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Abstract: We consider a vertical control distribution channel in which a manufacturer sells a single kind

of good to a retailer.
thus improving sales.

We assume that a wholesale price discount increases the retailer’s sale motivation
The optimal control of manufacturer’s profit via trade discounts is embedded in a

differential game framework; in the special case of constant controls we compare the Stackelberg equilibria
obtained considering manufacturer and retailer respectively as leaders of the game with Nash equilibrium points.
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1 Introduction

To earn a reasonable profit the members of a distribu-
tion channel often adopt rather simple pricing tech-
niques. For example, manufacturers may use cost-
plus pricing, simply defining the price adding a de-
sired profit margin to (variable) production costs; in
a similar fashion, retailers very often use to determine
shelf prices adding a fixed percentage markup to the
wholesale price.

The main advantage of simple policies is that they
are...easy to be applied. But this blind approach to
pricing does not provide tools to manufacturers in or-
der to encourage retailers to sell and retailers, in turn,
cannot adequately stimulate consumer to buy.

Differential games are used to represent problems
of conflict and cooperation when decisions are made in
real time. Their use in marketing, e.g. in advertising,
pricing, promotion policies optimization, has a long
tradition dating over 30 years ago (see e.g. [4],[7] and
also [8],[5],16]).

In this paper we will focus on the effects of trade
promotions, a widely used dynamic pricing strategy
that manufacturers can exploit to raise sales. With
trade promotions an incentive mechanism is used to
drive other channel members’ behaviors.

In particular we investigate the relationships be-
tween the members of a distribution channel by means
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of optimal control models in a stylized vertical distri-
bution channel: a manufacturer serves a single seg-
ment market through a single retailer and a contract
fixes a trade discount policy which will be followed by
the contractors.

Trade discounts have usually a double positive ef-
fect on sales since part of the wholesale price reduction
may be transferred to the shelf price (pass-through)
and part of the discount will be kept by the retailer
who will be more motivated (see [9],[10]) and higher
motivation means higher effort in selling the product.

In Section 2 we recall an optimal control problem
in which the retailer’s performance is explicitly mod-
eled as a function of retailer’s skill and motivation.

There is an obvious trade-off between manufac-
turer’s and retailer’s goals, each of the two firms aims
at maximizing its own profit and this led us to the dif-
ferential game models of the distribution channel pric-
ing policy decisions which are reported at the end of
Section 2. In Section 3 we consider the special case in
which trade discount and pass-through (the two con-
trols of the model) are assumed to be constant during
the selling period. In this case we compare Stackel-
berg equilibria (considering either the manufacturer
or the retailer as the leader) with Nash equilibrium
points.

2 Two optimal control models

Our starting point is given by a couple of models pre-
sented in [1] and [2] where we considered a stylized
vertical channel in which a manufacturer sells a sin-
gle product during the limited time period [t1,¢2]. In
those models the manufacturer sells to a single re-
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tailer, her aim is to maximize the total profit in the
given time period. By means of trade discounts the
manufacturer can raise her sales both because the re-
tailer transfers a part of the discount to the shelf price
(pass-through) and because if the retailer will keep
part of the incentive for himself he will be more mo-
tivated in selling the specific product, thus giving an-
other upward push to sales.

This way two optimal control models can be con-
sidered in which the controls are, respectively, trade
discount (the manufacturer’s control) and pass-through
(the retailer’s control). The state variables in the
models are the cumulative sales and the retailer’s mo-
tivation.

Let us define the details of the models. Define

x(t) = cumulated sales during the time period [t1, t],
pw(t) = wholesale price at time ¢,
cp = unit production cost,

a(t) = trade discount at time ¢, a(t) € [a1, ] C
[0, 1],

B(t) = pass-through at time t, 5(t) € [B1,82] C
[0, 1].

Constants a1, ag, (1, (B2 represent the boundary val-
ues of trade discount and pass-through that manufac-
turer and retailer require not to be exceeded in order
to participate in the selling activity of the channel. In
particular manufacturer establishes the values of as
and (31 while the retailer fixes the values of oy and (.

Considering the trade discount explicitly, the whole-
sale price can be rewritten as p,, (t) = p(1—a(t)) where
p is the wholesale price when no trade discount is ap-
plied.

Remark that @(t) represents the sales rate at time
t; we suppose that it coincides with the consumer’s
demand at time ¢ and that the firm will produce ex-
actly the quantity to be sold.
The total profit of the manufacturer can be written as

/ 2(pw(t) — ¢o)x(t)dt,

t1

or, since z(t1) = 0,

ta
Ju = qz(ta) fp/ z(t)a(t)dt,
t1
where ¢ = p — ¢p. In order to obtain a non negative
profit the manufacturer will ask as < ¢/p as it is
shown in [1].
The total profit of the retailer is then

Tn = [ el - s

t1

If the retailer’s sales motivation at time ¢, summarized
by the state variable M (t), is increasing with respect
to consumer’s demand and to trade discount then its
dynamics can be described by

M(t) = yi(t) + e(alt) — @),

where v and e are strictly positive constants. Con-
stant @ € (o, a2) takes into account the fact that the
retailer has some expectations on trade prices, his mo-
tivation decreases if his expectations are disappointed,
i.e. if a(t) < @, and increase if a(t) > @.

The dynamics of the total amount of sales at time ¢
is given by

&(t)

where ¢, 77, and @ are strictly positive. Constant § rep-
resents the retailer’s selling skill while 6 is needed to
model the market saturation effect (e.g. large markets
will display low values of #). Parameter 7] represents
the productivity of the retail price discount on sales.

The manufacturer’s profit maximization problem
requires then to deal with the following optimal con-
trol problem (see [1])

Problem M : maximize Jps

—0z(t) + SM(t) + 78(t)a(t),

subject to

x(t) = —0x(t) + SM(t) + 76(t)a(t),

NI(t) = 4i(t) + ela(t) — @),
l‘(tl) = O, M(tl) ZM,
a(t) € [ag,as) C [0, 1],

B(t) € [B1,B2] € [0, 1],

where M is the initial motivation of the retailer (we
assume M > 0).

For the case of constant 5(¢) problem M has been
investigated in [1], [2].

In a similar way it is possible to formulate (see [2])
a corresponding retailer’s optimal control problem,
keeping the same motion equations and constraints
and with objective functional Jg.

In this paper we will address some preliminary con-
siderations on the differential game, which will be de-
noted by M R, defined by the objective functionals

JM, JR?

by the motion equations

#(t) = —0a(t) + 6M() + 5(t)a(t),
M(t) = ya(t) + e(a(t) — @),
l‘(tl) 0, M(tl) = M,
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and by the constraints

a(t) € lar,as] €0, 1],
B(t) € [B1, 3] € [0, 1].

3 The case in which both con-
trols are constant

In this paper we study the game MR in a simplified
framework in which both controls must take a con-
stant value in the whole time period [t1,?2] and these
values are decided at time t1. In this case the solution
of problems M and R becomes straightforward and al-
lows to obtain some properties of the differential game
MR.

With constant controls a(t) = o and 3(t) = 3 the
manufacturer’s profit is

I = Ju(a, B) = (¢ —pa)z(ts),
while the profit of retailer is
Jr = Jr(a, B) =pa(l = B)z(tz) .

The total volume of sales during [¢1, t2], i.e. z(t2),
depends explicitly from « and 3. More precisely

z(ta) = (HB+ L)a + K,

where we have defined

a=0-—~0
T:(L(tl—tg)

_Mq T
H a(l e)

de
LZ—?(I—eT-i-T)
K:éﬂH—aL

n

In this paper we assume a > 0 (cf. [1]), this means, for
example, that the retailer is less sensitive to consumer
demand rather than to the fulfillment of his expecta-
tions (i.e. v has a low value). This way we also have
T<0,H>0and L>0.

The manufacturer’s profit can now be rewritten as

Iu(a, B) = (q¢—pa)[(HB+ L)a+ K],
while the profit of the retailer is

Jr(e, B) = pa(l = B) [(HB + L)a + K] .

3.1 Nash equilibria

Let us look now for the Nash equilibria of the differen-
tial game M R. Functional J,; is concave with respect
to «, while functional Jg is concave with respect to
(. Nash equilibria are therefore the solutions of the
system

0Jy
doa W
1
0Jr 0
B
where
oJ
e
0Jr =pa[(-2HG+ H — L)a — K].
op
In order to simplify notation let us define
8pK
Fr=4/1— ——.
q(H+ L)

One solution of the system is (a® , 8°) where

a®=0,

e+ L= PR
q

But this equilibrium has poor economical meaning in
practice. In fact, a constant trade discount o = a® =
0 means that the profit of the retailer is zero, in that
case the retailer will not participate in the selling ac-
tivity if the manufacturer will not allow him some
other incentive.

If (H + L) — 8pK > 0 then system (1) provides
other two Nash equilibria, (o™, 87) and (o=, 87),
where

_q(1+7) _(H+L)(1+T7T)
oﬁ_T, Hﬁ++L_—4 ,
__q(1-T) _ _(H+L)(1-T)
o =T Hp +L——4 .

It is easy to compute the values of the profits in the
equilibria:

Jy=Jdu, %) =qK ,

Jy=Jr(®, %) =0,

¢?H+L)(1+T)(3-T)?
64p ’

Ji = Jdula, gh) =
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¢ (H+L)2(1+T)%2(3-T)?

+ + g —
JR = JR(a ) 6 ) 256pH )
2 2
L @GHALDA-T)B+T)
JM JM(O‘ ) /6 )* 64p )
2 2 2 2
o RUHALPA-TPE+T)
Therefore

T <y <y, Jr<Jp <Jg.

From now on we will not consider anymore the
equilibria (a® , 8%) due to its poor economical mean-
ing.

Remark that it is rather easy to find the neces-
sary and sufficient conditions under which the Nash
equilibria (o™ , #%) and (o= , 37) are feasible, i.e.
belong to [a1 , asg] X [#1, [B=2]: details are reported in

[3].

3.2 Stackelberg equilibrium when the
manufacturer is leader

A different point of view on the channel marketing
activity can be obtained considering the manufacturer
and the retailer as the two players of a Stackelberg
game (see [4] and [7]).

We first consider the manufacturer as the channel
leader: in this case we assume that she can only choose
a constant trade discount during the whole sales pe-
riod. This way we formulate the following Stackelberg
game:

Game ML : mazimize

ta
aa(ta) ~pa [ al0)dt, € far )

ty

where, for each fized av, functions x(t), M(t), 5(t) are
optimal solution of

ta
mazximize pa/ z(t)(1 — B(t)) dt,
t1

subject to #(t) = —0x(t) + M (t) + naB(t),
M(t) = vi(t) + el — @),
l'(tl) = 0, M(tl) = M,
BE[Br,B]

Since in our case both controls are constant, we can
rewrite the Stackelberg game this way:
Game ML : maximize
M (04, ﬁ) =

(g—pa)[(HB+ L)a+ K], «a€ oy ,as],
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where, for each fized «, B is (the) optimal solution of
mazrimize

JR(aaﬂ)

The Stackelberg equilibrium , when the manufacturer
is the channel leader, is (o , ™), where

=pa(l =B)[(HB+ L)a+ K] ,B € [B1 ,Ba].

v (H+L)—pK q(T+I7?)
2p(H+L) —  16p
H6M+L:(H+L)aMfK:(H+L)(5+3F2)
2aM 2(7+12)

It is easy to compute the values of the profits in the
equilibria:

[¢(H + L) +pK]*
8p(H + L)

J]ML — JM(OZAI7ﬁ]\/I) _

P(H+L)(3-T)%3+T1)?
512p
M lq(H + L) + pK]?
(e 16pH -
P(H + L)*(3 ~ T)*(3 4 T)?
1024p
Remark again that we can rather easily find the nec-

essary and sufficient conditions under which equilibria
(aM | BM) is feasible (see [3]).

)

ML _
Jrp =

,BM) =

3.3 Stackelberg equilibrium when the
retailer is leader

Consider the retailer as the channel leader: we assume

in this case that he can only choose constant pass-

through during the whole sales period. This way a

new Stackelberg game can be formulated as follows:
Game RL : mazrimize

<1fmp[2¢ma@da Be bl

where, for each fixed B, functions x(t), M(t) and a(t)
are optimal solution of

w@ﬁ—p/2()(ﬂ

subject to x( ) = —0x(t) + 0M(t) + 78a(t),
M(t) = va(t) + e(a(t) — ),
x(ty) = M(ty) = M,
a(t) € [0417042]-
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Since in our case both controls are constant, the
Stackelberg game can be formulated as follows:
Game RL : mazximize

Jr(a,8) =pa(l=B)(HB+ L)oo+ K], B € [B1 5],

where, for each fized B, o is the optimal solution of
mazimize

Ju(e, B) = (q=pa)[(HB+L)a+ K], a(t) € [a, ag].

Deriving Jy; with respect to o we obtain the manu-

facturer best response to retailers policy 3:

K
2(H + L)’

a
2p

(07

where we used the variable transformation

_HB+L
T H+L

Setting
pK

- qH+L)

(2)

and deriving Jr(a®, 3) with respect to 3, and using
the above variable transformation, we obtain that Jg
is maximized when v% is the positive root of the cubic
equation

20 —v? =C2.

This way we can compute the Stackelberg equilibrium
(aft, BF), when the retailer is the channel leader.
By straightforward calculations, one has

@ (H + L)(vE + C)?
4pv R

JRL = JM(aR7 BR) =

JEE = Jp(a®, R =
_ CH A+ L?[(v")? - C?)(1 — ")
4pHuR '
Again, it is possible (but not very easy in this case)
to find the necessary and sufficient conditions, when

Stackelberg equilibrium (af* , 8%) is inside the feasi-
ble region (see [3]).

3.4 Comparison of the profit in Nash
and Stackelberg equilibria

One has
B @?H+L)(3-T)2(1-T)?

T — It = 515 <0,
2(H+L)(34+T)%(1 412
Ji - ]I\\/[/[L:_Q( +L)(3+T)°(1+T) <0.

512p

19

Further,

gt _ ML _ _ FH+LPB-T)*5+30)(1-T)
rUR 1024pH ’

J= _ ML _ @(H+L?B+1)%(5-30)(1+1)
rR™YR T :

1024pH

Remark that JE—J{;‘{[L <0 & TI'<<l & C>0
while J; — Jg“: < 0 since I < 1 for every a~ > 0.

Now let us compare manufacturer’s and retailer’s
profits in the Stackelberg equilibrium in two cases:
when the manufacturer is leader and when the retailer
is leader. One has

It = It =
2 2
_¢*(H+1L) 2 r, C°
=% 1-0)y"=2(v"+ 5|
JRL _ ML _
¢*(H + L)? ’

¢ )-(1+C)2]

R

: {4(1 —f) (UR -

It can be shown that if

16pH

(@™, MY € far, as] x [Br, Ba]

and

(@, pf) € far, as] x [B1, Bo]

then
Ce[-1,1].

Depending on the sign of C'; manufacturer and re-
tailer both prefer either to act as the leader or as the
follower. More precisely:

1) if C < 0 then JME > JEL and JEY > JML
i.e. both manufacturer and retailer want to be leader
(the struggle to be leader);

2) if C > 0 then JME < JEL and JEL < JME e,
both manufacturer and retailer want to be follower
(the struggle to be follower).

Remark that if C = 0 then o™ = o't and gM = g=.

Observe that the sign of C' coincides with the sign
of K: this sign is positive if the initial motivation of
the retailer is already high (M is high) or his expecta-
tions are low (@ is low). In this case, i.e. the retailer
is rather unassuming and optimistic, neither member
of the channel needs to lead it, they would prefer to
be followers. In case of a less well-disposed retailer
the situation upsets and both would like to lead the
channel.
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4 Conclusions

In this paper we explore a bilevel programming ap-
proach to study the discount policies in a supply chan-
nel. We found that to be leader or follower in the
channel is preferred by both the manufacturer and the
retailer depending on the value of parameter C' (see
(2)) which economical meaning should be investigated
in a future research.

A further theme of our future research will be to
consider the case when feasible controls (trade dis-
count «(t) and pass-through [3(t)) are not constant,
but piece-wise constant.
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