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Uncertainty in Climate Change
Modelling: Can Global Sensitivity
Analysis Be of Help?

Abstract

The complexity of integrated assessment models (IAMs) prevents the direct
appreciation of the impact of uncertainty on the model predictions. However,
for a full understanding and corroboration of model results, analysts might be
willing, and ought to identify the model inputs that influence the model results
the most (key drivers), appraise the relevance of interactions and the direction of
change associated with the simultaneous variation of the model inputs. We show
that such information is already contained in the data set produced by Monte
Carlo simulations and that it can be extracted without additional calculations.
Our discussion is guided by an application of the proposed methodologies to
the well-known DICE model of William Nordhaus (2008). A comparison of
the proposed methodology to approaches previously applied on the same model
shows that robust insights concerning the dependence of future atmospheric
temperature, global emissions and current carbon costs and taxes on the model’s
exogenous inputs can be obtained. The method avoids the fallacy of a priori
deeming the important factors based on sole intuition.
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1 [INTRODUCTION

Climate change is a complex phenomenon which inspawt society in a multiplicity of ways. The
growing pressure of legislators and consumers daglireg firms to manufacture products with
sustainability and environmental ethics as parthafir modus operandi (Tang and Zhou, 2012).
Climate policy and the promotion of renewable erergare among the sources of change in the
regulation of energy markets (Most and Keles, 20H®wever, climate change is characterized by
ample uncertainties as to its causes as well amjtacts (among others see Baker, 2009, and Baker
and Solak, 2011).

When environmental and climate change issues arsidmred, integrated assessment models (IAMS)

play a central role in aiding policy makers durithg formulation of mitigating strategies and risk
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management plans. This practice is not free fraticism (see Tol, 2003; Weitzman, 2009; Pindyck,
2012); yet, scientific models are today’s internaeidis between science and policy. These plans are
very complicated machines due to the intricacyheffgthenomena under investigation, their space and
time scales and the variety of features they caepttanging from physical laws to socio-economic
aspects. This makes it impossible to have a duwederstanding of the relationship between the
endogenous and exogenous variables. Climate stieamd decision-makers are then exposed to the
risk of drawing conclusions without a full apprama of the model's behavior and of the most
critical assumptions. This generates an issueust in model results (Risbey et al., 2005). In ¢hes
circumstances, the literature highlights thtte“standard of quality for models must be high, lest
model use falls into disrepute and stakeholders regject the use of models altogether” (Saltelli and
D’Hombres, 2010, p. 302). The problem is perceiwetthe climate change community (Oppenheimer
et al.,, 2007): for instance, Swart et al. (2009)lartine that ealing consistently with risk and
uncertainty across the Intergovernmental Panel on Climate Change (IPCC) reports is a difficult
challenge” (p.3) and that 6bserved differences in handling uncertainties by the three IPCC working
groups emerge” (p.1).

How can we overcome these problems? Webster (20@§gests that, independently of the IPCC
working group affinity, it is appropriate for themmunity to produce more instances of rigorous
analysis of uncertainty for their respective modeid projections. The US Environmental Protection
Agency recommends that model developers and usefsrm sensitivity and uncertainty analysis to
help determine when a model can be appropriatedd us inform a decision (US EPA, 2009).
However, although sensitivity analysis (SA) tecluas are the key ingredient needed to draw out the
maximum capabilities of mathematical modeling (Ralil989), surveys show that the application of
the most recently developed methods is quite ldnitethe field of climate change economics. Saltell
and Annoni (2010) review several papers publistmedrominent scientific journals such Ssence

and Nature and conclude that the most widely utilized methads one-factor-at-a-time (OFAT)
techniques. Generally defined, OFAT are methodsesigning computational experiments involving
the testing of factors, or causes, one at a tihes& methods are quite inadequate for identifylieg t
factors on which to focus scientists’ or decisioakers’ attention in the presence of uncertainty;

furthermore, they do not allow analysts to apptediae relevance of interactions.

OFAT methods are used in the series of rebuttalsngnDietz et al. (2007a, 2007b), Nordhaus
(2007a, 2007b), Stern and Taylor (2007) and Tol dode (2006, 2007). Weitzman (2007) focused
on the sensitivity of model outputs primarily toetishoice of the discount rate and to a few other
selected model inputs. Saltelli and d’Hombres (20dfder a detailed analysis of the debate and
conclude that, because SA was not used in a systemay, SA did not help the analysts in

sustaining their deductions.



Moreover, a methodological deficiency is often esmnted by the pre-selection of the factors on
which to focus attention for further modelling ahdure research. This pre-selection is usually
performed for reducing the burden of the analydiswever, it is likely to lead modelers to forego
important factors, with the consequence of focusidditional efforts in data collection, modelling
and research in a sub-optimal fashion. Also, if seasitivity analysis results are used to direct
decision-makers towards the factors on which to$ananagerial attention (Eschenbach, 1992), these

factors have to be identified in a systematic wayaivoiding misleading indications.

Exploiting the informational content of a compledentific code is, nonetheless, challenging. On the
one hand, one needs methods that minimize compunghtburden. On the other hand, the same

methods must be robust and take all sources oftaiaty into account.

In this work, we argue that the answer to this lelngle requires a combination of global sensitivity
methods. Our methodology is based on a set of texlsances in the areas of sensitivity analysis of
model output. Our goal is, also, to demonstrate¢ itigights concerning direction of change, model
structure and key uncertainty drivers can be direektracted from the sample generated by a
traditional Monte Carlo uncertainty propagation qgadure, without the need of ad-hoc sampling
plans. The key is to base the analysis on the thigiensional model representation (HDMR) theory
as developed in Rabitz and Alis (1999). HDMR gramsswith the understanding of whether the
endogenous variable response to changes in thewraog variables is equal to the superimposition of
their individual effects or whether interaction® aelevant (model structure). Also, it allows us to
appraise direction of change in a global sensegpgp®sed to the traditional local information of
comparative statics. The methodology is then cometded by the use of density-based methods for
the identification of key uncertainty drivers inetlpresence of both correlated and uncorrelated

exogenous variables.

Numerical experiments are performed using one eftst known IAMs, Nordhaus’ DICE model.
The results show that a systematic applicatiorhefé¢ methods provides several crucial insights to
both analysts and policy-makers. Furthermore, ao@a pitfalls in the identification of the varias

and areas on which to focus additional informatiolection and/or modeling efforts.

The remainder of the paper is organized as folld®ection 2 reviews the existing literature and
provides a brief snapshot of how global sensitidtyalysis methods are, or are not, being used.
Section 3 presents our proposed methodology, whestienation and computation aspects are
considered in Section 4. The global SA is appliadttte DICE and the results of this exercise are

presented in Section 5. Concluding remarks closgéper.



2 A CURSORY LITERATURE REVIEW ON INTEGRATED ASSESSMENTMODELS AND THEIR

SENSITIVITY ANALYSIS

Most and Keles (2010) highlight that policy-makeénsreasingly benefit from the utilization of
decision-support models. Their observations atm@awith the earlier statements of Jannsen (1997)
who underlined that the IPCQs"placing increasing emphasis on the use of dynamic or time-
dependent simulation models to assess the effects of global climate change” (p. 22). The models
developed to support decision-making in the climeltange arena are numerous. Game-theoretic
models for climate negotiations are discussed mgd-et al. (2005). We recall the role of the market
allocation (MARKAL) model of Fishbone and Abilock981), a linear programming model for
energy market planning. A modified version of MARKAs used in Kanudia and Loulou (1998) to
find optimal responses in long-term energy plannmgiew of alternative climate change patterns for
the Quebec region. An extension of MARKAL is usadBarreto and Kypreos (2004) for a global
model discussing the interaction between climatangk and technology learning. The authors
consider five regions that cover both industrializend developing countries. Masui (2005) describes
an application of a general equilibrium model floe selection of policies for abating €@nd best
managing solid waste. Baker and Solak (2011) develanodel for the robust determination of
optimal energy technology R&D investment programsconsideration of the effects of climate
change.

A prominent class of models utilized is represeftgdAMs. Aside their traditional use of evaluating
the long term implications of climate-economy iatgtions, IAMs are also becoming increasingly
used as a tool to study how uncertainty and amtyicaffect policy makers’ decisions regarding
climate change. Golub et al. (2011) provide a cahensive overview of different approaches used
to model uncertainty when applying IAMs. Millner &t (2010), Lemoine and Traeger (2011), and
Iverson and Perrings (2012) are recent examplep@ications using the DICE model to study these

areas of decision science.

The list of studies covered by Tol (2008) in histananalysis of the range of estimates of the social
cost of carbon, let three IAMs emerge as the maselyw applied and commonly cited in the
literature: Richard Tol's FUND, Chris Hope's PAGRdathe DICE model of William Nordhaus.

Many of the cited studies in Tol (2008) acknowledge existence of uncertainty and attempt to
perform some type of SA. This is usually accom@dloy altering the values of a certain targeted
inputs, often the discount rate and/or climate isigitg, to test outcomes under different scenarios
The tendency is, therefore, to perform specificsgmity questions, and not to let the model underg

a systematic investigation through SA methods.

Monte Carlo simulation to propagate uncertaintyniodel inputs is becoming part of best practices in
the 1AM literature. It has been used for an undetyaanalysis of the DICE model (Nordhaus, 1994,



2008) and in different vintages of the PAGE moditdfe, 2006). It is employed in a recent study by
Dietz (2011) in an assessment of catastrophic ténchange based on the PAGE model and by
Nordhaus and Popp (1997) using DICE and Popp (208#hg ENTICE, an extension of the DICE
model. It is also used in Dietz and Asheim (2012jhieir work on sustainable discounted utilitarism,
where Monte Carlo simulation accompanies the risklysis of a modified version of DICE. Monte
Carlo propagation (sometimes called uncertaintyyais® conveys to decision makers the uncertainty
in model predictions, avoiding the risk of overddefice in model forecasts. However, for a full
understanding and corroboration of model resuttalysts might be willing to (and ought to) identify
the model inputs that influence the model resuits most (key drivers), the direction of change

associated with the variation of a given input Hreloverall model structure (interaction analysis).

We are aware of only three studies devoted to pipication of methods similar to the ones proposed
in this paper to study the effects of uncertainty I&Ms. van Vuuren et al. (2008) apply a
probabilistic approach to an energy model, Hofle(2008) use the FAIR IAM and Anthoff and Tol
(2011) explicitly address the effects of uncertaioh the social cost of carbon (current damages
caused by each unit of emissions) using the FUNMahadn all cases, Monte Carlo simulations are
used to propagate uncertainty and the resultsasetisimulations are post-processed using either raw
correlations or standardized regression coeffisieiot signal the magnitude of the impact that
parameter uncertainty has on model outputs. Thdit8rature clearly describes the weaknesses of
using correlations or standardized regression woefits as a methodology for post-processing the
Monte Carlo results. These limitations are maimkeéd to their poor performance in the presence of
non-linearities and interactions (Campolongo anleia 1997) so that several authors have argued
in favor of the utilization of more robust methd@obol’, 1993; Rabitz and Alis, 1999; Saltelli &t a
2008).

3 GLOBAL SENSITIVITY ANALYSIS: SETTINGS AND METHODS

By global sensitivity analysis one means the proistib evaluation of a model sensitivity, in the

presence of uncertainty in the model inputs. Foymbt Q, [ R" be the set of possible values that
the model inputs can assume a(@, ,B(Q, ),R) denote the corresponding probability space.
F.(X) denotes the joint cumulative distribution functi@DF) of the model inputs andf, (X)
their density. F, (X) is assigned by the analyst based on her stateeMdkdge about the model
inputs.x denotes one of the possible realizations of thdom vectoiX. We denote by:

y=9g():Q, OR" - R (1)

the relationship that links the model inputs te thodel output. The analytic expression @fis,

usually, not explicitly known, being the result @lborate calculations of complex computer codes.



BecauseX is uncertainy becomes a random variable, denoted/byhe associated probability space

is (Q,,B,,R), K (y) and f,(y) denote the CDF and density\gfrespectively.

Performing a global SA means propagating uncestaintough the model, either analytically or
numerically, to obtairy (Reilly et al.,, 2001; Forest et al., 2002; Berirstet al., 2009; Webster,
2009). Numerical uncertainty propagation goes utkerheading of Monte Carlo simulation, which
covers the various sampling generation methodsqglSgbasi random sequences, Latin Hypercube
sampling, etc.)Independently of the random number generation dkgor a sample of sizé&l is
produced and the model is evaluakétimes. The cost of the analysisGs N model runs, as noted in

the next section.

An integral part of a global SA is the statementha goals of the analysis in order to identify the
most appropriate methods and avoid misleading asianis. In this respect Saltelli and Tarantola
(2002) introduce the concept of SA setting (see 8iltelli et al. 2008; Borgonovo, 2010). A setting
is a way to frame the SA quest so as to clearlgtifjeits objectives. In this paper we make usehef

following settings:

1. Model structure: to determine whether the endogenariable behavior is the result of the
superimposition of individual effects or it is deiv by interactions;

2. Direction of change: to determine what is the eig@dalirection of change in the endogenous
variable due to individual or simultaneous chariggbhe exogenous model inputs;

3. Factor Prioritization: to determine the key undetta drivers, namely the factors on which
resources should be focused in data and informatigiection to most effectively reduce

variability in a model's predictions.
We now discuss each of these settings in turn.
3.1 MODEL STRUCTURE

The understanding of the structure of a model hguiput mapping requires the assessment of
interactions, as shown below. Assume that the madglping g(X) is integrable (thus, in principle
even non-smooth). Therg(X) can be written exactly as (Efron and Stein, 19&jbol’, 1993;
Rabitz and Alis, 1999):
n n
g(x) =g, +iZ1:gi ()ﬁ)"';gi,j (%, X))+t Gy (XX X)) (2)

where:
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Eq. (2) is called the high-dimensional model repngéation (HDMR) of g(X) (Rabitz and Alis,
1999). In (3)g, is the average value gfover Q. ; g;(x) accounts for the individual effect o,

O ()glxj) accounts for the residual interactions of modplts X, Xj , and so on. Eq. (2) states

that g(x) is exactly reconstructed by the sum of the fumatin the right hand side of (3). Egs. (2)

and (3) provide the multivariate “integral” expamsiof g(X) .

Assume now thag(X) is square integrable. Then, by the orthogonalfitihe functions in eq. (3), by

subtractingg, from g(X) one obtains the complete decomposition of theawnag of Y:
(Y] = Z\/I +Zvij t Vo, 4)
i=1 i<j
where the generic term of ordein eq. (4) is given by:
Vi = [0, R dF R 5)

On the basis of (4) and (5), Sobol’ (1993) intraellithe sensitivity indices of ordedefined as:

s _ Vi, (6)
sk T TV

Special attention is deserved by the first anddbed order sensitivity indices, defined respedtiaes:

v, Vy LE{Y | X }]
VxIY] VuY]

s (I=1..n) (7

and:

_E Vi {YIxh
=2tip i Yx[Y] ViulY]

(=1..n) 8)

In eq. (8), the symbolX , denotes all factors buk . Disentangling the contribution of single

variables and of interactions to the overall modelability (Setting 1) is quite naturally addreddsy



applying the functional ANOVA decomposition and thesociated sensitivity measures reported in

(6), (7) and (8). The sum of these variance-basedisvity measures provides indications on model

structure. In the casEi”:lS1 =1 the model is additive, that is, its response ésekact superimposition

of the individual effects of the exogenous varial@enversely, ifZ{‘:lS1 <1 interaction effects are

present. The lower the sum of the first order iadiis, the higher the relevance of interactions.

3.2 DIRECTION OF CHANGE

Setting 2, the expected direction of change ineih@ogenous variable, can be addressed through the

investigation of functiong, + g; (X ) . Note that, from the second equation in (3), weeha

E[g09 | X; =x1=9i(%) + 9o ©9)
Thus, g, + (%) represents the conditional expectation@{x) as a function ofx; . In particular,
if g(x) is additive, theng, (x ) + g, displays the exact dependence of Y Xn Thus, we are able to
understand whether Y is a monotonic function’qf with no approximation and for all values .
If g(x) is not additive, then eq. (9) is a trend line thiédws us to understand the dependence of Y

on X, as all possible values of the remaining model isauwe averaged. Thus, there is a difference

between comparative statics in the sense of Saonudlk947) and comparative statics performed
using an integral approach, like the one adopteé. gy differential comparative statics, one okiain

a local information, namely the variation rateYadround one given point in the input parameteraspac

for a small variation inX;. On the basis of eq. (9) one obtains a globarinétion about what

happens taj(X) as X, varies over its entire range.

3.3 FACTOR PRIORITIZATION

The identification of key uncertainty drivers (s&gt 3) may appear to be linked to the discussion
above on variance decomposition, suggesting tleaitiaal parameter could be the one which has a
significant impact on the endogenous variable(sianae. However, it is well known that variance is
not a good summary measure of uncertainty, especrdhen the distributions are skewed or
multimodal, and when inputs are correlated, whighikely the to be the case in many natural
phenomena, including climate change. In this c&mgonovo (2007) proposes a better suited

sensitivity measure, defined as follows:
1
§ =3 Els(X)] (10)

where:



§ (%) =[, (1) = fup o (V)] (11)

S(x) measures the separation between the uncondititistabution of the model outputf],(y)]

and the conditional model output distribution givleat model inputX; is fixed atx; [ fY‘X_ :& (N1

Geometrically, §(X) is the area enclosed betwee(y) and fY‘X_ o (y).

It can be shown thad possesses the following convenient propertiesidijnalization to unity, i.e.

0<4 <1, i=12,..p; (i) joint normalization: J,, , =1, (iii) scale invariance: if u(Y) and

t(Y) are two monotonic functions, therd'™ =45'") =" . The first property states that each

exogenous model input has an "importance indextictv lies between 0 and 1. In particular, an

exogenous model inpuX; has null importance ifY and X; are independent. The second property

states that the joint importance of all model ispistunity. The third property of scale invarianse
desirable for two aspects. The first one emergasmumerical estimation. In several applications the
output of a Monte Carlo simulation is sparse omspawide range. This could bring about inaccurate
estimation of sensitivity measures. To improve nuoa¢ precision, analysts often resort to a
transformation of the model output (usually, a trapsformation). Scale invariance insures thagraft
any monotonic transformation the results of SA remamaltered. The second reason is that in many
applications the model output is valued throughtibtyufunction. It is a well-known principle of
economic theory that utility functions have an oadj not cardinal, meaning, so that they can be
freely modified through monotonic transformatioBsale invariance, then, insures that results of the
sensitivity analysis remain valid for any chosemtonic utility function. For further discussion on

the decision-making implications of this result 8sicells and Borgonovo (2012).
4  ESTIMATION AND COMPUTATIONAL COST

The estimation of the sensitivity measures propeasul/e is analytically feasible only in very few
instances and with simple mathematical expresstmatsusually do not represent an environmental or
economic problem. For IAMS, which are complex siation tools encoded in dedicated software, the

estimation is forcedly numerical.

An algorithm that strictly reproduces the defimitsoin eqgs (7), (8) and (10) - brute force estinmatio

is associated with a computational cost equal to:
C =Nn? (12)

model runs, wher&l is the sample size of Monte Carlo simulation anithe number of factors\
should be chosen in such a way as to ensure estimatcuracy. AN=1000C is greater than one

million model runs, making the estimation prohngtifor any IAM.



However, computation reduction results have beaohed in the global SA literature. They have led

to a drastic reduction in the estimation of varebased indices, lowerir@to:
C=N(n+2) (13)

model runs for estimating all first and total oradensitivity measures (Saltelli, 2002; Saltelliakt
2010; Campolongo et al., 2011).

The sampling plans in Castaings et al. (2012) lother computational cost of theimportance
measure to:

C=N[ (14)
wherer is the number of replicates.

Note that an analyst pursuing these estimationegfies has possibly to run two different sets of
numerical experiments, one to estim&eand S and one to estimatd . Moreover, in both cases,
the sampling plans would differ from the utilizatiof a simple Monte Carlo uncertainty propagation.
In this paper we pursue an alternative strategychviginables us to obtain all sensitivity measures
from the same dataset and at the lowest possibiguitional cost. Recent work has produced
notable advances in this respect, lowering the coatipnal cost to:

C=N (15)

There are two main ways to proceed. The first ®eesmaking use of a meta-model. We recall
Kriging (see Kleijnen, 2009), Gaussian emulatiomk€ly and O’Hagan, 2004), Cut-HDMR (Rabitz
and Alis, 1999; Ziehn and Tomlin, 2010), polynomidiaos expansion (Sudret, 2008), and state-
dependent parameter modelling (Ratto and Pagdid)2Here we make use of the GUI-HDMR

software of Ziehn and Tomlin (2009). The softwatves the estimation of Sobol' sensitivity

measures of orders 1 and 2 from the componentiémscy, (%), g; ; (%,X) which are obtained by
fitting orthonormal bases, through a system of &goa of the type:

g (X)=2raq(x)

: L 16
g (%, %) =SS g (x)g (%) (16)

where @ (%) is an element of a family of orthonormal polynom,ia?i , ,B;J‘q are the corresponding

coefficients,h, h' and h" determine the order of the expansion (see fohéurtletails Ziehn and
Tomlin, 2009).

Following the Cut-HDMR approach (Rabitz and Ah€99) one then obtains insights on model

structure, through knowledge of the variance-basewasitivity indices, and on monotonicity, by

plotting the g, (%) functions.
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The second way is to utilize orthogonal projecti@ml is used in Plischke et al. (2012). This

technique allows one to estimate variance-basesitséty measures and . The method consists of

a reordering of the data set to form a scatterplpt] y, followed by a partitioning of the data set.

The method works as a post-processing algorithmtlamcestimation is direct, without the need of a
meta-model. We shall make use of both the Cut-HDié&a-model and Plischke et al's method in
our analysis. The advantage of combining the wegoapproaches is that one retrieves all the
discussed insights without having to utilize anhad- sampling scheme and using the dataset
produced by Monte Carlo simulation. Thus, we addctorent practice where Monte Carlo

propagation has become part of the standard wappefating. In the next section, we discuss the

application of the proposed approach to the DICHe&ho
5 GLOBAL SENSITIVITY ANALYSIS OF THE DICE MODEL

To illustrate the proposed methodology we have ehdbe DICE model to perform a global SA.
DICE is one of the most widely acknowledged IAMsedio the expertise of William Nordhaus,
“whose careful pragmatic modeling throughout his DICE series of 1AMs has long set a standard”
(Weitzman, 2007, p.713). Nordhaus (2008) charamerihe DICE model asa“global model that
aggregates different countries into a single level of output, capital stock, technology, and emissions.

The estimates for the global aggregates are built up from data that include all major countries, and

the specification allows for differentiated responses and technological growth” (p.33). DICE has been
evolving since the early 1990s with many refineraegmid adaptations to answer specific research
questions. A few examples of the diffusion andizdation of DICE in the scientific debate and its
impact in climate change analysis are offered néatinsen (1997) combines the economic part of
DICE with the mathematical part of IMAGE - integrdtmodel to assess greenhouse effect - to obtain
the OMEGA code (optimization model for economic gneenhouse assessment). Keller et al. (2004)
modify DICE for assessing the impact of uncertasmtand learning about climate thresholds. Baker
and Solak (2011) use DICE as a benchmark to cédilifeeir analysis. The utilization of DICE in
Dietz and Asheim (2012) has been discussed inde2ti

We use Version 2007.delta.8 of DICE (Version 208[fad8 can be downloaded from Nordhaus’
website at http://nordhaus.econ.yale.edu/DICE2083rtms). We do not go into details concerning
the nature and general structure of the moded.dbmprehensively described in Nordhaus (2008) and
one can find synthetic descriptions in Jannsen {}L,9%eller et al. (2004) and Dietz and Asheim
(2012). We limit ourselves to note that the inputput mapping is composed of a series of
interconnected equations (or submodels), that gémermultiplicity of outputs. These outputs depend
on 51 model inputs, which are reported in Table gklthe Appendix. Among the many outputs
produced by DICE we focus on inter-generationalfavel (utility), the social cost of carbon in 2005,

global atmospheric temperature in 2105, global simislevel in 2105, and the optimal carbon tax for

11



2015, because they are relevant for policy purpases grant comparison with previous SA

performed using the same model.

The presentation of the results of our global Skreise in divided in two parts. The first part
describes the set of results stemming from a cosganf our methodology with the sensitivity of
the DICE model directly performed by Nordhaus (2008here only certain pre-selected model
inputs were subjected to uncertainty and sensitaitalysis. The second set presents results for the

dataset obtained when uncertainties in all modaitsare considered.
5.1 A COMPARATIVE ANALYSIS

Our reference point is the sensitivity analysishef DICE model performed in Chapter 7 of Nordhaus
(2008). It relies on a pre-screening exercise peréd in Nordhaus (1994) and identifies 8 inputs as
key uncertainty drivers, which should be subjedtethcreased scrutiny. We take the outcome of the
pre-screening exercise for granted and use the gaotmbility distributions for the 8 inputs as in

Nordhaus (2008) in order to offer a comparisonhaf insights that can be obtained by applying the
methods discussed in this paper. We will removerdsériction on the number of factors later on in

the section. Results obtained when all model inpugsvaried are then compared to results obtained

when the subset of the a priori selected factocemsidered.

Table 1 displays the results of an OFAT analysiefDICE model originally presented in Tables 7-
2 and 7-3 of Nordhaus (2008). It conveys the implaat the value of a given model input has on a

model output as the input moves from one to sindsded deviations from the assumed mean value.

Let x° denote the mean value of the model inputs éxfd+ ko, ,x’,) the point obtained by moving

only X; by k standard deviationk£1, 2, 3, 4, 5, 6). The results are shown only wihenparameters
move away from the mean value in the positive divadk=[1,6]) rather than in both ones (k=[-3,3])

since, “the results are sufficiently linear thaistlisplays the patterns accurately” (Nordhaus,8200

0 0y _ 0
p.129). The percentage changes frgx°), Af = 9(x +kai('xgs) 9(x ), are taken by Nordhaus
g(x

(2008) sensitivity measures and displayed bothbisolte and relative terms. We are then in an

OFAT framework. The numerical values in the Tabldidplay the value of the social cost of carbon
in 2005 (top panel) and of global emissions in 2{B&tom panel) when the value of the parameters
is altered. For example, when the model inputsaatdeir mean value, the social cost of carbon in
2005 isg(x%)=%$28.10. When the value of GAO, the growth in ltdéator productivity, is altered by
one standard deviation the value of social costobon increases to $36.07, a 28% increase from the
mean value. The table shows that for the social @osarbon in 2005 the quadratic coefficient ie th

damage function (A2) has the largest effectkgse., the distance from the mean value) varies.
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Table 1: Summary of Nordhaus (2008)’ SA Results

SOCIAL COST OF CARBON 2005

Standard Deviation GAO GSIGMA  T2XCO2 A2 PBACK POPAS b12 FOSSLIM
0 28.1 (0) 28.1 (0) 28.1 (0) 28.1 (0) 28.1(0) 2®1 281(0)  28.1(0)

1 36.07 (28)  28.27 (1) 38.07 (35)  40.99 (35)  28)L( 32.14(14) 29.16(4) 28.1(0)
2 48.08 (71)  28.43 (1) 46.44 (65)  53.89 (65)  28) ( 35.91(28) 30.32(8)  28.1(0)
3 51.21(82)  28.6(2) 53.49 (90)  66.8 (90) 28.1(0)39.44 (40) 31.61(12) 28.1(0)
4 54.68 (95)  28.76 (2) 59.47 (112) 79.73(112) 28)1 42.75(52) 33.04(18) 28.1(0)
5 58.52 (108)  28.92 (3) 64.59 (130) 92.66 (130) 128) 45.84 (63) 34.62(23) 28.1(0)
6 62.8(123)  29.09 (4) 69.03 (146)  105.61 (146) 1280) 48.75(73) 36.39(30) 28.1(0)
GLOBAL EMISSIONS 2105

0 19.08 (0) 19.08 (0) 19.08 (0) 19.08 (0) 19.08 (W9.08 (0)  19.08 (0)  19.08 (0)
1 30.99 (62)  21.95(15)  19.18 (1) 19.18 (1) 19M8 (22.84 (20) 19.08 (0)  19.08 (0)
2 50.19 (163) 25.19(32)  19.28 (1) 19.28 (1) 1qM8 26.42(38) 19.09(0)  19.08 (0)
3 78.2(310)  28.83(51)  19.38(2) 19.38 (2) 19M8 (29.84 (56) 19.1(0)  19.08 (0)
4 103.92 (445) 32.91(72)  19.48(2) 19.48 (2) 19®M8 33.06 (73) 19.1(0)  19.08 (0)
5 65.19 (242)  37.36(96)  19.59 (3) 19.59 (3) 19@7 36.08 (89) 19.1(0)  19.08 (0)
6 24.61(29) 4222 (121) 19.7 (3) 19.7 (3) 19.07 (88.9 (104) 19.11(0)  19.08 (0)

Source: Nordhaus (2008) and our own calculations.
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For the social cost of carbon in 2005 the coeffitien the damage function (A2) is always the most
influential input, regardless of the distance fritv@ mean value. Conversely, at one standard dewigti=1)
climate sensitivity (T2XCO2) is ranked third behitie growth rate of total factor productivity (GAD)the
magnitude of the change from the mean value, lurahking is reversed at two standard deviatioos fr
the mean valueké2) and then again dsgets larger. Thus, this sensitivity exercise dostsgnant a robust
identification of the key uncertainty drivers duethe instability of the implied sensitivity rankjs with

respect to the variation range.

The reason is that the method does not accounhéosimultaneous variation of all factors over thegitire
variation ranges. Rather, it varies them one-atra-at pre-determined values, leaving the remaifikegl.
This limitation is overcome by the use of a globathod, which makes the analysis robust over the
variation range. Based on the preselected inputsdhidus (2008) performs an uncertainty analysisgusi
Monte Carlo simulation. We have argued that one &ssess the key-problem drivers robustly by post-
processing this data. Using the algorithm of Pkscét al. (2012), we obtain thé [eq. (10)] importance of

all factors. For the pre-selected model inputs wétspect to the social cost of carbon and globassons
results are reported in Figure 1. The sample s2d=510000. At the top of each bar the 90% confidenc
intervals obtained from 500 bootstrap replicatesgithe bias-reducing estimator proposed in Plisctikal.
(2012) are displayed.

T2xC02+
b
b
[

T2xC02+

FOSSLIM
GSIGH
PBACK

POPASYM o

PBACK
POPASYM

FOSSLIM
GSIGH

Figure 1: d ‘s with Pre-Selected Model Inputs for the SociakCaf Carbon (left) and Global Emissions (right).

For the social cost of carbon, the coefficientia tliamage function (A2), climate sensitivity (T2X2)@nd
the growth rate of total factor productivity (GA8je the most influential inputs. Observe that taeraw
bootstrap intervals allow one to state that suatcksion is robust also with respect to uncertaintyhe

estimates ofd, . Table 1 provides the message that the growthafatetal factor productivity is the most

important, with respect to the level of global esiogs in 2105, with the other factors having a migeter
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or negligible influence. We see from Figure 1 thdtile J for this model input is still the greatest by

magnitude, uncertainty in other factors is notgnfficant in influencing uncertainty in future ersiGns.

A further limitation of the analysis in Table 1tlsat OFAT methods do not reveal interactions, basé can
also be extracted from the same dataset producétkehyncertainty analysis. To that end we applyGhH-

HDMR Matlab code of Ziehn and Tomlin (2009b). Byethnalysis of the data set generated from Monte

Carlo simulations we obtain values of the secomigiosensitivity indices oEn: §, =0.4233 when the output
ij=1

is the social cost of carbon in 2005 andz?:fsyj =0.6053 When the output is global emissions in 2105.
NE!

These values indicate that the model respondsadditively to the inputs and that interaction effeare
relevant. The interaction between the growth inrdte of factor productivity (GAQ) and the price tbke
backstop technology (PBACK) is the most influentiad the social cost of carbon in 2005, while the
interaction between the coefficient in the damagecfion (A2) and the climate sensitivity parameter
(T2XCO02) have the strongest effect on the levajlobal emissions in 2105. Figure 2 displays the HDM
the most influential interactions for the sociastcof carbon in 2005.

Figure 2: Input Interactions for the Social Cost of Carbon

The figure shows the plot of the bivariate functngZ,szcoz(AZ,T 2XC 02) representing the interactions

between A2 and T2XCO2, when the output is the scost of carbon. This second order function ighezi
convex nor concave and non-monotone. Also, notettiefunctions are not strictly positive or negeti
across the entire uncertainty ranges for the interg inputs. When both inputs are at the upperdrtteir
uncertainty ranges, the interactive effect is aatigg one, while at the lower end of the rangesriteractive
effect has the opposite sign. As a result the stooder effects can have either an amplifying onplaning
effect on the first order individual effects. Thppécation of these methods thus provides a quaivé
dimension to Nordhaus (2008)" statement thart &xamination of all the uncertain model inputs taken
together ... may produce unexpected results because of the interactions among the model inputs and the non-

linearity in the DICE modd” (p.134).
15



By plotting the first order terms in the HDMR deqoosition one gathers insights about the directibn o
change and monotonicity when factors vary indivigudrigure 3 shows the direction of change in sbeial
cost of carbon (left panel) due to increase in atarsensitivity (T2XCO2), of the level of global issions
due to an increase in the initial growth rate of technology (GAO), the two model inputs with most

significant HDMR effects.

100 900~
%0 800

700

600

Figure 3: graxco2(T2XCO2) on Social Cost of Carbon (left), aggho(GAO) on Global Emissions (right).

The trend lines in Figure 3, show that as the vafube climate sensitivity parameter rises so dbessocial
cost of carbon, and the same relationship holdghereffect of the rate of technological growth total
emissions at the end of the century. For both modgduts the first order functiorgx) are monotonic. In
particular, one can determine whether they areasing or decreasing for all factors (this inforigrais not
reported here for brevity). However, by lookingthése graphs a decision-maker can gain insightatabo

whether a factor tends to increase the socialafasirbon (or global emissions) on average.
In the next section we expand the analysis consigiell model inputs.
5.2 RESULTS WHEN UNCERTAINTY IN ALL MODEL INPUTS|S CONSIDERED

We have seen that the cost for performing a glebasitivity analysis according to the methods weppse

is independent of the number of factors. Thathisre is no additional computational burden fromjestting

all model inputs to uncertainty analysis, as th€BImodel runs the same number of times in MontéoCar
simulations regardless of the number of model imghat are altered. We can drop the restrictiorthen
number of inputs and allow all 51 DICE 2007 modaputs to vary. Our goal is to see whether the
preselected factors of the previous analysis atedd the most important ones. For demonstratioposes,
we assign all factors the range of £ 10% the oaigialue, using a uniform distribution. Choosing thidth

of the interval is admittedly arbitrary, so that vepeated the analysis using intervals of 5% arid @0th

consistent results that are not reported herereuailable upon request.
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A Monte Carlo sample of 10000 simulations is pr@iad using quasi-random sampling and post-processed
using the method of Plischke et al. (2012). We aksloulate the bootstrapped confidence intervalsjio

which is displayed as a bar at the top of eachnaplin the histogram of Figure 4.
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Figure 4: 9 ‘s with Intergenerational Utility as Model Output

Figure 4 displays thé-importance of the model inputs when the outpuintérest is inter-generational
utility. The bars over the histogram present theeutainty in the estimates obtained using 500 Ib@gis
replicates. Let us compare these results to trdings of Nordhaus and Popp (1997). The comparison i
offered in Table 2.

Table 2: Nordhaus (2008)’ Pre-Selected Parameters SA Rank

Pre-Selected Variables Social Cost of Global Emissions Atmospheric Carbon Tax
Carbon (2005) (2105) Temperature (2105) (2015)
A2 22 5 6 10
GAO 7 11 11 3
FOSSLIM 42 26 30 34
GSIGMA 16 36 26 6
PBACK 17 32 29 12
POPASYM 10 12 8 8
T2XCO2 2 3 5 7
B12 12 13 12 21

From Table 2, it is clear that the pre-selectiomoidel inputs performed in Nordhaus (1994) wasembrin

including the climate sensitivity parameter (T2XQ0e coefficient in the damage function (A2) ahd

initial growth rate in total factor productivity @®) since they each rank in the top ten factorsatoleast
17



two of the policy relevant model outcomes of oupraach. The remaining preselected inputs are raryne
as influential and for optimal uncertainty managetmaore useful information could have been obtaihed
different inputs had been pre-selected and sulgigcténcreased analysis, or given priority in imh@ation

and data collection if that is a previously limgifactor.

Figure 4 shows that the dominant input factor dgvivariation in the model output is the elasti@fythe
marginal utility of consumption (B_ELASMU). We notleat B_ ELASMU appears in the DICE model as the

variablep in the Ramsey’s equation:

r=p+u 17)
wherer is the social discount rate is the rate of pure time preferenbas the growth rate of consumption
per capita andu is the elasticity of marginal utility of consummti. (1 is also known as the coefficient of

relative risk aversion, because the DICE model asgmnstant elasticity of substitution utility fuiam:

Ule(t).L()]= L) c()™ /1 (1-4)] (18)
whereL(t ) denotes labor force or population. B_ELASMU) @letermines the shape of the utility function
and the relationship between consumption increases utility or welfare. Sterner and Persson (2008)
succinctly explain the economic logic behind asstiong related to values fer. “the higher the value of 4,
the less we care for a dollar more of consumption as we become richer. Snce we expect that we will be
richer in the future, when climate damages will be felt, a higher 1 also implies that damages will be valued
lower. Thus, a higher value of 1 implies less greenhouse gas abatement today, unless for some reason we
will be poorer rather than richer in the future. In this case, a higher 1 would give higher damage values,

which would justify more abatement” (p.66).

The findings displayed in Figure 4 provide key suppo the argument that numerical decisions aiffiigct
the parameters of the Ramsey equation and implidig discount rate are of primary importance iMIA
exercises. However, a philosophical discussion tmsd aspects is beyond the scope of this paper and
interested readers have plenty of well-conceivadiss to consult on this topic. Nordhaus (2008 usedel
inputs for the Ramsey equation that sum up to adénwith observed market rates of return on capital
However, Newell and Pizer (2003) show that markeé¢s of return are not stable over longer peridds o
time, and the effects of minor changes in the @éwmodel inputs can have significant effects ordeho
outcomes, as documented in Figure 4. Our analgsiirms that this model input is key for results biso
allows one to understand how important this paramest It is also useful to understand how thigdac
interacts with other factors in the model. The rsgi@st interaction is with the exponent in the CBlauglas
production function (GAMA) and the images of the MR first and second order terrggx;) are similar to
those of Figures 2 and 3 where at certain comlunatof the model inputs in their uncertainty ranties

interactive effect can be either positive or negati

Economists and policy makers are not only intetestadrivers of inter-generational utility, which itself is

an abstract concept, but they focus also on pragmatevant calculations that are of concern hsas the
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level of total emissions at the end of the centdrgnd actionable — such as magnitudes of carbars.tax
Thus, we now turn to the results of a SA perforrakhg the lines just followed, when the outputsseial
cost of carbon in 2005, global emissions at the ehthe century, and the rise of global atmospheric
temperature at the end of the century relativedfa0]1 as done in Nordhaus (2008). We will also adersihe
effects of uncertainty on the optimal carbon taR@15, since that should be of concern to polickemsin

the near term. Table 3 contains descriptive infailonaabout how uncertainty affects these outcoriiés.
ranges of outcomes are non-negligible, as a whdtlis 3.5 degrees warmer is likely very differéran one
that is 2 degrees warmer. They are also in liné tie IPCC best estimates of what is required ¢essive
negative consequences from climate change are tavbeled. The same can be said for the range of
damages current emissions are inflicting, globaissions in 2105 and the appropriate carbon tax0itb2

that would put us on an optimal trajectory, as aled by the DICE model.

Table 3: Results from Monte Carlo Simulations

Variable Observations Mean Standard Deviation Min axM
Global Average Temperature 10,000 2.708 0.215 2.014 3.542
Rise by 2105
Social Cost of Carbon in 2005 10,000 27.252 6.126 3.130 55.170
Global Emissions in 2015 10,000 120.664 18.580 85.0 207.545
Carbon Tax in 2015 10,000 40.044 9.113 18.159 &®1.98

The table conveys information similar to that preed in Figure 7-2 in Nordhaus (2008) or to theliing of
Arigoni Ortiz et al. (2011), who vary specific mddaputs probabilistically in a SA performed on an
adaptation of DICE. By going one step further andtgprocessing the results of the probabilisticeutainty
analysis much insight is gained. Figure 5 displingspoint estimates fal and the bootstrapped confidence
interval when the outcome of interest is the sowist of carbon in 2005 (left panel) and globalssiains in
2105 (right panel).

Uncertainty in the elasticity of capital in the duztion function (GAMA) has the strongest influerarethe
social cost of carbon in 2005, followed by the engrt in the damage function (A3). The climate geuitsi
parameter (T2XCO2), the elasticity of marginalitti(B_ELASMU) and the coefficient in the damage
function (A2) are all roughly equally, but muchdésfluential. The same cannot be said for the miogeits
that influence the level of global emissions atéhd of the century. Of primary importance is tRpanent

in the damage function (A3), followed by the emissi intensity of the economy in 2005 (SIGO0), thdah
growth rate of technological progress per decadaOjGand the exponent in the cost control function
(EXPCOST2).
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Figure 5: § ‘s with Social Cost of Carbon (left panel) and
Global Emissions (right panel) as Model Outputs

The left panel of Figure 6 shows that uncertaimtythie initial levels of total factor productivityAQ)
influence atmospheric temperature in 2105 mostioviedd closely by climate sensitivity (T2XCO2),
emissions intensity of the economy in 2005 (Sl@8@hpital elasticity in the production function (GAMAnd
the exponent in the cost control function (EXPCOSTRe same cannot be said of the effects of uaiceyt

on the calculation of the optimal carbon tax leieel2015 where the exponent in the damage funci@®)

is the

most influential, followed by capital ela#tty (GAMA), initial levels of total factor produistity (AO),

elasticity of marginal utility of consumption (B_BISMU), and the climate sensitivity parameter
(T2XCO2).
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Figure 6: d ‘s with Atmospheric Temperature (left panel) andi®pl Carbon Tax (right panel) as Model Outputs

As a next step, we consider the rankings of alldsiéa scores for each uncertain model input whierent
outcomes are considered. The full list of rankirsgprovided in Table A2 of the Appendix. To congepon

space,

Table 4 summarizes this information repgttie rank correlations and Savage score corrakafiar

each of the output. The rank correlations are cdetbaonsidering the vector of the ranks efWith respect
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to each of the output. A correlation equal to unityplies that that for the two model outputs under
consideration the most and least relevant fact@®x®actly the same. Each entry in Table 4 displlagsaw
correlations as first entry and the Savage scqraraged by a vertical bar. Savage scores place asigpbn
the agreement of the key (higher ranked) uncewtanvers, while raw correlations indicate the tiglaship

between all model inputs (Iman and Conover, 1983mgblongo and Saltelli, 1997; Borgonovo et al.,

n
2010.) LetR be the rank oK. Then, the Savage ScoreXfis: S§ = Z . For instance, a factor ranking
h=R

>

first out of 51 has a Savage score of 4.52, a faattking second a score of 3.52, and so on.

Table 4: Overall Correlations and Savage Scores for Model Qputs

Atmospheric  Social Cost of Carbon Tax Global Emissions Utility

Temperature Carbon (2005) (2015) (2015)
Atmospheric Temperature 1
Social Cost of Carbon (2005) 0.70%13 1
Carbon Tax (2015) 0.789|0.669 0.g5851 1
Global Emissions (2015) 0.8[06718 0.65]0.599 0.770.717 1
Utility 0.545/0.430 0.73]D.645 0.66%.622 0.55{0.388 1

When comparing rank correlations to Savage Scarelations we have two cases: a) if the rank catich
value is smaller than the corresponding Savagessmmrelation value, then there is higher agreemerhe
most important model inputs rather than acrosgplits; b) the converse is true if the rank cotiefes are

higher than the Savage score ones.

Overall, Table 4 indicates that the important fesfor utility are not the same as those affectitiger policy
relevant outcomes. Among the policy relevant outesnthe social cost of carbon in 2005 and the @tim
carbon tax share the strongest correlation of comdrivers of variation, followed by global emisssoand

atmospheric temperature in 2105.

In general the model inputs can be split into theug of speculative parameters where the valuenis n
empirically known and calculated through projecsi@amd the group of inputs that are econometriainne
and depend on statistical analysis. It is commotake the econometric group of model inputs asrgaed
instead focus on the speculative inputs when paifay sensitivity or scenario analysis. However, vage
shown that uncertainty in both types of inputs poto be influential in affecting model outcomebus,
global SA should be performed considering all mddpults, before deeming a set of inputs as infiagnt

since assessing key drivers without an extensiaatifative analysis might lead to misleading cosidos.

We also post-processed the data to obtain infoomaih direction of change and interactions wherball
inputs vary. The HDMR images when all model inpats remain similar to those in Figures 2 and 3 wher
first order effects are monotonic and second oirtteraction effects are significant and non-monidihe

images are available from the authors upon request)
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6 CONCLUSIONS

This paper has demonstrated the usefulness of Iglebaitivity analysis methods in the area of irdéed
assessment modeling for climate change econontibgsl shown that at the same computational coat of
standard uncertainty analysis one can obtain romsghts on direction of change, model structure
(interactions) and key uncertainty drivers by appyrecently developed methods. These insightsigeov
analysts with a deeper understanding of a modehsbior and allow them to robustly identify thetéas on

which to focus additional data collection.

A further advantage of the methods proposed andritbesl in this paper, in that significant interact can

be identified explicitly, rather than simply ackrledged or speculated upon, and the direction of the
interactive effect can be observed. This simple pamative exercise is an indicator of the potential
advantages of using global SA methods over singglifapproaches, especially because information is

extracted at no additional cost than the one of tel@arlo simulation.

We have discussed both numerical and methodologggcts of the approach using DICE, one of thé mos
popular models for climate change policy analystse results show that uncertainty in the elastioftyhe
marginal utility of consumption, which influencdsetdiscount rate applied, is by far the most inftiz
parameter in affecting the dependent variable éndhjective function of the model. The key uncetiai
drivers have been also identified with respect twerpragmatic policy relevant model outputs. Defeges

in ranking of inputs with respect to the model aifphave been analyzed.

The results of this paper highlight the merits efforming global sensitivity analysis alongsideasthypes

of scenario analysis to explore different outcomieen different parameter values in the model. Trist
highly visible recent analysis of IAMs in the cliteachange literature revolved around what typecefario
should be considered as a most reasonable infdoneolicy. The authors of the Stern Review claimatta
scenario with low discount rates and strong inemeagational equity is the correct basis, while cttayoid
the 'normative’ discussions of discount rates, gsirstead observable market rates of return andragrat
much different conclusions and policy recommendatstioVhile this highlights the usefulness of varied
modeling strategies for different policy or scifintguestions, our exercise has shown the beneffitssing
global sensitivity analysis methods since the twipraaches are not interchangeable and important
information can be taken from both. Lastly, globahsitivity analysis along the lines presented kerdd

be fruitfully conducted on other classes of modelgtinely used in climate change policy analysient

computable general equilibrium models for impastasment to energy system techno-economic models.
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7 APPENDIX A: DICE MODEL INPUTS AND THEIR RANKINGS

Table Al: DICE Model Inputs

SA Number Parameter Description

1 AO Initial level of total factor productivity

2 Al Damage intercept

3 A2 Damage quadratic term

4 A3 Damage exponent

5 BACKRAT Ratio initial to final backstop cost

6 ELASMU Elasticity of marginal utility of consunmiph

7 B_PRSTP Initial rate of social time preference ymar

8 C1 Climate-equation coefficient for upper level

9 C3 Transfer coefficient upper to lower stratum
10 C4 Transfer coeffic for lower level

11 DELA Decline rate of technological change peraiie
12 DK Depreciation rate on capital per year

13 DPARTFRACT Decline rate of participation

14 DSIG Decline rate of decarbonization per decade
15 DSIG2 Quadratic term in decarbonization

16 ELANDO Carbon emissions from land 2005(GtC peratle)
17 EXPCOST2 Exponent of control cost function

18 FCO22X Estimated forcings of equilibrium co2 Hing
19 FEXO Estimate of 2000 forcings of non-CO2 GHG
20 FEX1 Estimate of 2100 forcings of non-CO2 GHG
21 FOSSLIM Maximum cumulative extraction fossil lfaie

22 GAO Initial growth rate for technology per deead
23 GAMA Capital elasticity in production function

24 GBACK Initial cost decline backstop pc per dexad

25 GPOPO Growth rate of population per decade

26 GSIGMA Initial growth of sigma per decade

27 KO 2005 value capital trill 2005 US dollars

28 LIMMIU Upper limit on control rate

29 MAT2000 Concentration in atmosphere 2005 (GtC)

30 ML2000 Concentration in lower strata 2005 (GtC)

31 MU2000 Concentration in upper strata 2005 (GtC)

32 PARTFRACT1 Fraction of emissions under contegfime 2005
33 PARTFRACT?2 Fraction of emissions under contegfime 2015
34 PARTFRACT21 Fraction of emissions under contegime 2205
35 PBACK Cost of backstop 2005 per tC 2005

36 POPO 2005 world population millions

37 POPASYM Asymptotic population

38 Qo0 2005 world gross output trillion 2005 US dadl
39 SIGO CO2-equivalent emissions-GNP ratio 2005
40 T2XCO2 Equilibrium temperature impact of CO2 klking C
41 TATMO 2000 atmospheric temperature change @hft900
42 TOCEANO 2000 lower stratospheric temperaturenghgC) from 1900
43 b1l Carbon cycle transition matrix

44 b12 Carbon cycle transition matrix

45 b21 Carbon cycle transition matrix

46 b22 Carbon cycle transition matrix

47 b23 Carbon cycle transition matrix

48 b32 Carbon cycle transition matrix

49 b33 Carbon cycle transition matrix

50 scalel Scaling coefficient in the objectivedtion

51 scale2 Scaling coefficient in the objective fimt
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Table A2: All Delta Rankings

Model Input Atmospheric Social Cost of Carbon Tax Global Utility
Temperature Carbon 2005 Emissions

A0 1 6 3 5 4
Al 43 43 43 43 43
A2 22 5 6 10 42
A3 8 2 1 1 10
BACKRAT 34 20 27 24 12
ELASMU 19 4 4 11 1
B_PRSTP 29 9 10 15 6
C1 18 8 9 14 23
C3 23 27 20 19 27
C4 30 17 18 28 25
DELA 37 39 40 31 22
DK 24 33 33 38 31
DPARTFRACT 43 43 43 43 43
DSIG 40 37 31 26 32
DSIG2 43 43 43 43 43
ELANDO 39 31 42 42 15
EXPCOST2 5 21 19 4 21
FCO22X 15 7 7 13 17
FEXO 41 38 35 35 41
FEX1 33 30 41 39 24
FOSSLIM 42 26 30 34 13
GAO 7 11 11 3 7
GAMA 4 1 2 9 3
GBACK 36 29 25 25 9
GPOPO 28 25 24 32 39
GSIGMA 16 36 26 6 38
KO 31 10 16 40 8
LIMMIU 43 43 43 43 43
MAT2000 9 19 15 29 40
ML2000 21 35 39 41 30
MU2000 6 28 23 27 29
PARTFRACT1 43 43 43 43 43
PARTFRACT2 43 43 43 43 43
PARTFRACT21 43 43 43 43 43
PBACK 17 32 29 12 16
POPO 20 23 28 30 11
POPASYM 10 12 8 8 5
Qo0 38 24 32 36 26
SIGO 3 22 21 2 28
T2XCO2 2 3 5 7 14
TATMO 35 34 34 33 36
TOCEANO 32 18 22 37 37
b1l 12 13 12 21 18
b12 12 13 12 21 18
b21 12 13 12 21 18
b22 11 16 17 20 2
b23 26 40 36 16 34
b32 26 40 36 16 34
b33 25 42 38 18 33
scalel 43 43 43 43 43
scale2 43 43 43 43 43
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