi

Table 1: Abstract Syntax of programs embedding SQL statements

Syntactic Sets
n : Z (Integer)
k : S (String)
c : C (Constants)
va : Va (Application Variables)
vd : Vd (Database Variables)
v : V , Vd ∪Va (Variables)
e : E (Arithmetic Expressions)
b : B (Boolean Expressions)
A : A (Action)
τ : T (Terms)
a f : A f (Atomic Formulas)
φ : W (Pre-condition)
Q : Q (SQL statements)
I : I (Program statements)

Abstract Syntax
c ::= n | k
e ::= c | vd | va | opu e | e1 opb e2, where opu ∈ {+,−} and opb ∈ {+,−, ∗, /,}
b ::= e1 opr e2 |¬b|b1 ∨ b2 |b1 ∧ b2 |true| f alse, where opr ∈ {=,≥,≤, <, >,,, . . . }
τ ::= c | va | vd | fn(τ1, τ2, ..., τn), where fn is an n-ary function.
a f ::= Rn(τ1, τ2, ..., τn) | τ1 = τ2, where Rn(τ1, τ2, ..., τn) ∈ {true, f alse}
φ ::= a f | ¬φ1 | φ1 ∨ φ2 | φ1 ∧ φ2 | ∀xi φ | ∃xi φ
g(~e) ::= GROUP BY(~e) | id
r ::= DISTINCT | ALL
s ::= AVG | SUM | MAX | MIN | COUNT
h(e) ::= s ◦ r(e) | DISTINCT(e) | id
h(∗) ::= COUNT(*)
~h(~x) ::= 〈h1(x1), ..., hn(xn)〉, where ~h = 〈h1, ..., hn〉 and ~x = 〈x1, ..., xn〉

f (~e) ::= ORDER BY ASC(~e) | ORDER BY DESC(~e) | id
A ::= select(va, f (~e′), r(~h(~x)), φ, g(~e)) | update(~vd, ~e) | insert(~vd, ~e) | delete(~vd)
Q ::= 〈A, φ〉 | Q′ UNION Q′′ | Q′ INTERSECT Q′′ | Q′ MINUS Q′′
I ::= skip | va := e | va :=? | Q | i f b then I1 else I2 | while b do I | I1; I2

x0 v x1 v ... v xn in D has a limit or least upper
bound in D, that is, there is an element in x ∈ D
(written as

⊔
i xi) such that, (i) ∀xi, xi v x, (ii) if

x′ is any other upper bound for the xi, then x v x′.

A poset (D,v) is called a complete lattice (denoted
〈D,v,t,u,>,⊥〉) if every subset S of D has a least
upper bound (written tS) and a greatest lower
bound (written uS) in it, and it is bounded by
a unique largest element > = tD and a unique
smallest element ⊥ = uD.

The correspondence between the concrete and abstract
semantics domains Dc and Da is provided by a Galois
Connection (Dc, α, γ,Da), where the function α : Dc

−→

Da and γ : Da
−→ Dc form an adjunction, i.e. ∀A ∈

Da,∀C ∈ Dc : α(C) va A ⇔ C vc γ(A). The functions
α and γ are called abstraction and concretization maps
respectively.
Let (C, α, γ,A) be a Galois connection, f : C → C be
a concrete function and f] : A → A be an abstract
function. f] is a sound, i.e., correct approximation of
f if f ◦ γ v γ ◦ f]. When the soundness condition is
strengthened to equality, i.e., when f ◦ γ = γ ◦ f], the
abstract function f] is a complete approximation of f in
A. This means that no loss of precision is accumulated
in the abstract computation through f].

B. Semantics of Query Languages

An application embedding SQL statements basically in-
teracts with two worlds: user world and database world.
Corresponding to these two worlds there exist two sets
of variables: database variablesVd and application vari-
ables Va. Variables from Vd are involved only in the
SQL statements, whereas variables in Va may occur in
all types of instructions of the application. Any SQL
statement Q is denoted by a tuple Q = 〈A, φ〉 where A
and φ refer to action part and pre-condition part of Q re-
spectively. A SQL statement Q first identifies an active
data set from the database using the pre-condition φ,
and then performs the appropriate operations on that
data set using the SQL action A. The pre-condition φ
appears in SQL statements as a well-formed formula
in first-order logic. Table 1 depicts the syntactic sets
and the abstract syntax of programs embedding SQL

Program Environments. The SQL embedded pro-
gram P acts on a set of constants const(P) ∈ ℘(C) and set
of variables var(P) ∈ ℘(V), where V , Vd ∪ Va. These
variables take their values from semantic domain Df,
where Df = {D ∪ {f}} and f represents the undefined
value.
Now we define two environments Ed and Ea corre-
sponding to the database and application variable sets
Vd and Va respectively.
Definition 2 (Application Environment) An applica-
tion environment ρa ∈ Ea maps a variable v ∈ dom(ρa) ⊆ Va
to its value ρa(v). So, Ea , Va 7−→ Df.
Definition 3 (Database Environment) We consider a
database as a set of indexed tables {ti | i ∈ Ix} for a given
set of indexes Ix. We define database environment by a func-
tion ρd whose domain is Ix, such that for i ∈ Ix, ρd(i) = ti.
Definition 4 (Table Environment) Given a database en-
vironment ρd and a table t ∈ d. We define attr(t) =
{a1, a2, ..., ak}. So, t ⊆ D1 × D2 × × Dk where, ai is the
attribute corresponding to the typed domain Di . A table
environment ρt for a table t is defined as a function such that
for any attribute ai ∈ attr(t),

ρt(ai) = 〈πi(l j) | l j ∈ t〉

Where π is the projection operator, i.e. πi(l j) is the ith element
of the l j-th row. In other words, ρt maps ai to the ordered set
of values over the rows of the table t.

Small-Steps Operational Semantics. Let Σ be a set of
states defined by Σ , Ed × Ea, where Ed and Ea denote
the set of all database environments and the set of all
application environments respectively. That is, a state
σ ∈ Σ is denoted by a tuple 〈ρd, ρa〉 where ρd ∈ Ed and
ρa ∈ Ea are the database environment and application
environment respectively. The set of states of P is, thus,
defined as:

Σ[[P]] , Ed[[P]] × Ea[[P]]

where Ed[[P]] and Ea[[P]] are the set of database and ap-
plication environments of the program P whose domain
is the set of program variables.
The transition relation S ∈ (I × Σ) 7→ ℘(Σ) specifies
which successor states 〈ρ′d, ρ

′
a〉 ∈ Σ can follow when a

statements.

Observation-based Fine Grained Access Control of Data 673

statement I ∈ I executes on state 〈ρd, ρa〉 ∈ Σ. Therefore,
the transitional semantics S[[P]] ∈ (P×Σ[[P]]) 7→ ℘(Σ[[P]])
of a program P ∈ P restricts the transition relation to
program instructions, i.e.

S[[P]](〈ρd, ρa〉) ={〈ρ′d, ρ
′

a〉 | 〈ρd, ρa〉, 〈ρ
′

d, ρ
′

a〉 ∈ Σ[[P]]∧
〈ρ′d, ρ

′

a〉 ∈ S[[I]](ρd, ρa) ∧ I ∈ P}

Lifting the semantics to abstract domains. We lift the
concrete semantics of programs embedding SQL state-
ments to an abstract setting by introducing the notion
of abstract databases, where instead of working on the
concrete databases, abstract versions of the queries are
applied to abstract databases in which some informa-
tion are disregarded and concrete values are possibly
represented by suitable abstractions.
Definition 5 (Abstract Databases) Let dB be a database.
The database dB] = α(dB) where α is the abstraction func-
tion, is said to be an abstract version of dB if there exist
a representation function γ, called concretization function
such that for all tuple 〈x1, x2, . . . , xn〉 ∈ dB there exist a
tuple 〈y]1, y

]
2, . . . , y

]
n〉 ∈ dB] such that ∀i ∈ [1 . . . n] (xi ∈

id(y]i) ∨ xi ∈ γ(y]i)), where id represents identity function.
The abstract version corresponding to all concrete func-
tions such as Group By, Order By, Aggregate Func-
tions, Set Operations, etc are defined in such a way
so as to preserve the soundness condition. For more
details, see [11].
Given an abstraction, let T and T] be a concrete and ab-
stract table respectively. The correspondence between
T and T] are described using the concretization and
abstraction maps γ and α respectively. If Qsql and Q] are
representing the SQL queries on concrete and abstract
domain respectively, let Tres and T]res are the results of
applying Qsql and Q] on the T and T] respectively. The
following fact illustrate the soundness condition of
abstraction:

T
Qsql// Tres v γ(T]res)

T]
Q]

//

γ

OO

T]res

γ

OO

Lemma 1 (Soundness of SQL [11]) Let T] be an abstract
table and Q] be an abstract query. Q] is sound if ∀T ∈
γ(T]). ∀Qsql ∈ γ(Q]) : Qsql(T) ⊆ γ(Q](T])).

III. OFGAC for RDBMS

In this section, we describe the OFGAC framework for
RDBMS, in order to provide various levels of accessi-
bility to database information.

A. Observation-based Access Control Policy Specification

Let us define observation-based access control policy
for RDBMS under OFGAC framework, in contrast to
traditional binary-based access control policy.

Table 2: Concrete Database dB

(a) “emp”

eID Name Age Dno Sal
1 Matteo (N) 30 2 2800 (N)
2 Pallab (N) 22 1 1500
3 Sarbani (N) 56 (N) 2 2300
4 Luca (N) 35 1 6700 (N)
5 Tanushree (N) 40 (N) 3 4900
6 Andrea (N) 52 (N) 1 7000 (N)
7 Alberto (N) 48 3 800
8 Mita (N) 29 (N) 2 4700 (N)

(b) “dept”

Dno Name Loc Phone DmngrID
1 Financial Venice 111-1111 (N) 6
2 Research Rome 222-2222 (N) 8
3 Admin Treviso 333-3333 (N) 3

Table 3: Partial Abstract Database dB]

(a) “emp]”

eID] Name] Age] Dno] Sal]

1 Male 30 2 Medium
2 Male 22 1 1500
3 Female [50, 59] 2 2300
4 Male 35 1 Very high
5 Female [40, 49] 3 4900
6 Male [50, 59] 1 Very high
7 Male 48 3 800
8 Female [20, 29] 2 High

(b) “dept]”

Dno] Name] Loc] Phone] DmngrID]

1 Financial Venice > 6
2 Research Rome > 8
3 Admin Treviso > 3

Definition 6 (Observation-based Disclosure Policy)
Given a domain of observable properties D, and an ab-
straction function αD : ℘(val) → D, an observation-based
disclosure policy op assigned to the observer O is a tagging
that assigns each value v in the database state σ a tag
αD(v) ∈ D, meaning that O is allowed to access the value
αD(v) instead of its actual value v.
Unlike traditional FGAC, the database information
which is unauthorized under an observation-based dis-
closure policy op, is abstracted by the information at
various levels of abstractions representing some prop-
erties of interest, rather than NULL or special symbols
[20, 28]. The levels of abstractions depend on the sen-
sitivity level of information: less sensitive values are
abstracted by lower level of abstraction, while more
sensitive values are abstracted by higher level of ab-
straction. The unauthorized users, therefore, could not
be able to infer the exact content of sensitive cells. This
way, we can tune different parts of same database to
different levels of abstractions at the same time, giving
rise to various observational access control for various
parts. The query issued by the external users will be
directed to and executed over the abstract databases,
yielding to a sound approximation of the query results.
Example 2 Consider the database dB of Table 2 where cells
containing sensitive information are marked by ‘(N)’. Under
observation-based disclosure policy, we abstract these sensi-

674 Halder and Cortesi

tive information by abstract values resulting into an abstract
database dB] depicted in Table 3. Observe that in emp] the
ages are abstracted by the elements from the domain of in-
tervals, the salaries are abstracted by their relative measures:
Low, Medium, High, Very High, and the names are ab-
stracted by their sex properties. It is worthwhile to mention
here that we assume salaries to be more sensitive than ages,
and so we abstract salary values with higher level of abstrac-
tion, although both are numeric. Since phone numbers of
all departments are strictly confidential, they are abstracted
by the top element > of their corresponding abstract lattice
depicted in dept]. We call the resulting database as “Partial
Abstract Database”, in contrast to “Full Abstract Database”,
since only a subset of the database information is abstracted.
The correspondence between the concrete and abstract values
of salaries can formally be expressed by the abstraction and
concretization functions αsal and γsal respectively as follows:

αsal(X) ,



⊥ if X = ∅

Low if ∀x ∈ X : 500 ≤ x ≤ 1999
Medium if ∀x ∈ X : 2000 ≤ x ≤ 3999
High if ∀x ∈ X : 4000 ≤ x ≤ 5999
Very High if ∀x ∈ X : 6000 ≤ x ≤ 10000
> otherwise

γsal(d) ,



∅ i f d = ⊥

{x : 500 ≤ x ≤ 1999} if d = Low
{x : 2000 ≤ x ≤ 3999} if d = Medium
{x : 4000 ≤ x ≤ 5999} if d = High
{x : 6000 ≤ x ≤ 10000} if d = Very High
{x : 500 ≤ x ≤ 10000} if d = >

Formally, the sensitive values of a data cell belong-
ing to an attribute x are abstracted by using the Ga-
lois Connection (℘(Dcon

x), αx, γx,Dabs
x), where℘(Dcon

x) and
Dabs

x represent the powerset of concrete domain of x
and the abstract domain of x respectively, whereas αx
andγx represent the corresponding abstraction and con-
cretization functions (denoted αx : ℘(Dcon

x) → Dabs
x and

γx : Dabs
x → ℘(Dcon

x)) respectively. In case of insen-
sitive information, the abstraction and concretization
functions represent the identity function id.
Given a concrete database state σop under an
observation-based disclosure policy op, the abstract
state is obtained by performing σ]op = α(σop) where the
abstraction function α can be expressed as collection of
abstraction functions for all attributes in the database.
We assume that for each type of values in a database
there exists a hierarchy of abstractions such that Galois
Connections combine consistently, i.e. if (X, α1, γ1,Y)
and (Y, α2, γ2,Z) represent two Galois Connection, then
we have the following:

i f (X, α1, γ1,Y) and (Y, α2, γ2,Z) then (X, α2 ◦α1, γ1 ◦γ2,Z)

Observe that the traditional FGAC [20, 28] is a special
case of our OFGAC framework where each unautho-
rized cell is abstracted by the top element > of its cor-
responding abstract lattice.

Table 4: Preserving Referential Integrity Constraint by
using Type-2 variable

(a) “Supplier”

S-id Name Age
S230 (N) Alice 24
S201 (N) Bob 21
S368 (N) Tea 22

(b) “Supp − Part”

S-id P-id QTY
S230 (N) P140 (N) 120
S201 (N) P329 (N) 260 (N)
S230 (N) P563 (N) 200
S368 (N) P329 (N) 450 (N)
S368 (N) P140 (N) 430 (N)

(c) “Part”

P-id Pname
P140 (N) Screw
P329 (N) Bolt
P563 (N) Nut

(d) “Supplier]”

S-id] Name] Age]

(v1, [S200,S249]) Alice 24
(v2, [S200,S249]) Bob 21
(v3, [S350,S399]) Tea 22

(e) “Supp − Part]”

S-id] P-id] QTY]

(v1, [S200,S249]) (v4, [P100,P149]) 120
(v2, [S200,S249]) (v5, [P300,P349]) [250,299]
(v1, [S200,S249]) (v6, [P550,P599]) 200
(v3, [S350,S399]) (v5, [P300,P349]) [450, 499]
(v3, [S350,S399]) (v4, [P100,P149]) [400, 449]

(f) “Part]”

P-id] Pname]

(v4, [P100,P149]) Screw
(v5, [P300,P349]) Bolt
(v6, [P550,P599]) Nut

B. Preserving Referential Integrity Constraints

In OFGAC framework, the uniqueness criterion for pri-
mary and foreign key attributes could not be main-
tained due to the loss of precision of data values while
abstracting, and therefore the referential integrity con-
straints among database relations might be hampered.
In [28], Wang et al. used Type-2 variable in order to
keep these referential integrity constraints intact while
masking operation is performed.
We extend the same approach of Wang et al. [28] in our
OFGAC framework. We denote the Type-2 variable by
a pair (v, A) where A is an abstract value and γ(A) is the
domain of the variable v, depicted in definition 7.
Definition 7 (Type-2 Variable) A Type-2 variable is rep-
resented by a pair (v, A) where A is an abstract value and
γ(A) is the domain of the variable v. Given v1, v2, A1, A2
where v1 is assumed to be different from v2, then we have that
(i) “(v1, A1) = (v1, A1)” and “(v1, A1) , (v2, A1)” are always
true, (ii) “(v1, A1) , (v2, A2)” is true if γ(A1) ∩ γ(A2) = ∅,
(iii) “(v1, A1) = (v2, A2)” is > if γ(A1)∩γ(A2) , ∅, and (iv)
“(v1, A1)=c” is > where c ∈ γ(A1).
Given two sensitive values x1 and x2 under the same
primary/foreign key attribute. According to Definition
7, we abstract them as follows: (i) if x1 = x2 and α(x1) =
α(x2) = A, then both x1 and x2 are abstracted by the
Type-2 variable (v,A), (ii) if x1 , x2 and α(x1) = α(x2) =
A, then x1 and x2 are abstracted by (v1,A) and (v2,A)
respectively, (iii) if x1 , x2, α(x1) = A1, α(x2) = A2 and
γ(A1) ∩ γ(A2) = ∅, then x1 and x2 are abstracted by
(v1,A1) and (v2,A2) respectively.
Example 3 Consider the supplier-parts database and its ab-
stract version under an observation-based access control pol-
icy, depicted in Table 4. The attributes S-id and P-id are

Observation-based Fine Grained Access Control of Data 675

Table 5: ξ]1: Result of Q]
1

eID] Name] Age] Dno] Sal]

4 Male 35 1 Very high
5 Female [40, 49] 3 4900
6 Male [50, 59] 1 Very high
8 Female [20, 29] 2 High

the primary keys of the tables “Supplier” and “Part” respec-
tively, whereas the composite attribute {S-id, P-id} is used as
the primary key of the table “Supp-Part”. Observe that S-id
and P-id in “Supp-Part” are used as the foreign keys that
link to the primary keys of “Supplier” and “Part” respec-
tively, and relate the suppliers with the parts sold by them.
Suppose according to the disclosure policy that all values of
the attributes S-id, P-id and some values of QTY in “Supp-
Part” are confidential (marked with ‘N’ in the parenthesis).
If we abstract these values by the abstract values from the
domain of intervals, we may loose the ability to identify the
tuples uniquely and the secure linking between “Supplier”
and “Part” might be disturbed. To preserve the uniqueness
of the values in abstract domain, we use Type-2 variable,
as depicted in the abstract tables “Supplier]”, “Part]” and
“Supp-Part]”. Observe that since the attribute QTY is not
primary key or foreign key, we abstract them only by the
abstract values from the domain of intervals.

C. Query Evaluation under OFGAC

A general framework for Abstract Interpretation of Re-
lational Databases has been introduced in [11]. Here,
we briefly recall some notions on query abstraction, and
we extend them by considering queries on multiple ab-
stractions as well.
Example 4 Consider the concrete database of Table 2 and
the corresponding partial abstract database depicted in Table
3 under an observational disclosure policy op. Suppose an
external user issues a query Q1 under op as below:

Q1 =SELECT * FROM emp WHERE Sal>4800;

The system transforms Q1 into the corresponding abstract
version of the query (denoted Q]

1) as shown below:

Q
]
1 =SELECT * FROM emp] WHERE Sal] > 4800 OR Sal] >] High;

The result of Q]
1 on emp] is depicted in Table 5. Observe

that the pre-condition φ] (represented by WHERE clause in
Q]

1) evaluates to true for the first three tuples in the result ξ]1,
whereas it evaluates to> (may be true or may be f alse) for the
last tuple. The result of Q]

1 is sound as it over-approximate the
result of the query Q1. Observe in fact that Q]

1 includes also
the “false positive” corresponding to the concrete information
about Mita.
In [11], we defined the abstract aggregate functions and
abstract set operations in an abstract domain of interest.
In OFGAC framework, we apply them in the same way
as depicted in Example 5 and 6 respectively.
Example 5 Consider the abstract database of Table 3 and an

Table 6: ξ]2: Result of Q]
2

COUNT](*) AVG](Age])
[3, 5] [41, 50]

Table 7: Abstract Computation of Q]
3

(a) ξ]l : Result of Q]
l

eID] Name] Age] Dno] Sal]

1 Male 30 2 Medium
4 Male 35 1 Very high
5 Female [40, 49] 3 4900
6 Male [50, 59] 1 Very high
8 Female [20, 29] 2 High

(b) ξ]r : Result of Q]
r

eID] Name] Age] Dno] Sal]

4 Male 35 1 Very high
6 Male [50, 59] 1 Very high
8 Female [20, 29] 2 High

(c) ξ]3: Performing MINUS] between ξ]l & ξ]r

eID] Name] Age] Dno] Sal]

1 Male 30 2 Medium
5 Female [40, 49] 3 4900
8 Female [20, 29] 2 High

abstract query Q]
2 containing aggregate functions.

Q
]
2 =SELECT COUNT](*), AVG](Age]) FROM emp] WHERE (Age] BETWEEN

32 AND 55) OR (Age] BETWEEN] [30, 39] AND [50, 59]);

The result of Q]
2 on emp] is depicted in Table 6. In the ex-

ample, the evaluation of the abstract WHERE clause extracts
five tuples in total where three tuples with eID] equal to 4,
5, 7 belong to G]

yes and two tuples with eID] equal to 3, 6

belong to G]
may. Thus, in case of AVG](Age]), we get a] =

f n]({35, [40, 49], 48}) = average]({35, [40, 49], 48})=[41,
44] and b] = f n]({[50, 59], 35, [40, 49], [50, 59], 48}) =
average]({[50, 59], 35, [40, 49], [50, 59], 48}) = [44, 50].
Hence, AVG](Age]) = [min](a]), max](b])]=[41, 50]. Simi-
larly, in case of COUNT](∗), we get a] = count](G]

yes)=[3, 3]
and b] = count](G]) = [5, 5]. Thus, COUNT](∗) =[3, 5]. Ob-
serve that the result is sound, i.e., ξ2 ∈ γ(ξ]2) where ξ2 is the
result of a concrete query Q2 ∈ γ(Q]

2).
Example 6 Consider the abstract database of Table 3 and an
abstract query Q]

3 = Q]
l MINUS

] Q]
r, where

Q]
l =SELECT * FROM emp] WHERE Sal] > 2500 OR Sal] >] Medium;

Q]
r =SELECT * FROM emp] WHERE Sal] > 5500 OR Sal] >] High;

The execution of Q]
l and Q]

r on emp] are depicted in Table
7(a) and 7(b) respectively. In Table 7(a), for the first tuple the
pre-condition of Q]

l evaluates to > (thus, belongs to ξ]mayl
),

whereas for the remaining four tuples it evaluates to true
(thus, belongs to ξ]yesl

). Similarly, in Table 7(b), for the

first two tuples the pre-condition of Q]
r evaluates to true

(hence, belongs to ξ]yesr
), whereas for the last one it evaluates

to > (hence, belongs to ξ]mayr
). Thus, the first component

676 Halder and Cortesi

(ξ]yesl
−(ξ]yesr

∪ξ]mayr
)) ∈ ξ]3 contains the tuple with eID] equal

to 5, and the second component ((ξ]mayl
∪ ξ]mayr

)− ξ]yesr
) ∈ ξ]3

contains the tuples with eID] equal to 1 and 8, as shown in
Table 7(c). The result is sound, i.e., ξ3 ∈ γ(ξ]3) where ξ3 is
the result of a concrete query Q3 ∈ γ(Q]

3).

D. Collusion Attacks

Wang et al. in [28] illustrate the security of the FGAC
system in case of collusion and multi-query attacks.
They define the security aspect in the context of one-
party single-query/weak security and multi-party multi-
query/strong security, and prove that the system with
weak-security is also secure under strong-security.
In OFGAC, transforming the system into an abstract do-
main means transforming the attackers, and the attack-
ers are modeled by abstractions. The robustness of the
database under OFGAC policies depends on the abil-
ity of the external observers to distinguish the database
states based on the observable properties of the query
results.
Here we consider three different scenarios: Figure 2(a),
2(b) and 2(c) illustrates these three cases where the
shaded portions indicate the sensitive information and
α (αi , α j if i , j) is the abstraction function used to
abstract those sensitive information.

Case 1: Multiple Policies/Single Abstraction:
Suppose each of the n observers under observation-
based policies op1, op2, . . . , opn respectively issue a
query Q. Given a database state σ without any
policy, we denote by σ]opi

an abstract database
state under opi (where i = 1, . . . ,n). Therefore,
observer Oi under opi will get the query result
ξ]i = S][[Q]]](σ]opi

) where Q] is the abstract version
of Q. When these n users collude, they feed the
query results ξ]i , i = . . . ,n, to a function f which
can perform some comparison or computation
(viz, difference operation) among the results and
infer about some sensitive information for some
observers.

For instance, suppose a portion of database infor-
mation is sensitive under policy op j, while it is in-
sensitive under another policy opk, j , k. In the
former case, this part of information will be ab-
stracted, while in the latter case it will not. Thus, if
this portion of information appears in both of the
query results ξ]j and ξ]k, then it is possible for the jth

observer to infer the exact content of that portion
of information as it is not abstracted in ξk.

Let σop = 〈σl, σh〉 and σop′ = 〈σ′l , σ
′

h〉 be the database
states under two different policies op and op′. The
database state σop•op′ obtained by combining two
policies op and op′ are defined as follows:

σop•op′ = 〈((σl ∪ σh) − (σh ∩ σ
′

h)), (σh ∩ σ
′

h)〉

This fact is depicted in Figure 3. So, when the
observers under op and op′ collude and share the

Policy op Policy op’ op • op’

Figure. 3: Combination of policies

query results, both will act as equivalent to the
observer under the policy (op • op′) and thus they
can infer the values belonging to the public part
of op • op′, i.e., ((σl ∪ σh) − (σh ∩ σ′h)) by issuing a
sequence of queries individually and by comparing
the results together.

Case 2: Single Policy/Multiple Abstraction:
Consider n different observers O1, O2, . . . ,
On under the same policy op and the sensitive
information part is abstracted to different level of
abstraction to different observers. Higher levels
of abstraction make the database information
less precise, whereas lower levels of abstraction
represent them with more precision. Thus, the
result of a query for the one with higher abstraction
contains less precise information than that with
lower abstraction.

Consider two different observers O1 and O2 under
op where the sensitive database information of σop

are abstracted by the domains of abstraction Dabs
1

and Dabs
2 , yielding to σ1]

op and σ2]
op respectively.

First consider the case where Dabs
2 is a more abstract

domain than Dabs
1 , i.e., Dabs

2 is an abstraction of Dabs
1 .

Since both observers are under the same policy, the
query results over σ1]

op and σ2]
op may contain some

common abstract information - one from Dabs
1 and

other from Dabs
2 . Thus when O1 and O2 collude, it

is possible for O2 to obtain sensitive information
with lower level of abstraction from the result ob-
tained by O1 as it is abstracted with lower level of
abstraction for O1. But no real collusion may arise
in this case, as the overall information available to
O1 and O2 together is at most as precise as the one
already available to O1.

The other case is where the two domains are not
one the abstraction of the other. For example, let
in a particular database state an attribute of a table
has the sensitive values represented by an ordered
list 〈5, 0, 2, 3, 1〉. Suppose the observer O1 is lim-
ited by the property DOM represented by domain
of intervals as shown in Figure 4(a), while O2 is lim-
ited by parity property represented by the abstract
domain PAR={⊥, EVEN, ODD, >} as depicted in
Figure 4(b). Thus O1 sees 〈[4, 5], [0, 1], [2, 3], [2, 3],
[0, 1]〉, while O2 sees 〈ODD, EVEN, EVEN, ODD,
ODD〉. When O1 and O2 collude, they can infer the
exact values for the attribute, i.e., 〈5, 0, 2, 3, 1〉 by
combining the query results. The corresponding

Observation-based Fine Grained Access Control of Data 677

α α α

Observer O1

Policy op1

Observer O2

Policy op2
Observer O3

Policy op3

(a) Multiple policies/Single abstraction

2

Policy op

Observer O

Policy op

Observer O

Policy op

1

(b) Single policy/Multiple abstraction

Observer O1

Policy op1

Observer O2

Policy op2

Observer O3

Policy op3

1 2 3

(c) Multiple policies/Multiple abstraction

Figure. 2: Policies and Observations

combined lattice obtained by reduced product [7]
of the above two abstract lattices DOM and PAR is
shown in Figure 5(a).

Given an OFGAC under Single policy/Multiple level
abstraction scenario where same information under
the same policy is abstracted by n different level
of abstraction to n different observers. Such OF-
GAC is collusion-prone when intersection of the sets
(not singletons) obtained by concretizing abstract
values of any common sensitive cell appearing in
different query results for different observers, yield
to a singleton. This is depicted in Definition 8.

We now show an example where no collusion takes
place in practice. Consider two observers O1 and
O2, where O1 is limited by the sign property de-
picted in Figure 4(c), whereas O2 is limited by the
parity property depicted in Figure 4(b). Let 〈-2, 0,
2, -1, 1〉 be a list of sensitive values appearing in
the results of the queries issued by both O1 and
O2. Thus, O1 sees 〈-, +, +, -, +〉, while O2 sees
〈EVEN, EVEN, EVEN, ODD, ODD〉. When O1 and
O2 collude, they can infer the values as 〈EVEN−,
EVEN+, EVEN+, ODD−, ODD+

〉 by combining the
query results. However, although these combined
abstract values represent more precise information
than that of the individual result, the observer still
could not be able to infer the exact content. Figure
5(b) shows the combined abstract lattice obtained
by reduced product [7] of two abstract lattices SIGN
and PAR.

Definition 8 An OFGAC under Single pol-
icy/Multiple level abstraction scenario is collusion-
prone, if the OFGAC uses n different ab-
stract domains Dabs

1 , . . . ,Dabs
n for n different ob-

servers and ∃{di, . . . , d j} ∈ Dabs
i × · · · × Dabs

j for
{i, . . . , j} ⊆ {1, . . . ,n} such that

⋂
k∈{i,..., j} γ(dk) = {e}

while ∀k ∈ {i, . . . , j}, γ(dk) , {e}.

Theorem 1 An OFGAC using n different abstract do-
mains Dabs

1 , . . . ,Dabs
n for n different observers under the

same policy is collusion-prone if the reduced product [7]

[0,1] [2,3] [4,5] …. [2n, 2n+1]

⊥

(a) DOM

⊥

EVEN ODD

(b) PAR

⊥

 + -

(c) SIGN

Figure. 4: Abstract Lattices of DOM, PAR and SIGN

of {Dabs
i , . . . , Dabs

j } ⊆ {D
abs
1 , . . . , Dabs

n } is isomorphic to a
concrete domain D.

Case 3: Multiple Policies/Abstractions: This is the
combination of the previous two cases. Observers
may collude to act as the observer under the com-
bination of their individual policies, or may try to
infer about the confidential information appearing
in the query results by combining (e.g., intersect-
ing) their domain of abstract values.

IV. OFGAC for XML

The notion of OFGAC can be extended to the context of
XML documents. In order to do that, we first introduce
the notion of access control policy specification for XML
under OFGAC framework. Then, we apply the OFGAC
approach in two directions: view-based and RDBMS-
based.

678 Halder and Cortesi

 EVEN ODD [0,1] [2,3] [4,5] …. [2n, 2n+1]

⊥

 0 1 2 3 2n 2n+1

(a) Combined lattice of DOM and PAR

⊥

EVEN + - ODD

EVEN
+

 EVEN
-
 ODD

+

 ODD

-

(b) Combined lattice of SIGN and PAR

Figure. 5: Combination of lattices

A. Observation-based Access Control Policy Specification

Most of the existing approaches on fine grained ac-
cess control for XML are based on the basic pol-
icy specification introduced by Damiani et al. [9]
that specifies the access authorization by a 5-tuple of
the form 〈Subject, Object, Action, Sign, Type〉. The
“Subject” represents the identifiers or locations of the
access requests to be granted or rejected. It is de-
noted by a 3-tuple 〈UG, IP,SN〉 where UG, IP and SN
are the set of user-groups/user-identifiers, the set of
completely-specified/patterns-of IP addresses and the
set of completely-specified/patterns-of symbolic names
respectively. For instance, 〈 Physicians, 159.101.*.*,
*.hospital.com 〉 represents a subject belonging to the
group physicians, issuing queries from the IP address
matching with the pattern 159.101.*.* in the domain
matching with symbolic name pattern *.hospital.com.
The “Object” represents the Uniform Resource Iden-
tifier (URI) of the elements or attributes in the docu-
ments. The URI is specified by the conditional or un-
conditional path expressions. The “Action” is either
“read” or “write” or both being authorized or forbid-
den. The “Sign” ∈ {+,−} is the sign of authorization.
Sign “+” indicates “allow access”, whereas sign “-” in-
dicates “forbid access”. The “Type” of the access rep-
resents the level of access (DTD level or instance level),
whether access is applicable only to the local element or
applicable recursively to all sub-elements, hard or soft
etc. The priority of the type of accesses from highest to

lowest are: LDH (Local Hard Authorization), RDH (Re-
cursive Hard Authorization), L (Local Authorization),
R (Recursive Authorization), LD (Local Authorization
specified at DTD level), RD (Recursive Authorization
specified at DTD level), LS (Local Soft Authorization),
RS (Recursive Soft Authorization). Since this speci-
fication provides users only two choices in accessing
the information: either “allow” or “forbid”, we call it
Binary-based FGAC Policy for XML.
In contrast to binary-based FGAC Policy, we specify
the Observation-based Access Control Policy for XML
under OFGAC framework by a 5-tuple of the form
〈Subject, Object, Action, Abstraction, Type〉. The compo-
nents “Subject”, “Object”, “Action” and “Type” are de-
fined exactly in the same way as in case of FGAC policy
specification. The component “Abstraction” is defined
by the Galois Connection (℘(Dcon

x), αx, γx,Dabs
x), where

℘(Dcon
x) and Dabs

x represent the powerset of concrete do-
main of x and the abstract domain of x respectively, and
αx and γx represent the corresponding abstraction and
concretization functions.
Since the “Object” represents either XML element or
attribute, the following two cases may arise when
“Abstraction” is applied on them:

• The “Object” represents an intermediate element
and “Type” is “Recursive” (denoted by “R”). In
this case, the abstraction defined in the rule for an
element is propagated downwards and applied to
all its sub-elements and attributes recursively.

• The “Object” represents an attribute and “Type”
is “Local” (denoted by “L”). In this case, only the
attribute value is abstracted by following the Galois
Connection specified in the rule.

Example 7 illustrates the observation-based access con-
trol policy specification for the XML document of Figure
1.
Example 7 Consider the XML code in Figure 1. The
observation-based access control policy under OFGAC frame-
work can be specified as shown in Table 8, where the abstrac-
tion functions are defined as follows:

αCardNo({di : i ∈ [1 . . . 16]}) = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ d13d14d15d16

α>(X) = >

where X is a set of concrete values and > is the top most
element of the corresponding abstract lattice. The functions
αiban, γiban, γCardNo, γ> are also defined in this way depend-
ing on the corresponding domains. Observe that the identity
function id is used to provide the public accessibility of non-
sensitive information, whereas the functions α> and γ> are
used to provide private accessibility of highly sensitive infor-
mation by abstracting them with top most element > of the
corresponding abstract lattice.

B. OFGAC Approaches

Given a binary-based access control policy p or an
observation-based access control policy op for XML doc-
uments, the FGAC and OFGAC can be implemented in
two ways:

Observation-based Fine Grained Access Control of Data 679

Table 8: Observation-based Access Control Policy Specification for XML code

Rule Subject Object Action Abstraction Type
R1 customer-care, 159.56.*.*,

*.Unicredit.it
/BankCustomers/ Cus-
tomer/ PersInfo

read (℘(Dcon
x), id, id, ℘(Dcon

x)) R

R2 customer-care, 159.56.*.*,
*.Unicredit.it

/BankCustomers/ Cus-
tomer/ AccountInfo/
IBAN

read (℘(Dcon
iban), αiban, γiban, Dabs

iban) L

R3 customer-care, 159.56.*.*,
*.Unicredit.it

/BankCustomers/ Cus-
tomer/ AccountInfo/
type

read (℘(Dcon
type), id, id, ℘(Dcon

type)) L

R4 customer-care, 159.56.*.*,
*.Unicredit.it

/BankCustomers/ Cus-
tomer/ AccountInfo/
amount

read (℘(Dcon
amount), α>, γ>, {>}) L

R5 customer-care, 159.56.*.*,
*.Unicredit.it

/BankCustomers/ Cus-
tomer/ CreditCardInfo/
CardNo

read (℘(Dcon
CardNo), αCardNo, γCardNo, Dabs

CardNo) L

R6 customer-care, 159.56.*.*,
*.Unicredit.it

/BankCustomers/ Cus-
tomer/ CreditCardInfo/
ExpiryDate

read (℘(Dcon
ExDate), α>, γ>, {>}) L

R7 customer-care, 159.56.*.*,
*.Unicredit.it

/BankCustomers/ Cus-
tomer/ CreditCardInfo/
SecretNo

read (℘(Dcon
SecNo), α>, γ>, {>}) L

RDBMS

XML

Mapping

Tunable Access

Control

Binary (0/1)

Access Control

OFGACRD(op)

OFGACXML(op)

FGACXML(p)

FGACRD(p)

Flattening

Figure. 6: FGAC Vs. OFGAC

• Non-deterministic Finite Automata (NFA)-based:
By applying p or op directly to the XML documents
(view-based) or by rewriting users’ XML queries
by pruning the unauthorized part in it.

• RDBMS-based: By taking the support of RDBMS,
where the XML documents and the XML policies
(p or op) are first mapped into the underlying re-
lational databases and the policy SQL respectively,
and then the users’ XML queries are mapped into
equivalent SQL queries and evaluated on those re-
lational databases by satisfying the policy SQL.

Figure 6 depicts a pictorial representation of these ap-
proaches. Observe that the application of FGAC w.r.t.
p results into a binary-based access control system that
yields two extreme views to the information: either “al-
low” or “forbid”, whereas the application of OFGAC
w.r.t. op, on the other hand, results into a tunable access
control system where partial view of the information
at various levels of abstractions is provided. We now
discuss the OFGAC approach for XML documents in
two directions: view-based and RDBMS-based.

View-based OFGAC for XML. Consider the XML
code in Figure 1 and the associated observation-based
access control policy specification depicted in Table 8.
We know that in view-based approaches for each subject
interacting with the system, separate views are gener-
ated with respect to the access rules associated with the

<?xml version=“1.0”? >
<BankCusomers>
<Customer>
<PersInfo>
<Cid> 140062 </Cid>
<Name> John Smith </Name>
<Address>
<street> Via Pasini 62 </street>
<city> Venezia </city>
<country> Italy </country>
<pin> 30175 </pin>
</Address>
<PhoneNo> +39 3897745774 </PhoneNo>
</PersInfo>
<AccountInfo>
<IBAN> IT*** ***** ***** ************ </IBAN>
<type> Savings </type>
<amount> > </amount>
</AccountInfo >
<CreditCardInfo>
<CardNo> **** **** **** 7835 </CardNo>
<ExpiryDate> > </ExpiryDate>
<SecretNo> > </SecretNo>
</CreditCardInfo>
</Customer>
</BankCusomers>

Figure. 7: View generated for the employees in bank’s
customer-care section

subject [9]. Therefore, in our example, the XML view
corresponding to the users belonging to “customer-
care” section of the bank is depicted in Figure 7. The
queries issued by a user are then executed on the cor-
responding secure view without worrying about the
security constraint. Consider the following XML query
Qxml issued by a personnel in the customer-care section:

Qxml = /BankCusomers/Customer/AccountInfo[@type=‘‘Savings’’]

The execution of Qxml on the view of Figure 7 returns
the following results:

<AccountInfo>
<IBAN> IT*** ***** ***** ************ </IBAN>
<type> Savings </type>
<amount> > </amount>
</AccountInfo>

RDBMS-based OFGAC for XML. Consider the XML
document in Figure 1 and the observation-based policy
specification in Table 8. By following [18], we first map

680 Halder and Cortesi

Table 9: The equivalent relational database representa-
tion of the XML code

(a) “BankCustomers”

id pid rule
BC1 null -

(b) “Customer”

id pid rule
C1 BC1 -

(c) “PersIn f o”

id pid rule
PI1 C1 R1

(d) “AccountIn f o”

id pid rule
AI1 C1 -

(e) “CreditCardIn f o”

id pid rule
CI1 C1 -

(f) “IBAN”

id pid val rule
IB1 AI1 IT10G 02006 02003 000011115996 R2

(g) “type”

id pid val rule
TP1 AI1 Savings R3

(h) “amount”

id pid val rule
AM1 AI1 5000 R4

(i) “CardNo”

id pid val rule
CN1 CI1 4023 4581 8419 7835 R5

(j) “ExpiryDate”

id pid val rule
EX1 CI1 12/15 R6

the XML document into relational database represen-
tation, partially shown in Table 9. Observe that we do
not translate the XML policies into the equivalent SQL
statements, rather we put the rules into the relational
database itself by associating them with the correspond-
ing elements or attributes. The empty rule in a row
specifies that the corresponding element (and its sub-
elements and child-attributes) or attribute has public
authorization. If any access-conflict occurs for any sub-
element, it is resolved simply by adopting abstraction-
take-precedence policy according to which authorization
corresponding to more abstract view overrides the au-
thorization corresponding to less abstract view. The
users’ XML queries are then mapped into SQL represen-
tation and are evaluated on this relational database un-
der OFGAC framework as described before. Suppose
the following XML query Qxml is issued by an employee
from customer-care section of the bank:

Qxml =/BankCusomers/Customer/AccountInfo[@type=

‘‘Savings’’]/IBAN

Since the OFGAC Policies and XML documents are now
in the form of relational database, the system translates
Qxml into an equivalent SQL query Qrdb as follows:

Qrdb =SELECT Ch No.val FROM IBAN Ch No, type Ch Tp, AccountInfo

P AccInfo, Customer P Cust, BankCustomers P BCust WHERE

(Ch No.pid=P AccInfo.id AND Ch Tp.pid=P AccInfo.id AND

Ch Tp.val=‘‘Savings’’) AND P AccInfo.pid=P Cust.id AND

P Cust.pid=P BCust.id

The execution of Qrdb on the database of Table 9, by
following the OFGAC technique for RDBMS, yields the

following result:

val
IT*** ***** ***** ************

Observe that RDBMS-based approaches suffer from
time-inefficiency, whereas view-based approaches, on
the other hand, suffer from space-inefficiency. The pos-
sibility of collusion attacks for XML documents under
OFGAC framework is same as described before in case
of RDBMS.

V. Related Works

The existing schemes on FGAC for RDBMS suggest to
mask the confidential information by special symbols
like NULL [20] or Type-1/Type-2 variables [28], or to
execute the queries over the operational relations [26,
32] or authorized views [23, 16], etc.
Wang et al. [28] proposed a formal notion of correctness
in fine-grained database access control. They showed
why the existing approaches [20] fall short in some cir-
cumstances with respect to soundness and security re-
quirements, like when queries contain negation opera-
tions. Moreover, they proposed a labeling approach for
masking unauthorized information by using two types
of special variables (Type-1 or Type-2) as well as a se-
cure and sound query evaluation algorithm in case of
cell-level disclosure policies.
In [26, 32], the authors observed that the proposed algo-
rithm in [28] is unable to satisfy the soundness property
for the queries containing the negation operations NOT
IN or NOT EXISTS. They proposed an enforcing rule to
control the information leakage where the query is exe-
cuted on an operational relation rather than the original
relation. However, although the algorithm for Enforc-
ing Rule satisfies the soundness and security properties
for all SQL queries, it would not reach the maximum
property [28].
The authors in [3] expressed the secret information by
an existentially quantified boolean query. They pre-
sented a formal model of secret information disclosure
that defines a query to be suspicious if and only if the
disclosed secret could be inferred from its answer.
Agrawal et al. [1] introduced the syntax of a fine grained
restriction command at column level, row level, or cell
level. The enforcement algorithm automatically com-
bines the restrictions relevant to individual queries an-
notated with purpose and recipient information, and
transforms the users’ queries into equivalent queries
over a dynamic view that implements the restriction.
In [31], the authors extended the SQL language to ex-
press the FGAC security policies. They provide syntax
to create a new policy type or replace the old policy with
a new one. Many policy instances of a policy type can
be created when needed. Moreover it specifies the op-
erations on the objects that the security policy restricts
and the filter list that specifies the data to be accessed in
the specific objects. Finally it has constraint expressions
whose truth value determine whether the policy will be
executed or not.

Observation-based Fine Grained Access Control of Data 681

Rizvi et al. in [23] described two models for fine-
grained access control: Truman and Non-Truman mod-
els. Both models support authorization-transparent
querying. Unlike the Truman model, the Non-Truman
model avoids the pitfalls of the query modification ap-
proach and allows a great deal of flexibility in authoriza-
tion, such as authorization of aggregate results. They
defined the notions of unconditional and conditional
validity of the query, and presented several inference
rules for validity.
Kabra et al. [16] defined the circumstances when a
query plan is safe with respect to user defined functions
(UDFs) and other unsafe functions (USFs). They pro-
posed techniques to generate safe query plans. How-
ever, these safe query plans may yield to un-optimized
plans.
The authors in [17] presented two models to solve the
information leakage problem occurring during query
aggregation. The first model is the base model that
uses a single inference dispersion value (∆) for each
user where as the second model uses multiple infer-
ence dispersion values for each user with a view to
provide more accessibility. Whenever a user queries
the database, the query is passed through the inference
interpreter. Based on the data items already sent to the
user and the data items currently requested the inter-
preter determines if there is a possibility of inference.
The interpreter rejects the query if it finds that inference
is possible; otherwise, the query is processed. The in-
terpreter determines inference mathematically by using
a mechanism called aggregation graphs and setting up
a threshold called inference dispersion.
In [15], authors presented a quantitative model for pri-
vacy protection. In the model, a formal representation
of the user’s information states is given, and they esti-
mate the value of information for the user by consider-
ing a specific user model. Under the user model, the
privacy protection task is to ensure that the user cannot
profit from obtaining the private information.
Various proposals in support of fine-grained XML ac-
cess control have been introduced in the literature.
These include View-based [2, 8, 9], Non-Deterministic
Finite Automata (NFA)-based [4, 21, 22], RDBMS-based
[18, 19, 27] XML Access Control Enforcement Tech-
niques, etc.
The idea of view-based access control is to create and
maintain separate view for each user based on the au-
thorization rules. During run-time, users’ queries are
executed on the corresponding view, without worrying
about the security enforcement. However, for a system
with large number of users, the view based approach
suffers from high maintenance and storage cost, al-
though views are prepared offline. Yu et al. [30] strictly
improved the time and space complexity of view-based
approaches by taking advantage of structural locality
of accessibility where data items grouped together with
similar accessibility properties and a Compressed Ac-
cessibility Map (CAM) is built that acts as an accessibil-
ity index. In addition to the existing authorization priv-
ileges (“allow” or “forbid”), Wu and Raun [29] included

one more access privilege, called delegatable adminis-
trative privilege, where authorization of an element can
be propagated to its parent/child elements if the element
has delegatable administrative privilege and there is no
authorization for its parent/child elements at all. More-
over, any conflict in the access authorization, if occurs,
are resolved by assigning priority to each authorization
privileges.
The proposals in [22, 21, 4] are based on rewriting
the users queries conforming the access control rules
by using Non-Deterministic Finite Automata (NFA).
The static analysis in [22] compares the schema au-
tomata, access-control automata, and query regular ex-
pressions, and classifies queries to be either entirely au-
thorized or entirely prohibited before submitting it to
the XML engine. For partially authorized XML queries
it relies on the XML engine to filter out the data nodes
that users do not have authorization to access, i.e., when
static analysis cannot provide determinate answers, the
scheme relies on run-time checking. QFilter [4] first
generates NFA for the set of access control rules. The
input query is then processed against the NFA to deter-
mine whether the query satisfies the access control rules
completely or partially, and accordingly, it is rewritten
into a filtered query by removing the conflicting por-
tions from the input query. The proposal in [21] uses
NFA to process streaming XML data for access control.
Although, Relational Database Management System,
due to its structured nature, becomes inappropriate in
the context of World Wide Web, most data for XML
documents still reside in relational databases behind
the scene. The proposals in [18, 27, 19] takes advantage
of relational model, by mapping all the XML data and
access controls rules for XML data (in XML format) into
the equivalent relational database and structured query
language representation. Finally, the accessibility of the
data are checked at the level of relational database rep-
resentation using the SQL representation of the rules.

VI. Conclusions

In this paper, we introduced an Observation-based Fine
Grained Access Control (OFGAC) framework on top of
the traditional FGAC where the confidential informa-
tion in the database are abstracted by their observable
properties and the external observers are able to see this
partial or abstract view of the confidential information
rather than their exact contents. The traditional FGAC
can be seen as a special case of our OFGAC, where the
confidential information are abstracted by the top ele-
ment in the corresponding abstract lattices.

Acknowledgments

Work partially supported by PRIN 2010-11 project “Se-
curity Horizons”.

References

[1] Rakesh Agrawal, Paul Bird, Tyrone Grandison,
Jerry Kiernan, Scott Logan, and Walid Rjaibi. Ex-

682 Halder and Cortesi

tending relational database systems to automat-
ically enforce privacy policies. In Proceedings of
the 21st International Conference on Data Engineering
(ICDE ’05), pages 1013–1022, Tokyo, Japan, April
5–8 2005. IEEE Computer Society.

[2] Elisa Bertino and Elena Ferrari. Secure and selec-
tive dissemination of xml documents. ACM Trans-
actions on Information and System Security, 5(3):290–
331, 2002.

[3] Stefan Bottcher, Rita Hartel, and Matthias
Kirschner. Detecting suspicious relational
database queries. In Proceedings of the 3rd Inter-
national Conference on Availability, Reliability and Se-
curity (ARES ’08), pages 771–778, Barcelona, Spain,
March 4–7 2008. IEEE Computer Society.

[4] Luc Bouganim, François Dang Ngoc, and Philippe
Pucheral. Client-based access control management
for xml documents. In Proceedings of the 13th Inter-
national Conference on Very Large Data Bases (VLDB
’04), pages 84–95, Toronto, Canada, August 31–
September 3 2004. Morgan Kaufmann Publishers
Inc.

[5] Agostino Cortesi and Raju Halder. Abstract in-
terpretation of recursive queries. In Proc. of the
9th Int. Conf. on Distributed Computing and Internet
Technologies, pages 157–170. Springer LNCS 7753,
2013.

[6] Agostino Cortesi and Matteo Zanioli. Widening
and narrowing operators for abstract interpreta-
tion. Computer Languages, Systems & Structures,
37:24–42, 2011.

[7] Patrick Cousot and Radhia Cousot. Abstract inter-
pretation: a unified lattice model for static anal-
ysis of programs by construction or approxima-
tion of fixpoints. In Proceedings of the 4th Annual
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’77), pages 238–
252, Los Angeles, CA, USA, January 17–19 1977.
ACM Press.

[8] Ernesto Damiani, Sabrina de Capitani di Vimercati,
Stefano Paraboschi, and Pierangela Samarati. De-
sign and implementation of an access control pro-
cessor for xml documents. Journal of computer and
telecommunications netowrking, 33(1–6):59–75, 2000.

[9] Ernesto Damiani, Sabrina de Capitani di Vimer-
cati, Stefano Paraboschi, and Pierangela Samarati.
A fine-grained access control system for xml docu-
ments. ACM Transactions on Information and System
Security, 5(2):169–202, 2002.

[10] Raju Halder and Agostino Cortesi. Observation-
based fine grained access control for xml docu-
ments. In Proceedings of the 10th International Con-
ference on Computer Information Systems and Indus-
trial Management Applications (CISIM ’11), pages
267–276, Kolkata, India, December 14–16 2011.
Springer CCIS, Volume 245.

[11] Raju Halder and Agostino Cortesi. Abstract inter-
pretation of database query languages. Computer
Languages, Systems & Structures, 38:123–157, 2012.

[12] Raju Halder and Agostino Cortesi. Fine grained
access control for relational databases by abstract
interpretation. In Josè Cordeiro, Maria Virvou, and
Boris Shishkov, editors, Software and Data Technolo-
gies, pages 235–249. Springer CCIS, Volume 170,
2012.

[13] Raju Halder and Agostino Cortesi. Abstract pro-
gram slicing of database query languages. In Pro-
ceedings of the the 28th Symposium On Applied Com-
puting - Special Track on Database Theory, Technology,
and Applications, pages 838–845, Coimbra, Portu-
gal, 2013. ACM Press.

[14] Raju Halder, Shantanu Pal, and Agostino Cortesi.
Watermarking techniques for relational databases:
Survey, classification and comparison. Journal of
Universal Computer Science, 16(21):3164–3190, 2010.

[15] Tsan-sheng Hsu, Churn-Jung Liau, Da-Wei Wang,
and Jeremy K.-P. Chen. Quantifying privacy leak-
age through answering database queries. In Pro-
ceedings of the 5th International Conference on Infor-
mation Security (ISC ’02), pages 162–176, London,
UK, September 30–October 2 2002. Springer LNCS,
Volume 2433.

[16] Govind Kabra, Ravishankar Ramamurthy, and
S. Sudarshan. Redundancy and information leak-
age in fine-grained access control. In Proceedings
of the ACM SIGMOD International Conference on
Management of Data (SIGMOD ’06), pages 133–144,
Chicago, IL, USA, June 27–29 2006. ACM Press.

[17] Sastry Konduri, Brajendra Panda, and Wing-Ning
Li. Monitoring information leakage during query
aggregation. In Proceedings of the 4th International
Conference in Distributed Computing and Internet
Technology (ICDCIT’07), pages 89–96, Bangalore,
India, December 17–20 2007. Springer LNCS, Vol-
ume 4882.

[18] Lazaros Koromilas, George Chinis, Irini Fundu-
laki, and Sotiris Ioannidis. Controlling access to
xml documents over xml native and relational
databases. In Proceedings of the 6th VLDB Work-
shop on Secure Data Management (SDM ’09), pages
122–141, Lyon, France, August 28 2009. Springer
LNCS, Volume 5776.

[19] Dongwon Lee, Wang-Chien Lee, and Peng Liu.
Supporting xml security models using relational
databases: A vision. In Proceedings of the 1st In-
ternational XML Database Symposium (Xsym ’03),
pages 267–281, Berlin, Germany, September 8 2003.
Springer LNCS, Volume 2824.

[20] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac,
Raghu Ramakrishnan, Yirong Xu, and David De-
Witt. Limiting disclosure in hippocratic databases.

Observation-based Fine Grained Access Control of Data 683

In Proceedings of the 30th international conference on
Very Large Data Bases (VLDB ’04), pages 108–119,
Toronto, Canada, August 31–September 3 2004.
Morgan Kaufmann Publishers Inc.

[21] Bo Luo, Dongwon Lee, Wang-Chien Lee, and Peng
Liu. Qfilter: fine-grained run-time xml access con-
trol via nfa-based query rewriting. In Proceedings
of the 13th ACM International Conference on Informa-
tion and knowledge management (CIKM ’04), pages
543–552, Washington D.C., USA, November 8–13
2004. ACM Press.

[22] Makoto Murata, Akihiko Tozawa, Michiharu
Kudo, and Satoshi Hada. Xml access control using
static analysis. ACM Transactions on Information and
System Security, 9(3):292–324, 2006.

[23] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan,
and Prasan Roy. Extending query rewriting tech-
niques for fine-grained access control. In Proceed-
ings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD ’04), pages 551–562,
Paris, France, June 13–18 2004. ACM Press.

[24] Andrei Sabelfeld and Andrew C. Myers.
Language-based information-flow security. IEEE
Journal on selected areas in Communications, 21(1):5–
19, 2003.

[25] Jie Shi and Hong Zhu. A fine-grained access
control model for relational databases. Journal
of Zhejiang University - Science C, 11(8):575–586,
2010. Zhejiang University Press, co-published with
Springer.

[26] Jie Shi, Hong Zhu, Ge Fu, and Tao Jiang. On
the soundness property for sql queries of fine-
grained access control in dbmss. In Proceedings of
the 8th IEEE/ACIS International Conference on Com-
puter and Information Science (ICIS ’09), pages 469–
474, Shanghai, China, June 1–3 2009. IEEE Com-
pueter Society.

[27] Kian-Lee Tan, Mong Li Lee, and Wang Wang.
Access control of xml documents in relational
database systems. In Proceedings of the Interna-
tional Conference on Internet Computing (IC ’01),
pages 185–191, Las Vegas, Nevada, USA, June 25–
28 2001. CSREA Press.

[28] Qihua Wang, Ting Yu, Ninghui Li, Jorge Lobo,
Elisa Bertino, Keith Irwin, and Ji-Won Byun. On the
correctness criteria of fine-grained access control in
relational databases. In Proceedings of the 33rd in-
ternational conference on Very large data bases (VLDB
’07), pages 555–566, Vienna, Austria, September
23–27 2007. VLDB Endowment.

[29] Jing Wu, Jennifer Seberry, Yi Mu, and Chun Ruan.
Delegatable access control for fine-grained xml. In
Proceedings of the 11th International Conference on
Parallel and Distributed Systems (ICPADS ’05), pages
270–274, Fuduoka, Japan, July 20–22 2005. IEEE
Computer Society.

[30] Ting Yu, Divesh Srivastava, Laks V. S. Laksh-
manan, and H. V. Jagadish. Compressed accessibil-
ity map: efficient access control for xml. In Proceed-
ings of the 28th international conference on Very Large
Data Bases (VLDB ’02), pages 478–489, Hong Kong,
China, August 20–23 2002. VLDB Endowment.

[31] Hong Zhu and Kevin Lu. Fine-grained access con-
trol for database management systems. In Pro-
ceedings of the 24th British National Conference on
Databases, pages 215–223, Glasgow, UK, July 3–5
2007. Springer LNCS, Volume 4587.

[32] Hong Zhu, Jie Shi, Yuanzhen Wang, and Yucai
Feng. Controlling information leakage of fine-
grained access model in dbmss. In Proceedings of the
9th International Conference on Web-Age Information
Management (WAIM ’08), pages 583–590, Zhangjia-
jie, China, July 20–22 2008. IEEE Computer Society.

684 Halder and Cortesi

