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1. IntroductionWe deal with the large scale unconstrained optimization problem(1.1) min

x∈IRn

f(x)where f : IRn −→ IR is a twice continuously di�erentiable function and n islarge. We assume that for a given x0 ∈ IRn the level set
Ω0 = {x ∈ IRn ∣ f(x) ≤ f(x0)}is compact. The huge number of real world applications which can be modelledas a large scale optimization problem strongly motivates the growing interestfor the solution of such problems.Among the iterative methods for large scale unconstrained optimization,when the Hessian matrix is possibly dense, limited memory quasi�Newtonmethods are often the methods of choice. As well known (see any textbook,e.g. [11]), they generate a sequence {xk}, according to the following scheme(1.2) xk+1 = xk + �kpk, k = 0, 1, . . . ,with

pk = −Hk∇f(xk),where Hk is an approximation of the inverse of the Hessian matrix ∇2f(xk)and �k is a steplength. In particular, instead of computing Hk at each iteration
k, these methods update Hk in a simple manner, in order to obtain the newapproximation Hk+1 to be used in the next iteration. Moreover, instead ofstoring full dense n× n approximations, they only save a few vectors of length
n, which allow to represent the approximations implicitly.Among the quasi�Newton schemes, the L�BFGS method is usually consid-ered one of the most e�cient. It is well suited for large scale problems becausethe amount of storage is limited and controlled by the user. This method isbased on the construction of the approximation of the inverse of the Hessianmatrix, by exploiting curvature information gained only from the most recentiterations. The inverse of the Hessian matrix is updated at the k-th iterationby the formula
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(1.3) Hk+1 = V T

k HkVk + �ksks
T
kwhere

�k =
1

yTk sk
, Vk = I − �kyks

T
k ,and(1.4) sk = xk+1 − xk = �kpk, yk = ∇f(xk+1)−∇f(xk).Observe that Hk also satis�es relation

Hk = (V T
k−1 ⋅ ⋅ ⋅V

T
k−m)H0

k(Vk−m ⋅ ⋅ ⋅Vk−1)

+ �k−m(V T
k−1 ⋅ ⋅ ⋅V

T
k−m+1)sk−msTk−m(Vk−m+1 ⋅ ⋅ ⋅Vk−1)

+ �k−m+1(V
T
k−1 ⋅ ⋅ ⋅V

T
k−m+2)sk−m+1s

T
k−m+1(Vk−m+2 ⋅ ⋅ ⋅Vk−1)

+ ⋅ ⋅ ⋅

+ �k−1sk−1s
T
k−1,where m is the memory of the method and H0

k is an initial approximation ofthe inverse of the Hessian matrix.The well known reasons for the success of the L�BFGS method can besummarized in the following two points: �rstly, even when m is small, Hk+1 isan e�ective approximation of the inverse of the Hessian matrix, secondly Hk+1is the unique (positive de�nite) matrix which solves the problem
min
H

∥H −Hk∥F

s.t. H = HT

sk = Hyk,where ∥ ⋅ ∥F is the Frobenius norm. Namely, Hk+1 is the positive de�nite ma-trix �closest� to the current approximation Hk, satisfying the secant equation
sk = Hyk. However, L�BFGS method presents some drawbacks, including theslow convergence on ill�conditioned problems, namely when the eigenvalues of



5the Hessian matrix are very spread. Moreover, on some applications, the per-formances of L�BFGS method and the Nonlinear Conjugate Gradient methodare comparable.In this paper we focus on the latter method: the Nonlinear ConjugateGradient method (NCG). As well known (see any textbook, e.g. [11]) it is anatural extension to general functions of the linear Conjugate Gradient (CG)method for quadratic functions. It generates a sequence {xk} according toscheme (1.2), with
pk = −∇f(xk) + �kpk−1,where �k is a suitable scalar. Di�erent values of �k give rise to di�erent algo-rithms (see [8] for a survey). The most common are the Fletcher and Reeves(FR), the Polak and Ribière (PR) and the Hestenes and Stiefel (HS) algorithms.Although the NCG methods have been widely studied and are often verye�cient when solving large scale problems, a key point for increasing their e�-ciency is the use of a preconditioning strategy, especially when solving di�cultill�conditioned problems. De�ning good preconditioners for NCG methods iscurrently still considered a challenging research topic. On this guideline, thiswork is devoted to investigate the use of quasi�Newton updates as precon-ditioners. In particular, we want to propose preconditioners which possiblyinherit the e�ectiveness of the L�BFGS update. Indeed, here we build precon-ditioners iteratively de�ned and based on quasi�Newton updates of the inverseof the Hessian matrix. This represents an attempt to improve the e�ciencyof the NCG method by conveying information collected from a quasi�Newtonmethod, in a Preconditioned Nonlinear Conjugate Gradient method (PNCG).In particular, we study new symmetric low�rank updates of the inverse of theHessian matrix, in order to iteratively de�ne preconditioners for PNCG.It is worth to note that there exists a close connection between BFGS andNCG [10], and on the other hand, NCG algorithms can be viewed as memorylessquasi�Newton methods (see e.g., [13], [12], [11]).The idea of using a quasi�Newton update as a preconditioner within NCGalgorithms is not new. In [2], when storage is available, a preconditioner de-�ned by m quasi�Newton updates is used within NCG algorithm. In [1] ascaled memoryless BFGS matrix is used as preconditioner in the framework



6of NCG. Moreover, an automatic preconditioning strategy based on a limitedmemory quasi�Newton update for the linear CG is proposed in [9], within Hes-sian free Newton methods, and is extended to the solution of a sequence oflinear systems.In this paper, we propose two classes of parameters dependent precondi-tioners. In particular, in the next section we brie�y recall a scheme of a generalPNCG method. In Section 3 a new symmetric rank-2 update is introducedand its theoretical properties are studied. Section 4 is devoted to describe anew BFGS�like quasi�Newton update. Finally, in Section 5 the results of apreliminary numerical experience are reported, showing a comparison betweenone of our proposals and an L�BFGS�based preconditioner for PNCG.
2. Preconditioned Nonlinear Conjugate Gradient algorithmIn this section we report the scheme of a general Preconditioned NonlinearConjugate Gradient (PNCG) algorithm (see e.g. [12]). In the PNCG scheme
Mk denotes the preconditioner at the iteration k.Preconditioned Nonlinear Conjugate Gradient (PNCG) algorithmStep 1: Data x1 ∈ IRn. Set p1 = −M1∇f(x1) and k = 1.Step 2: Compute the steplength �k by using a linesearch procedure whichguarantees the Wolfe conditions to be satis�ed, and set

xk+1 = xk + �kpk.Step 3: If ∥∇f(xk+1)∥ = 0 then stop, else compute �k+1 and(2.1) pk+1 = −Mk+1∇f(xk+1) + �k+1pk,set k = k + 1 and go to Step 2.



7By setting Mk = I for any k, the popular (unpreconditioned) NonlinearConjugate Gradient (NCG) method is obtained. The parameter �k+1 can bechosen in a variety of ways. For PNCG algorithm the most recurrent choicesare the following:
�FR
k+1 =

∇f(xk+1)
TMk∇f(xk+1)

∇f(xk)T∇f(xk)
,(2.2)

�PR
k+1 =

[∇f(xk+1)−∇f(xk)]
T
Mk∇f(xk+1)

∇f(xk)TMk∇f(xk)
,(2.3)

�HS
k+1 =

[∇f(xk+1)−∇f(xk)]
T
Mk∇f(xk+1)

[∇f(xk+1)−∇f(xk)]
T
pk

.(2.4)We recall that with respect to other gradient methods, a more accurate line-search procedure is required to determine the steplength �k in a PNCG algo-rithm. This is due to the presence of the term �k+1pk in (2.1). The latter factmotivates the use of the (strong) Wolfe conditions to compute the steplength
�k, which also guarantee that sTk yk > 0 for any k.As already said, preconditioning is applied for increasing the e�ciency ofthe NCG method. In this regard, we remark a noticeable di�erence betweenlinear CG and NCG. Whenever the linear CG is applied, the Hessian matrixdoes not change during the iterations of the algorithm. On the contrary, whenNCG is applied to a nonlinear function, the Hessian matrix (possibly inde�nite)changes at each iteration.
3. A new Symmetric Rank-2 updateIn this section we study a new quasi�Newton updating formula, by consid-ering the properties of a parameter dependent symmetric rank-2 (SR2) updateof the inverse of the Hessian matrix. Suppose we generate after k iterationsthe sequence of iterates {x1, . . . , xk+1}. Then our quasi�Newton update Hk+1,which approximates [∇2f(x)]−1, satis�es the secant equation along all previousdirections; namely it results

Hk+1yj = sj , for all j ≤ k.



8Observe that the latter appealing property is satis�ed by all the updates of theBroyden class, provided that the linesearch adopted is exact (see e.g. [11]). Wewould like to recover the motivation underlying the latter class of updates, andby using rank-2 updates we would like to de�ne a preconditioner for PNCG.On this guideline, in order to build an approximate inverse of the Hessianmatrix, we consider the update(3.1) H(k+1, !k+1) = H(k, !k) + Δk, Δk ∈ IRn×n, symmetric,where the sequence {H(k, !k)} depends on the parameters k, !k and providesour quasi-Newton updates of [∇2f(x)]−1.It is �rst our purpose to propose the new update H(k+1, !k+1) such that:(0) H(k+1, !k+1) is well-de�ned and nonsingular(1) H(k+1, !k+1) can be iteratively updated(2) H(k+1, !k+1) collects the information from the iterations 1, 2, . . . , k of aNCG method(3) H(k+1, !k+1) satis�es the secant equation at iterations j = 1, 2, . . . , k(4) H(k+1, !k+1) either �tends to preserve� the inertia of the inverse of
∇2f(xk+1), in case f(x) is a general quadratic function or, by suitablysetting the two parameters, it can be used as a preconditioner for PNCG,i.e. Mk = H(k, !k).Observe that the Symmetric Rank-1 (SR1) quasi-Newton update (see Sec-tion 6.2 in [11]) satis�es properties (1)-(4) but not the property (0), i.e. itmight be possibly not well�de�ned for a general nonlinear function. The latterresult follows from the fact that SR1 update provides only a rank-1 quasi-Newton update, unlike BFGS and DFP. On the other hand, while BFGS andDFP quasi-Newton formulae provide only positive de�nite updates, the SR1formula is able to recover the inertia of the Hessian matrix, by generating pos-sibly inde�nite updates. Thus, now we want to study an SR2 quasi-Newtonupdate, which satis�es (0)�(4) and where one of the two newest dyads of the



9update is provided by information from the NCG method. To this aim, assum-ing that Hk = H(k, !k) is given, we consider the relation (3.1) where we set(see (1.4))
Δk = kvkv

T
k + !k

pkp
T
k

yTk pk
, k, !k ∈ IR, vk ∈ IRn,and pk is generated at the k−th iteration of the (unpreconditioned) NCGmethod. Thus, we will have the new update(3.2) Hk+1 = Hk + kvkv

T
k + !k

pkp
T
k

yTk pk
, k, !k ∈ IR, vk ∈ IRn,and in order to satisfy the secant equation Hk+1yk = sk the following equalitymust hold

Hkyk + k(v
T
k yk)vk + !k

pkp
T
k

yTk pk
yk = sk,that is(3.3) k(v

T
k yk)vk = sk −Hkyk − !kpk.Therefore it results(3.4) vk = �k (sk −Hkyk − !kpk)for some scalar �k ∈ IR. By substituting the expression (3.4) of vk in (3.3) wehave

k�
2
k

[

yTk (sk −Hkyk − !kpk)
]

(sk −Hkyk − !kpk) = sk −Hkyk − !kpk.Thus, the following relation among the parameters k, �k and !k must hold(3.5) k�
2
k =

1

sTk yk − yTk Hkyk − !kpTk yk
.Note that from the arbitrariness of k, without loss of generality, we can set

�k ∈ {−1, 1}.Now, in the next proposition we �rst consider the case of quadratic func-tions, and prove that the update (3.2) satis�es the secant equation, along allprevious directions.



10Proposition 3.1. Assume that f is the quadratic function f(x) = 1

2
xTAx +

bTx, where A ∈ IRn×n is symmetric and b ∈ IRn. Suppose that k steps of the(unpreconditioned) CG are performed, in order to detect the stationary point(if any) of the function f , and that the vectors p1, . . . , pk are generated. Then,the matrix Hk+1 in (3.2) satis�es the secant equations(3.6) Hk+1yj = sj , j = 1, . . . , k,provided that the coe�cients j , !j , j = 1, . . . , k are computed such that(3.7) j =
1

sTj yj − yTj Hjyj − !jpTj yj
, j = 1, . . . , k,

!j ∕=
sTj yj − yTj Hjyj

pTj yj
, j = 1, . . . , k.Proof � The proof proceeds by induction. Equations (3.6) hold for k = 1,that is H2y1 = s1, as long as

s1 =

[

H1 + 1�
2
1(s1 −H1y1 − !1p1)(s1 −H1y1 − !1p1)

T + !1

p1p
T
1

yT1 p1

]

y1,or equivalently
s1 −H1y1 − !1p1 = 1(s

T
1 y1 − yT1 H1y1 − !1p

T
1 y1) [s1 −H1y1 − !1p1] ,which is satis�ed selecting 1 and !1 according with (3.7).Now, suppose that the relations (3.6) hold for the index k − 1. To completethe induction we need to prove that the relations (3.6) hold for the index k.Firstly, note that Hk+1yk = sk holds. In fact

sk =

[

Hk + k�
2
k(sk −Hkyk − !kpk)(sk −Hkyk − !kpk)

T + !k

pkp
T
k

yTk pk

]

ykholds if and only if
sk −Hkyk − !kpk = k(s

T
k yk − yTk Hkyk − !kp

T
k yk)(sk −Hkyk − !kpk),and the latter holds from (3.7) with j = k. Now, we have to prove that (3.6)hold for any j < k. For j < k we have

Hk+1yj = Hkyj + k�
2
k(sk −Hkyk −!kpk)(sk −Hkyk −!kpk)

T yj +!k

pTk yj
yTk pk

pk,



11where Hkyj = sj by the inductive hypothesis. Moreover,
(sk −Hkyk)

T yj = sTk yj − yTk Hkyj = sTk yj − yTk sj = sTk Asj − (Ask)
T sj = 0,where the third equality holds since yj = Asj , for any j, for the quadraticfunction f . Finally,

!kp
T
k yj = !kp

T
kAsj = !k�jp

T
kApj = 0,which follows from the conjugacy of the directions {p1, . . . , pk} generated bythe CG. Thus, (3.6) hold for any j ≤ k and the induction is complete.As an immediate consequence of the previous proposition, we prove nowthe �nite termination property for a quadratic function, i.e. after at most nsteps, Hn+1 is the inverse of the Hessian of the quadratic function.Corollary 3.1. Assume that f is the quadratic function f(x) = 1

2
xTAx+bTx,where A ∈ IRn×n is symmetric and b ∈ IRn. Suppose that n steps of the(unpreconditioned) CG are performed, in order to detect the stationary pointof the function f , and that the vectors p1, . . . , pn are generated. If (3.7) holds,we have Hn+1 = A−1.Proof � By applying Proposition 3.1, we have that (3.6) hold for k = n,i.e.

Hn+1yj = sj , j = 1, . . . , n.Since f is quadratic then yj = Asj , for any j, i.e.
Hn+1Asj = sj , j = 1, . . . , n.Now, since sj = �jpj , j = 1, . . . , n, the conjugacy of the vectors {p1, . . . , pn}implies that Hn+1 = A−1.We highlight that, whenever k = n, Corollary 3.1 justi�es the �rst part ofthe statement (4) on page 8. Moreover, later on in the paper we show thatfor k < n, the update matrix in (3.2) can be suitably modi�ed to provide apreconditioner.



12 After analyzing the case of f(x) quadratic, we turn now to the general caseof a nonlinear twice continuously di�erentiable function. In particular, since weare interested in using the matrix Hk+1 in (3.2) as a preconditioner, we need toinvestigate if there exists a suitable setting of the parameters such that Hk+1is positive de�nite, provided that (3.7) are satis�ed. In the next propositionwe prove that if the parameter !k is below a threshold value, then the matrix
Hk+1 is almost always positive de�nite.Proposition 3.2. Let f be a nonlinear twice continuously di�erentiable func-tion. Suppose that the (unpreconditioned) NCG method is used to minimizethe function f . Suppose that (3.7) is satis�ed and(3.8) 0 ≤ !k <

sTk yk − yTk Hkyk
pTk yk

,with(3.9) yTk sk + yTk Hkyk ≤ 0 or yTk sk − yTk Hkyk ≥ 0,where sj = �jpj . Then the matrix Hk+1 in (3.2) is positive de�nite.Proof � By substituting (3.4) in (3.2), recalling that �2
k = 1 we obtain

Hk+1 = k

[

(�k − !k)
2
pkp

T
k + (�k − !k)

(

(Hkyk) p
T
k + pk (Hkyk)

T
)

+ (Hkyk) (Hkyk)
T
]

+ !k

pkp
T
k

yTk pk
.Hence Hk+1 can be rewritten in the form

(

pk
... Hkyk

)

⎛

⎜

⎜

⎜

⎜

⎝

k(�k − !k)
2 +

!k

yTk pk
k(�k − !k)

k(�k − !k) k

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

pTk

. . .

(Hkyk)
T

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.Therefore Hk+1 is positive de�nite if and only if the following inequalities hold:(3.10) k(�k − !k)
2 +

!k

yTk pk
> 0

k

(

k(�k − !k)
2 +

!k

yTk pk

)

− 2(�k − !k)
2 > 0.



13Using the expression of k in (3.5) and recalling that yTk sk > 0 (as a consequenceof the Wolfe conditions), (3.10) are equivalent to
(�k − !k)

2yTk pk
(�k − !k)pTk yk − yTk Hkyk

+ !k > 0

!k

(�k − !k)pTk yk − yTk Hkyk
> 0.After some computation we obtain that there exist values of the parameter !kfor which the latter inequalities admit solutions, with only one exception. Infact, they are satis�ed for any value of !k such that

0 ≤ !k <
�kp

T
k yk − yTk Hkyk

pTk ykbut they do not admit solution in case
�ky

T
k pk + yTk Hkyk > 0 and �ky

T
k pk − yTk Hkyk < 0,i.e. when (3.9) does not hold.From Proposition 3.1 and Corollary 3.1, we could use the matrix Hk+1as an approximate inverse of ∇2f(x). However, Proposition 3.2 evidences thatconditions (3.7) and (3.8) do not su�ce to ensureHk+1 positive de�nite. In fact,whenever (3.9) occurs, additional safeguard is needed since Hk+1 is possiblyinde�nite. Thus, the de�nition of Hk+1 should be possibly modi�ed in orderto obtain positive de�nite updates.

4. A preconditioner using a BFGS–like low–rank quasi-Newton updateIn this section we partially address the �nal remark of Section 3. Indeed, weintroduce a new class of preconditioners which are still iteratively constructedby using information from the NCG iterations and, as in the case of BFGSupdates, they are always positive de�nite. On this purpose, the price we paywith respect to (3.2), is that the secant equation is satis�ed only at the currentiterate, and not necessarily along all the previous iterates.



14 We draw our inspiration from [4], where a new preconditioner for Newton�Krylov methods is described. In particular, in [4] the set of directions generatedby the Krylov subspace method is used to provide an approximate inversepreconditioner, for the solution of Newton's systems. On this guideline, observethat if f(x) = 1

2
xTAx + bTx, where A is positive de�nite and b ∈ IRn, thenit is well known (see e.g. [6]) that the CG method may generate n conjugatedirections {pj} such that(4.1) A−1 =

n
∑

j=1

pjp
T
j

pTj Apj
.Now, in order to introduce a class of preconditioners for the NCG, in case of ageneral twice continuosly di�erentiable function f , suppose we have performed

k iterations of the (unpreconditioned) NCG, so that the directions p1, . . . , pkare generated. Let us consider the matrix Mk+1 de�ned by(4.2) Mk+1 = �kCk + kvkv
T
k + !k

k
∑

j=k−m

pjp
T
j

pTj ∇
2f(xj)pj

,where 0 ≤ m ≤ k, k, !k ≥ 0, �k > 0, Ck ∈ IRn×n is symmetric positivede�nite and vk ∈ IRn. In order to use Mk+1 as a preconditioner and to updateits expression iteratively, we set �k = 1, Ck = H(�k, k, !k) (with H(�0, 0, !0)given) and rewrite (4.2) in the form(4.3) H(�k+1, k+1, !k+1) = H(�k, k, !k)+kvkv
T
k +!k

k
∑

j=k−m

pjp
T
j

pTj ∇
2f(xj)pj

.

H(�k+1, k+1, !k+1) may be treated as a symmetric quasi�Newton update.However, for simplicity, in the sequel we prefer to use the more general formgiven by (4.2).Observe that in the expression of Mk+1, vkvTk represents a rank-1 updateand from (4.1) the dyads pjp
T
j /p

T
j ∇

2f(xj)pj are aimed to build an approxi-mate inverse. The integer m can be viewed as a �limited memory� parameter,similarly to the L�BFGS method. Moreover, we can set the vector vk and theparameters �k, k, !k such that the class of preconditioners Mk satis�es, for



15any k, the secant equation(4.4) Mk+1yk = sk.Indeed, from (4.4) we have
�kCkyk + k(v

T
k yk)vk + !k

k
∑

j=k−m

pTj yk

pTj ∇
2f(xj)pj

pj = sk;hence, assuming k(v
T
k yk) ∕= 0,(4.5) vk = �k

⎡

⎣sk − �kCkyk − !k

k
∑

j=k−m

pTj yk

pTj ∇
2f(xj)pj

pj

⎤

⎦ ,for some �k ∈ IR. Using (4.5) in (4.4) we have
k�

2
k

⎡

⎣sTk yk − �ky
T
k Ckyk − !k

k
∑

j=k−m

(pTj yk)
2

pTj ∇
2f(xj)pj

⎤

⎦

⋅

⎡

⎣sk − �kCkyk − !k

k
∑

j=k−m

pTj yk

pTj ∇
2f(xj)pj

pj

⎤

⎦ =

sk − �kCkyk − !k

k
∑

j=k−m

pTj yk

pTj ∇
2f(xj)pj

pj .Thus, the following relation among the parameters k, �k, �k and !k has to besatis�ed(4.6) k�
2
k =

1

−�kyTk Ckyk − !k

k
∑

j=k−m

(pTj yk)
2

pTj ∇
2f(xj)pj

+ sTk ykand without loss of generality we can set �k ∈ {+1,−1}. Then, observe thatunlike the update proposed in the previous section (namely (3.2)), the matrix
Mk+1 in (4.4) satis�es the secant equation only at the k-th iteration (evenfor quadratic functions), and possibly not along all the previous iterations,as proved in Proposition 3.1 for the update (3.2). As regards the positive



16de�niteness of Mk+1, the Wolfe conditions used in the linesearch procedure forcomputing the steplength �k ensure that sTk yk > 0, so that for �k > 0 and
!k ≥ 0 su�ciently small in (4.6) the matrix Mk+1 is positive de�nite. Indeed,suppose that !k → 0, then Mk+1 ≈ �kCk + kvkv

T
k . Now, since �k > 0 and

Ck is positive de�nite, by (4.6) for �k su�ciently small we have k > 0, i.e. wede�nitely have that Mk+1 is positive de�nite.Finally, observe that the di�erent choices for the parameters �k and !k in(4.6) provide a di�erent scaling of the matrices Ck and k
∑

j=k−m

pjp
T
j

pTj ∇
2f(xj)pj

,in the preconditioners.Now we note that the quantities pTj ∇2f(xj)pj , j = 1, . . . , k, in the expres-sion (4.2) of Mk+1 are in general unavailable. By considering that the Hessianmatrix is not constant at the points in the closed segment [xj , xj+1], then wecan use the Mean Value Theorem to estimate the average curvature of f alongthe direction pj , that is
∫ 1

0

sTj ∇
2f [xj + �(xj+1 − xj)]sj d� = sTj yjand recalling that sj = �jpj, we can estimate the quantity pTj ∇

2f(xj)pj , inthe expression of Mk+1, by
pTj ∇

2f(xj)pj ≈

∫ 1

0

pTj ∇
2f [xj + �(xj+1 − xj)]pj d� =

sTj yj

�2
j

=
pTj yj

�j

.Observe that by the Wolfe conditions used in the linesearch procedure, thelatter quantity satis�es the condition
pTj yj

�j

> 0.Moreover, in case f is the quadratic function f(x) = 1

2
xTAx+ bTx then(4.7) ∫ 1

0

pTj ∇
2f [xj + �(xj+1 − xj)]pj d� = pTj Apj ,i.e. the left hand side of (4.7) may be regarded as a generalization (to thegeneral nonlinear case) of the quantity pTj ∇

2f(xj)pj .



17As regards the matrix Ck in (4.2), an obvious choice could be for any k

Ck = "kI, "k ∈ IR.Furthermore, "k may be computed as the least squares solution of the equation
("I)yk − sk = 0, i.e. "k solves

min
"

∥("I)yk − sk∥
2 .Hence,

"k =
sTk yk
∥yk∥2so that since sTk yk > 0 by the Wolfe conditions, the matrix

Ck =
sTk yk
∥yk∥2

Iis positive de�nite.For the sake of clarity we report here the resulting expression of our classof preconditioners (4.2):(4.8) Mk+1 = �k
sTk yk
∥yk∥2

I + kvkv
T
k + !k

k
∑

j=k−m

sjs
T
j

yTj sj
,where

vk = �k

⎡

⎣sk − �k
sTk yk
∥yk∥2

yk − !k

k
∑

j=k−m

sTj yk

yTj sj
sj

⎤

⎦ , �k ∈ {−1, 1},and
k�

2
k =

1

(1− �k)s
T
k yk − !k

k
∑

j=k−m

(sTj yk)
2

yTj sj

.We conclude this section by highlighting that, interestingly enough, simi-larly to (4.3) we can construct a class of preconditioners based on DFP-likequasi-Newton updates. Indeed, we can iteratively build matrices
B(�k+1, k+1, !k+1)



18approximating ∇2f(x) and not its inverse. Then, by the Sherman-Morrison-Woodbury formula applied to B(�k+1, k+1, !k+1) we can compute a class ofpreconditioners.
5. Preliminary numerical experiencesIn order to investigate the reliability of the classes of preconditioners we haveintroduced, we preliminarily performed a numerical testing for the use of thepreconditioners de�ned in (4.8). This choice is motivated by the fact that forthis class of preconditioners we can easily guarantee the positive de�nitiveness,whereas in case of the class of preconditioners given by (3.2) an alternativestrategy must be proposed to guarantee the positive de�niteness.Therefore, we embedded the preconditioners (4.8) within the standard CG+code [5]. We used the same linesearch and the same stopping criterion usedby default in CG+ code. Thus we refer to [5] for a complete description of allthe details. We tested both the Fletcher and Reeves (FR) and the Polak andRibiere (PR) versions of the PNCG method at page 6.As regards the test problems, we selected all the large scale unconstrainedtest problems in the CUTEr collection [7]. The dimension of the test problemsis between n = 1000 and n = 10000 (we considered 110 resulting problems).The parameters of the preconditioner (4.8) have been chosen as follows: m = 4,
�k = 1 and

�k = !k =
1

2
sTk yk

yTk Ckyk +

k
∑

j=k−m

(pTj yk)
2

pTj ∇
2f(xj)pjfor all k (this choice ensures that the denominator of (4.6) is equal to 1

2
sTk yk >

0). As preliminary investigation, we considered the results in terms of thenumber of iterations and the number of function evaluations. We compared theresults obtained by (4.8), the unpreconditioned case, and the case where Mkcoincides with the L�BFGS update Hk+1 in (1.3). This comparison is reportedby using performance pro�les [3]. For a fair comparison, we have excludedin each pro�le all the test problems where the three algorithms converge todi�erent stationary points.



19In particular, as regards the FR version, in Figure 1 we report the com-parison among the three algorithms in terms of number of iterations. Figure 2
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LBFGS_iterFigure 1: Comparison of the FR algorithms in terms of number of iterationsreports the same plot with a di�erent scale. In Figures 3 and 4 the comparisonamong the three algorithms is reported in terms of number of function evalu-ations. These pro�les show that using the FR algorithm, the preconditioner(4.8) tends to be preferable, both in terms of number of iterations and numberof function evaluations.Now we turn to the PR version of the PNCG algorithm and, in Figure 5we report the comparison among (4.8), the unpreconditioned algorithm andthe L�BFGS based preconditioner in terms of number of iterations. Figure 6reports the same plot with a di�erent scale.In Figures 7 and 8 the comparison among the three algorithms is reportedin terms of number of function evaluations.From the observation of these plots it is easy to ascertain that the situation
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27is reversed with respect to the FR version of the algorithms.On the overall, even if these preliminary results do not allow us to draw�nal conclusions, they show that the preconditioning strategies proposed maybe reliable and in same cases they are bene�cial. In particular, we observe thatour proposals are cheaper than the L�BFGS based preconditioner. However,observing the case of PR setting, since in (4.2) we convey only informationsfrom the current iterate, we guess that a more sophisticated choice of the matrix
�kCk is de�nitely needed, in order to preserve e�ciency.
6. Conclusions and future worksIn this paper we propose two new classes of quasi�Newton update, aimingat using the update matrix as preconditioner within NCG method. In the �rstproposal the satisfaction of the secant equations at each previous iteration isensured (in the quadratic case), but we can not ensure, in general, that theresulting update is positive de�nite. In the latter cases, an alternative strategyis needed.In the second proposal the satisfaction of the secant equation only at thecurrent iteration is ensured but the resulting update is guaranteed to be pos-itive de�nite. We numerically tested the latter approach both with the un-constrained case and L�BFGS based preconditioning approach. The resultsobtained, thought preliminary, showed that it may be promising in some cases,even if non�carefully selected settings of the parameters are chosen.
AcknowledgementsThe authors wish to thank Marco D'Apuzzo, who inspired these afternotes,for his cheerful attitude to life, which greatly highlighted and completed hisprofessionalism.



28
References[1] N. Andrei. Scaled memoryless BFGS preconditioned conjugate gradient al-gorithm for unconstrained optimization. Optimization Methods and Soft-ware, 22:561�571, 2007.[2] B. Buckley and A. Lenir. QN�like variable storage conjugate gradients.Mathematical Programming, 27:155�175, 1983.[3] E. D. Dolan and J. Moré. Benchmarking optimization software with per-formance pro�les. Mathematical Programming, 91:201�213, 2002.[4] G. Fasano and M. Roma. Preconditioning Newton�Krylov methods innonconvex large scale optimization. Submitted to Computational Opti-mization and Applications.[5] J.C. Gilbert and J. Nocedal. Global convergence properties of conjugategradient methods for optimization. SIAM Journal on Optimization, 2:21�42, 1992.[6] G.H. Golub and C.F. Van Loan. Matrix Computations. The John HopkinsPress, Baltimore, 1996. Third edition.[7] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr (and sifdec), a con-strained and unconstrained testing environment, revised. ACM Transac-tion on Mathematical Software, 29:373�394, 2003.[8] W. Hager and H. Zhang. A survey of nonlinear conjugate gradient meth-ods. Paci�c Journal of Optimization, 2:35�58, 2006.[9] J.L. Morales and J. Nocedal. Automatic preconditioning by limited mem-ory quasi�Newton updating. SIAM Journal on Optimization, 10:1079�1096, 2000.[10] L. Nazareth. A relationship between the BFGS and conjugate gradientalgorithms and its implications for new algorithms. SIAM Journal onNumerical Analysis, 16:794�800, 1979.[11] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 2006.Second edition.



29[12] R. Pytlak. Conjugate Gradient Algorithms in Nonconvex Optimization.Springer, Berlin, 2009.[13] D.F. Shanno. Conjugate gradient methods with inexact searches. Mathe-matics of Operations Research, 3:244�256, 1978.


