
LINGUISTICALLY BASED QA BY DYNAMIC LOD ACCESS
FROM LOGICAL FORMS

Rocco Tripodi and Rodolfo Delmonte
Department of Languages & Comparative Cultural Studies, Ca’ Foscari University, Ca' Bembo, Venice, Italy

Keywords: NLP, Logical Form, Lod Cloud, Semantic Web.

Abstract: We present a system for Question Answering which computes a prospective answer from Logical Forms
produced by a full-fledged NLP for text understanding, and then maps the result onto schemata in SPARQL
to be used for accessing the Semantic Web. It is just by the internal structure of the Logical Form that we
are able to produce a suitable and meaningful context for concept disambiguation. Logical Forms are the
final output of a complex system for text understanding – VENSES - which can deal with different levels of
syntactic and semantic ambiguity in the generation of a final structure, by accessing computational lexical
equipped with sub-categorization frames and appropriate selectional restrictions applied to the attachment of
complements and adjuncts. The system also produces pronominal binding and instantiates the implicit
arguments, if needed, in order to complete the required Predicate Argument structure which is licensed by
the semantic component.

1 INTRODUCTION

Nowdays, the need of the automatic processing of
information on the web has become more and more
relevant in order to develop applications able to cope
with unstructured information.

Semantic Web (hence SW) is the project aiming
at implementing a smarter web and has its
fundament in a Tim Berners-Lee paper (Berners-
Lee, 2001). The article describes an Artificial
Intelligence task applied to the web. The idea at the
heart of the project is referencing things in the real
world. The referencing procedure developed over
the years is based on metadata and ontology. The
metadata provide a computer-readable concept
specification and the ontology provides a conceptual
knowledge structure, which organize concepts.

According to Wilchs (1997) we could consider
the SW to have an Information Extraction task at its
heart. The SW task consists in relating entities to
specific categories (e.g. Person, Place, Event, etc.).
The formalism used to add facts in the SW is RDF
(Resource Description Framework). RDF is used in
the SW to express facts by means of simple
Predicate-Argument Structures (hence PAS) with
subject-predicate-object structure. For instance, to
express that Madonna is an artist we may use the

triple below (for the list of prefixes used see
Appendix 1):

Subject : Madonna_(entertainer)
Predicate rdfs:type
Object dbpedia-owl:Artist

The example proposed has been extracted from
DBpedia (Bizer, 2009), a dataset organized over an
ontology. DBpedia contains millions of facts
extracted from the Wikipedia infoboxes and
expressed in RDF triples. DBPedia is a Knowledge
Base (hence KB) and also the de-facto core of the
Linked Open Data (hence LOD) project (Berners-
Lee, 2006). This project has the ambition to become
the foundational basis of the SW; it consists of
several KBs linked together, in which it is possible
to find the reference of millions of entities, and the
facts that characterize each entity. We could, then,
consider the LOD datasets as encyclopedia
(understood within the meaning given by Umberto
Eco, as a network of interconnected cultural units
(Eco, 2007)), where we could find information about
entities, and the reference could be considered as an
attribution of meaning.

The W3C standard way to access a KB on the
SW is SPARQL. SPARQL is used to express queries
across data sources, whether the data is stored or
viewed as RDF. In the Semantic Web, ontologies
supply a machine-interpretable knowledge

5
Tripodi R. and Delmonte R. (2011).
LINGUISTICALLY BASED QA BY DYNAMIC LOD ACCESS FROM LOGICAL FORMS.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 5-14
DOI: 10.5220/0003629100050014
Copyright c
 SciTePress

infrastructure. The real challenge does not only lie in
constructing ontologies and keeping them up to date,
but chiefly in linking them with the natural language
(Doan et al., 2003). In order to link automatically
reference in text and entities in knowledge bases, a
series of tools and heuristics are used for what can
be called the semantic disambiguation task, i.e.
discover the exact concept or the exact entities
referenced in the text.

We present a system for Question Answering
which computes a prospective answer from Logical
Forms produced by a full-fledged NLP for text
understanding, and then maps the result onto
schemata in SPARQL to be used for accessing the
Semantic Web.

VENSES – the system for text understanding –
produces Logical Forms (hence LFs) which are
organized with a restricted ontology made up of 8
types: FOCus, PREDicate, ARGument, MODifier,
ADJunct, QUANTifier, INTensifier, CARDinal
PLURal. In addition, every argument has a Semantic
Role to tell Subject from Object and Referential
from non-Referential predicates. Another important
step in the computation of the final LF, is the
translation of the interrogative pronoun into a
corresponding semantic class word taken from
general nouns, in our case the highest concepts of
WordNet hierarchy.
The result is mapped into classes, properties, and
restrictions (filters). As for instance in the question:

1. Who was the wife of President Lincoln?
which becomes the final LF:

be-[focus-person,
arg-[wife/theme_bound],
arg-['Lincoln'/theme-[mod-[pred-
['President']]]]]

and is then turned into the SPARQL expression,
?x dbpedia-owl:spouse
:Abraham_Lincoln

where "dbpedia-owl:spouse" is produced by
searching the DBpedia properties and in case of
failure looking into the synset associated to the
concept as WIFE. In particular then, the concept
"Abraham_Lincoln" is derived from DBpedia by the
association of a property and an entity name,
"President" and "Lincoln", which contextualizes the
reference of the name to the appropriate referent in
the world.

This paper is divided into two parts. In section 2
we focus on providing access to the SW through
Natural Language. Section 3 concerns Question
Answering over Linked Data. We explain our

question analysis approach and give examples of
how our algorithm works.

2 NATURAL LANGUAGE
AND SEMANTIC WEB

This section concerns access to the SW through
Natural Language. We discuss the problems we
encountered and the solutions and strategies we
adopt.

2.1 Accessing the LOD Cloud through
Natural Language: Problems

On the LOD Cloud the information come from
different ontologies, lacking a semantic mapping
among them, and many ontologies describe similar
domains with different terminologies (Doan et al.,
2003).

Such problems sketch two main points that we
would like to address by means of semantic
disambiguation technique and mapping process.
Without NLP technique, access to the SW through
Natural Language is allowed only using a short
lexicon, which is made up of non homogeneous KBs
labeling systems. This is due to the fact that a large
KB has to handle with homonymy and synonymy
problems.

Liu (2009) noted that DBpedia contains a great
number of disambiguation nodes. A disambiguation
node is used to resolve conflicts when a single term
can be the title of more than one article: for example
the word “Mercury” can refer to several different
things, including an element, a planet, an automobile
brand, a record label, a NASA manned-spaceflight
project, a plant, and a Roman god (Liu 2009). Liu
(2009) explains that things linked by a
disambiguation node are only related through rough
homonymy. So when we look up a word in DBpedia
we get a long list of possible candidates. Such
problems are due to both word ambiguity and to the
labeling system used. However, as Buitelaar claimed
(Buitelaar et al., 2009), the RDFS and OWL
standards are not sufficient for the purpose of
associating linguistic information with ontologies.

Besides the problem of homonymy, there is also
the problem of synonymy. In DBpedia such
problems are partially handled by the redirect
property. A redirect property is a property (in the
RDF formalism) that links a node A to a node B,
where the node B is the preferred concept for A.
That property is used in DBpedia to manage
misspellings, alternative spellings, tenses,

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

6

punctuation, capitalizations, etc. or to redirect sub-
topic in broader context (Liu, 2009). In that
prospective we can see that the semantic content of
the synonymy is not treated, and the access to the
KB through natural language is limited to a short
vocabulary. To avoid such a problem Buitelard et
al., (2009), have proposed a solution within the
ontology markup standards. The idea behind this
approach is to enter linguistic information inside the
ontologies. Our approach, as will be explained
below, does not attempt to modify the SW standards
but tries to manage them by means of NLP and IE
techniques.

By now we have discussed problems related to
concept names, but a KB also contains names for
classes and properties. The class names are common
names which specify the collocation of a concept.
The property links a concept with another concept, a
class or a literal.

As noted by Fu et al. (2009) some relations in
DBpedia have anomalous names that are hard to
understand and therefore are difficult to use.
Another problem concerns the fact that many
relations share the same meaning, for example
“dateOfBirth”, “birthDate” and “datebirth” are three
variant of the same concept. So when we want to
retrieve all the entities with a particular property we
have to collect all the various forms of the property.

Similarly, DBpedia classes were extracted from
different sources such as YAGO (Suchanek et al.,
2007) UMBEL and Wikipedia. Only 170 were
manually created for the project and are consistent
with the DBpedia ontology (Berners-Lee, 2006).
Many extracted classes have the same problems of
properties; besides, many classes express complex
concepts with n-ary relations (Buitelaar et al., 2009)
such as:

1.cl AncientGreekPhilosophers
2.cl OlympicTennisPlayersOfTheUnitedStates
3.cl
CommandersOfTheOrderOfTheBritishEmpire

Classes of that kind have a complex semantics that is
hard to use without a preprocessing phase. The first
thing we do to handle these names is to split them
into tokens. Then we proceed with an NLP-based
analysis (The system used for the analysis is
VENSES [Delmonte 2007, 2009]). In particular, we
analyzed them with a syntactic constituency parser
and obtained the output below, where F3 is the label
for fragments, SN stands for NounPhrase, SP for
PrepositionalPhrase:
1.f3 f3-[sn-[Philosophers-n-sn,

(mod)-[ancient_Greek-n-sn]]]

2.f3 f3-[sn-[olympic-ag-
sn,tennis_players-n-sn,(mod)-[of-p-
sp,the-art-sn, United_States-n-
sn]]]

3.f3 f3-[sn-[Commanders-n-sn,
(mod)-[of-p-sp,the-art-sn,Order-n-
sn]],sp-[of-p-sp,the-art-
sp,British_Empire-n-sp]]

The analysis identifies the head and the modifiers of
the head which is the governing name. At this point
the heads must be disambiguated in order to be
compared with the words in text. So we can use this
information with contextual information. Modifiers
are used to apply consistency checks.
Another step is done mapping the heads with synsets
in WordNet, in order to expand the KB lexicon, for
instance, the word “actress”, in the question:

2. Is Natalie Portman an actress?
matches the class: dbpedia-owl:Actor, because
“actress” share the same synset of “actor”, as shown
in the following term,

dbp('Actor',[actor-
n],[109765278,109767197]).

where we associated WordNet synset labels and
DBPedia classes. In particular, “dbp” is a Prolog
compound term, where the first element corresponds
to a DBpedia label, the second element adds a POS
tag to the label and the last element is a list with all
synset labels. WordNet mapping allows us to use
hyponymy relation, for instance, the word “wife” in
the question:

3. Who was the wife of President Lincoln?
matches the property: dbpedia-owl:spouse, because
there is an hyponymy relation between “wife” and
“spouse”.

2.2 Accessing the Semantic Web
through Natural Language:
Technique

Sowa (2010) asserts that, each ontology, for
practical application, must have a mapping, direct or
indirect, related to and deriving from natural
languages, because human knowledge is developed
around human language. So an useful ontology must
support a systematic mapping to and from natural
languages, because such a bridge could break the
static nature of a KB and make it flexible. The lack
of this bridge has by now failed to achieve the hoped
results in Artificial Intelligence and Knowledge
Management (Sowa, 2010).

What we have in mind is the assumption that an

LINGUISTICALLY BASED QA BY DYNAMIC LOD ACCESS FROM LOGICAL FORMS

7

ontology reflects the background knowledge used in
writing, reading and thinking (Brewster et al., 2007).
In fact a text tells the reader which ontology to use
to understand it (Brewster et al., 2007). The
background knowledge, taken for granted by the
author, is useful because can be used by a NLP
application in order to decide a particular word
sense.

Word Sense Disambiguation (hence WSD)
techniques use the notion of context in order to
decide a particular word sense. A context could
differ widely across WSD methods. One may
consider a whole text, a word window, a sentence or
some specific words (Xiaobin et al., 1995).

Such techniques are necessary to access a static
KB because the concepts are static objects; however
knowledge can then be used and developed by
reasoning. This approach comes from the Dynamic
Construal of Meaning (DCM) (Cruise, 2002)
approach, that we follow. The fundamental
assumption of DCM is that the meaning of a word
changes as it is used in different contexts or
language games (Sowa, 2010).

According to Chierchia (1997) we consider the
computation of meaning as a set of rules that
determine the reference of words. We consider
common names as classes, determiners as
restrictions on classes, entities as referents and verbs
as relations between entities and classes. This
scheme is compatible with the RDF structure and
can also serve as a bridge between natural language
and KBs. Our approach is also related to
Wittgenstein’s language games (Wittgenstein,
1953), in that we assume we need to use patterns of
words, to access an ontology. The RDF triples are
atomic facts with a simple semantic. The meaning of
each fact is the result of the meaning of three
components:
 Classes: a class could be represented by a

common name. When we talk about presidents,
trees, cars, or carpenters, we are talking about
classes of entities.

 Entities: we intend an entity as his reference. To
access an entity we use his label and the
disambiguation is done by one or more classes to
which the entity belongs.

 Properties: are simple or complex relations
between entities, classes and literal. We need to
disambiguate a property and get contextual
information from it.

With our approach, we want to extract information
about the meaning of text. Particularly we want to
understand what specific entities are mentioned in
the text. To do this we use IE techniques to identify

the named entities. We can use their names as labels
to access a KB in order to get all the information
regarding the entities. But as we noted above the
same label could refer to several entities. The
solution is to use contextual information. For
instance, in the following example taken from the
RTE5 challenge dataset:

Proper Name + Definite Expression
(CNN) -- Malawians are rallying behind
Madonna as she awaits a ruling Friday on
whether she can adopt a girl from the southern
African nation. The pop star, who has three
children, adopted a son from Malawi in 2006.
She is seeking to adopt Chifundo “Mercy”
James, 4. “Ninety-nine percent of the people
calling in are saying, let her take the baby,” said
Marilyn Segula, a presenter at Capital FM,
which broadcasts in at least five cities, including
the capital, Lilongwe.

when we find an ambiguous entity (the pop start) we
look for information that could disambiguate it. In
this case, the singular definite expression “the pop
star” is used to specify the entity Madonna. The
definite expression consists of a determiner and a
common noun that in our approach correspond to a
class. At this point we have to establish which class
could be associated with the noun found. This step
corresponds to a WSD procedure, which serve as a
bridge between natural language and KB. This
approach is particularly useful in coreference
resolution task where we have an identical name but
different properties. In this way, coreference
resolution is performed in parallel with entity
identification. Consider another example below,
with a text taken from the same RTE5 dataset:

Definite Expression + Proper Name
The eruption happened at around 1:30 PM local
time, the United States Geological Survey
reported. The volcano had erupted four times on
Friday, billowing ash up to 51,000 feet up into
the air. These are the latest in a series of
eruptions from Mount Redoubt, which started
on March 22. The volcano had not erupted since
a four-month period in 1989-90. The Alaska
Volcano Observatory set its alert level at red,
the highest possible level, meaning that an
eruption is imminent, and that it would send a
significant emission of volcanic ash into the
atmosphere.

In this example the name “Mount Redoubt” could
refer to different entities:
 Mount Redoubt (Alaska) in Alaska, United States

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

8

 Mount Redoubt (Washington) in Washington,
United States

 Redoubt Mountain in Banff National Park,
Canada

but the characteristic of being a volcano belongs
only to one entity:

http://dbpedia.org/resource/Mount_Redoubt
We use abduction to guess a new hypothesis that
explains some fact. More on this in the following
sections.

3 QUESTION ANSWERING
OVER LINKED DATA

We start from the assumption that, any system for
Information Extraction, or Question Answering,
working under the hypothesis of open domain,
unlimited vocabulary, and unstructured text, needs
access to world knowledge. The encyclopedic
knowledge we are referring to is the one that could
be represented by web KB and in particular by the
LOD project. Accessing KBs is done with the RDF
triples structure in mind, which would correspond
strictly to a PAS; and the disambiguation task is
done using background information derived from the
text.

3.1 Question Analysis

As said above, question analysis is performed using
VENSES (Delmonte, 2007, 2009), the system for
text understanding developed at the Ca’ Foscari
University, which is organized as a pipeline that
includes two versions of the system: what we call
the Partial and the Deep SYS-NAME. The system
has been tested in COMP-NAME competition, and
can be downloaded at LINK.

The system is based on LFG (Lexical Functional
Grammar) theoretical framework and has a highly
interconnected modular structure. The Closed
Domain version of the system is a top-down depth-
first DCG (Definite Clause Grammars) based parser
written in Prolog Horn Clauses, which uses a strong
deterministic policy by means of a lookahead
mechanism with a WFST (Weighted Finite State
Transducer) to help recovery when failure is
unavoidable due to strong attachment ambiguity.

It is divided up into a pipeline of sequential but
independent modules which realize the subdivision
of a parsing scheme as proposed in LFG theory
where a c-structure is built before the f-structure can
be projected by unification into a DAG (Direct

Acyclic Graph). In this sense we try to apply in a
given sequence phrase-structure rules as they are
ordered in the grammar: whenever a syntactic
constituent is successfully built, it is checked for
semantic consistency. In case the governing
predicate expects obligatory arguments to be
lexically realized they will be searched and checked
for uniqueness and coherence as LFG
grammaticality principles require.

Syntactic and semantic information is accessed
and used as soon as possible: in particular, both
categorial and sub-categorization information
attached to predicates in the lexicon is extracted as
soon as the main predicate is processed, be it
adjective, noun or verb, and is used to subsequently
restrict the number of possible structures to be built.
Adjuncts are computed by semantic compatibility
tests on the basis of selectional restrictions of main
predicates and adjunct heads.

Logical Forms derived from DAGs or f-structure
sentence level representations are simplified in order
to be useful for the question answering task. In
particular, we come up with a non-recursive linear
representation at propositional level where we
introduce prefixes for each semantic head which are
very close to DRS-conditions:

PRED, QUANT, CARD, PLUR, ARG, MOD,
ADJ, FOC

where Foc contains the question type derived from a
mapping of the Wh- word, its possible nominal or
adjectival head and a restricted set of semantic
general classes, like MEASURE, MANNER,
QUANTITY, REASON etc.

3.2 From Logical Form to SPARQL
Query

Our system produces a LF of natural language
questions by means of SYS-NAME. From LF, the
system extracts the semantic elements needed to
produce a SPARQL query that is then used to
address LOD endpoint.

LFs produced by SYS-NAME are all expressed
as complex Prolog terms, and can be decomposed
into three subparts: there is a Pred - the main verb
predicate of the question -, a Focus - this is the
question head expressed in the question which may
correspond to an interrogative pronouns or may have
a nominal head -, and then Arguments - this slot
contains argument head and its internal modifiers
and attributes like Quantifier, Cardinality, Plural.
This slot may also contain other Arguments or

LINGUISTICALLY BASED QA BY DYNAMIC LOD ACCESS FROM LOGICAL FORMS

9

entities and so on recursively. For instance, consider
the following example:

4. Which are the presidents of the United States of
America?

Pred [be],
Focus [person],
Arg [president/theme_bound-

[['United_States_of_America']]]
As can be gather from the example, the Question is
decomposed into three subelements, these are then
used to build the SPARQL query. Predicate [be] can
be regarded as the fact belonging to a class. Focus
[person] tells us that the reply foreseen by the
question must be of Type Person, important feature
which is easily expressed in SPARQL. We then look
for the elements in Arg inside the two ontologies,
DBPedia and YAGO and we obtain the class:
yago:PresidentOfTheUnitedStates. At this point, we
can start building the query according to the schema:

?x a [Focus]. ?x a [Class]

As explained above, there is no unique way of
expressing the relation between properties and
classes, and Person may belong to a number of
different classes that have the same meaning. In
order to cover the all of them in the KB we need to
address them all in the query and consequently we
come up with a multiple recursive query of the kind
that we show below, where triples are conjoined by
the clause UNION.

select distinct ?x ?string WHERE{
{?x a dbpedia-owl:Person . ?x a
yago:PresidentsOfTheUnitedStates}
union {?x a foaf:person . ?x a
yago:PresidentsOfTheUnitedStates}
union {?x a yago:Person100007846 .
?x a
yago:PresidentsOfTheUnitedStates}
OPTIONAL {?x rdfs:label ?string .
FILTER (lang(?string) = "en”)}}

In some cases, no useful class can be derived
from Args produced by the LF. In that case, we need
to introduce what can be regarded as FILTERS,
which we derive from quantifiers and other
restrictions to predicates, in order to narrow down
the search, as for instance in the question:

5. Who has been the 5th president of the United
states of America?

Pred: [be]
Focus: [person]
Arg: [[president],card-
'5th',['United_States']]

where we understand that the element individuated
by Card, "5th", behaves like a restriction that
operated on the class yago:PresidentsOfTheUnited
States. Since there is no way to express such a
restriction in SPARQL, we create a FILTER that
looks into short literals for the specific word "5th",
"president", "United States". This FILTER will be
added to the previous query, like this:

?x ?prop ?lbl . FILTER (?prop !=
dbpedia-owl:abstract && ?prop !=
rdfs:comment && regex(?lbl, "(^|
)president(|$)","i") && regex(?lbl,
"(^|)5th(|$)","i") && regex(?lbl,
"(^|)United States(|$)","i")).

3.2.1 Yes/No Questions

In case the LF does not produce a Focus element, the
system understands that the question type is yes/no.
In this case, the system will create a query of type
ASK, which is meant to verify the existence of one
or more RDF triples. Suppose the question is the
following,

6. Is Christian Bale starring in Batman Begins?

Pred [be],
Focus []
Arg ['Christian_Bale'/theme_bound-[mod-

[pred-[star], ['Begins'/theme-[mod-[pred-
['Batman']]]]]]]

by analyzing the Arg element we realize that there
are two entities and one property. In the organization
of the final query, we proceed by looking for entities
first: this we do because we find it important to
verify the existence of a given concept before
proceeding to submit the actual query containing it.
In this preliminary phase, we search for the concepts
related to the entities "Christian Bale" and "Batman
Begins" in order to contextualize them. Then we
also look for the predicate "star" in a special
mapping we built where DBPedia properties are
linked to WordNet verb synsets. When building this
mapping, we found out that in many cases there was
no possible correspondance between the information
present in WordNet and the amalgamated labels of
DBPedia. So we had to proceed manually.

The ASK query we produce for the above
example is based on the simple scheme:

Ent Prop Obj

which produces the following query
ASK {
{:Christian_Bale dbpedia-

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

10

owl:starring :Batman_Begins.} Union
{:Batman_Begins dbpedia-owl:starring
:Christian_Bale . }}

as can be seen, we reverse the order of the two
arguments of the predicate STAR, because we do
not know whether it is being used in the active or the
passive form.

In other questions we proceed by disambiguating
a property contained in the LF before proceeding to
build the corresponding query. This is the case of the
example below,

7. Who was the wife of President Lincoln?
Pred [be],
Focus [person]
Arg [wife/theme_bound-[['Lincoln'/theme-

[(mod)-[pred-['President']]]]]]
Here, the system finds at first one property "being
wife" (which is not expressed as a class but as a
DBPedia property) and another element which
consists of a label [Lincoln] and a class [President].
This latter property helps us to disambiguate the
entity expressed by the question, because it
contextualizes the reference, and it allows us to
recover the actual intended entity, i.e.
Abraham_Lincoln, by means of the procedure
previously indicated. In this query, the scheme is the
following one:

?x Prop Ent

and it allows us to build the following query:
select distinct ?x ?string WHERE { {
?x dbpedia-owl:spouse
:Abraham_Lincoln .} Union {
:Abraham_Lincoln dbpedia-owl:spouse
?x .} OPTIONAL {?x rdfs:label
?string . FILTER (lang(?string) =
"en")}}

Also in this case we use the reversed version of the
query, which counts as the logically derivable
statement "President Lincoln has a wife x".

3.2.2 Filters: Gradable, Adjectives and
Quantifiers

There are other special cases of queries which
require some filtering of the results, as shown in
questions where the relevant property is expressed
by a comparative or superlative adjective as in,

8. What is the highest mountain?
[[be],focus-
[mountain],[mountain/theme_bound-
[(mod)-[pred-[highest]]]]]

9. Which mountains are higher than the Nanga
Parbat?

[[be],focus-
[mountain],[higher/theme_bound-
['Parbat'/theme_bound-[(mod)-[pred-
['Nanga']]]]]]

In both cases we have a superlative which is mapped
through a specific filter: in (8) we have a scheme
like:

?x a Class. ?x prop ?value. ORDER BY
DESC(?value) LIMIT 1

which is transformed in the following query:
select distinct ?x ?string WHERE {
{?x a dbpedia:Mountain. ?x dbpedia-
owl:elevation ?value. } Union{?x a
dbpedia:Mountain. ?x
dbpedia2:elevationM ?value.
}OPTIONAL {?x rdfs:label ?string .
FILTER (lang(?string) = "en")}}
ORDER BY DESC(?value) LIMIT 1

In (9) the presence of a superlative induces a slightly
different scheme:

?x a Class. ent prop ?valueE. ?x
prop ?valueX. FILTER (?valueX >
?valueE) .

which is transformed in the following query:
select distinct ?x ?string WHERE {

{?x a :Mountain.
dbpedia:Nanga_Parbat
dbpedia2:elevationM ?y1.?x
dbpedia2:elevationM ?y2.}{?x a
:Mountain . dbpedia:Nanga_Parbat
dbpedia-owl:elevation ?y1.?x
dbpedia- owl:elevation ?y2.} FILTER
(?y2 > ?y1) . OPTIONAL {?x
rdfs:label ?string . FILTER
(lang(?string) = "en")}}

In this case, at first we recover the class to which the
prospective answers belongs, by means of DBPedia
ontology, and then, after we have analysed the
superlative, we look for the properties it may be
referred to and the kind of filter to use. Properties
are recovered by means of our mapping onto
DBPedia. As to the mapping of the two adjectives
"higher" and "highest", they will be mapped both
onto dbpedia2:elevationM and dbpedia-
owl:elevation; because they are understood as
belonging to the domain of :Place, which is the class
right superior to:Mountain.

Information present in the Focus element allow
us to build expectations and filters for a specific type

LINGUISTICALLY BASED QA BY DYNAMIC LOD ACCESS FROM LOGICAL FORMS

11

of answer. In particular in case we have a question
like:

10. How many films did Leonardo DiCaprio star
in?

[[do],focus-[quantity],pred-
[star],(mod)-[pred-
['Leonardo_DiCaprio']],[films]]

The Focus [quantity] requires us to count the
number of results obtained from the query. Building
the query then is done by using the remaining part of
the question, where we have an entity
[Leonardo_diCaprio], a predicate [star], and a class
name [films]. Eventually we come up with the
following scheme:

?x a Class. ?x prop Ent

just because the Focus is not a class, we can use the
class found in the Arg to produce the final query:

select count(?x) WHERE {?x a
dbpedia-owl:Film {:Leonardo_DiCaprio
dbpedia-owl:starring ?x.} union {?x
dbpedia-owl:starring
:Leonardo_DiCaprio.} union {?x
dbpedia-owl:starring "Leonardo
DiCaprio"@en.} }

Here again we reverse subject and object and we add
a third entry which is referred to the label associated
to the name of the entity. In fact, in many cases,
DBPedia refers to an entity with one of its label
rather than with referring to a unique link. This fact
is the reason why we lose sometimes points in the
computation of recall, since literals may be missing
when we impose a certain class to results of the
search.

3.2.3 Pred not [be]

When the predicate used in the question is not a
copular verb, we come up with different schemes, as
for instance in:

11. Which books were written by Danielle Steel?
[[write],focus-
[book],['Steel'/[(mod)-[pred-
['Danielle']]]]]

or

12. Which actors were born in Germany?
[[bear],focus-[actor],adj-[pred-
['Germany']]]

The underlying scheme would be,
?x a [Focus]. ?x Pred [Arg]

from which we build two different queries: in the
first case,

select distinct ?x ?string WHERE {
?x a dbpedia-owl:Book
{:Danielle_Steel dbpedia-owl:author
?x.} union {?x dbpedia-owl:author
:Danielle_Steel.} union {?x dbpedia-
owl:author "Danielle Steel"@en.}
OPTIONAL {?x rdfs:label ?string .
FILTER (lang(?string) = "en")}}

in the second example (12),
select distinct ?x ?string WHERE {
?x a dbpedia-owl:Actor {?x dbpedia-
owl:birthDate:Germany.} union {?x
dbpedia-owl:birthPlace :Germany.}
union {?x dbpprop :birthPlace
:Germany.} union {?x
dbpprop:birthDate :Germany.} union
{?x dbpprop:birthDate :Germany.}
union {?x dbpprop:placeOfBirth
:Germany.} OPTIONAL {?x rdfs:label
?string . FILTER (lang(?string) =
"en")}}

In the latter case, as in previous ones, we added
recursively as many triples as there are properties
linked to the Pred. Also note that in this case, subject
and object are not reversed, and this is due to the
nature of the complement which is computed as
ADJunct or Oblique and not as Object or
Xcomp(element) or open complement for
predicative structures.

3.2.4 Problems

In our system the major problems we had have been
with the ability to recover complex concepts, as for
instance in the question:

13. Give me all female German chancellors!

where we try to decompose the meaning into three
different but intertwined queries:

?x Female. ?x German. ?x Chancellor

But we don't get desired results and the reason is that
DBPedia does not contain the male/female
distinction. Probably there are amalgams which can
express the complex concept to be a woman and be
the head of the German government, but at the
moment, our mapping strategy has not been able to
find a class for the concept. On the contrary, it
worked fine in the case of
yago:PresidentsOfTheUnitedStates and in many
others.

Other problems regard the use of literals in place
of unique identifiers. For instance in the question:

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

12

14. In which programming language is GIMP
written?

[[write],focus-
[programming_language],['GIMP']

we use the scheme
?x a [Focus]. ?x Prop Ent

But this is not correct since the reply for this
question (C and GTK+) is not expressed with two
unique references but with a literal, and literals
cannot belong to any class. In this case the system
does not receive a result and a second scheme is
used, which consists in the elimination of the Focus
and the reversal of subject and object:

Ent Prop ?x

But also in this case we jump into a problem because
we use as Prop [write] and this verb has a mapping
which does not allow us to obtained the desired
result: in fact, the property needed to obtain the
correct result (C and GTK+) is
dbpprop:programmingLanguage, and it is very
difficult to derive from the Pred element [write].

3.3 Evaluation

We have tested our system on the training set made
available by QALD-1 workshop organizers. The
training set contains 50 question expressed in natural
language to submit to DBPedia. We obtained correct
answers (Precision and Recall = 1) to 23 questions
over 50, with a final overall Precision and Recall
equal to 0.46.

We looked into the mistakes and found out that:
a. in 14 cases, we did build up an efficient and

adequate query;
b. in 5 cases we obtains partial results F-

Measure ranging 0.40-0.80
c. in 4 cases we got a Precision ranging 0.80-

0.98;
d. in 5 cases we got a Recall ranging 0.85-0.99.
In case a. we did build up a query with our

schemas; we need to implement new ones. In case b.
we obtained partial results and the Recall ranged
between 0.4-0.8 indicates that we need to refine our
filters. In case c. results are due to the presence of
literals, which duplicate reference to the same entity
with different names though: this could be avoided
building up filters that eliminate multiple reference.
In case d. we did not get some results. We assume
that this is due to the fact that DBPedia allows to
refer to the same entity or concept using different
properties which however were not present in our

mapping, thus preventing some elements not to be
included in our results.

We include here below the table for the final
results we obtained for the 50 dbpedia questions.

4 CONCLUSIONS

The problem cases are due to problems that our
system has encountered for a lack of a strong
mapping to many DBpedia properties. We have to
understand the meaning that some properties have in
DBpedia and then to move that information to the
system, as we have already done automatically with
classes and WordNet synset. Word is underway to
improve on the mapping from SPARQL and with
properties.

REFERENCES

Berners-Lee, T., Hendler, J., Lassila, O. 2001 The
Semantic Web, Scientific American.

Berners-Lee, T. 2006. Linked Data - Design Issues,
http://www.w3.org/DesignIssues/LinkedData.html

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker,
C., Cyganiak, R., Hellmann S. 2009. DBpedia – A
Crystallization Point for the Web of Data. Journal of
Web Semantics:

Brewster C., Ciravegna F., Wilks Y. 2003. Background
and foreground knowledge in dynamic ontology
construction. In Semantic Web Workshop, SIGIR'03,
Toronto, Canada.

Buitelaar, P., Cimiano, P., Haase, P., Sintek, M. 2009.
Towards linguistically grounded ontologies. In Procs.
Of European Semantic Web Conference.

Chierchia G. 1997. Le strutture del linguaggio. Semantica,
(The structures of language. Semantics) il Mulino,
Bologna.

Cruise, D. A. 2002. Microsenses, default specificity and
the semantics-pragmatics boundary, in Axiomathes 1,
1-20.

Delmonte, R. 2007, Computational Linguistic Text
Processing - Logical Form, Semantic Interpretation,
Discourse Relations and Question Answering, Nova
Science Publishers, New York.

Delmonte, R. 2009. Computational Linguistic Text
Processing -Lexicon, Grammar, Parsing and
Anaphora Resolution, Nova Science Publishers, New
York.

Doan, A., Madhavan, J., Dhamankar, R., Domingos, P.,
Halevy, A. 2003. Learning to Match Ontologies on the
Semantic Web. VLDB Journal 12(4):303– 319.

Eco, U. 2007. Dall’albero al labirinto. Studi storici sul
segno e l’interpretazione (From the tree to the
labyrinth), Bompiani.

LINGUISTICALLY BASED QA BY DYNAMIC LOD ACCESS FROM LOGICAL FORMS

13

Fu, L., Wang, H., Yu, Y. 2009. Towards Better
Understanding and Utilizing Relations in DBpedia

Liu, O. 2009, Relation Discovery on the DBpedia
Semantic Web, TER 2009, supervised by Jérôme
Euzenat.

Sowa, J. F. 2010. The role of logic and ontology in
language and reasoning, Chapter 11 of Theory and
Applications of Ontology: Philosophical Perspectives,
edited by R. Poli & J. Seibt, Berlin: Springer, pp. 231-
263.

Suchanek, F. M., Kasneci G., Weikum, G. 2007. Yago - A
Core of Semantic Knowledge, 16th international
World Wide Web conference

Wilks, Y. 1997. Information extraction as a core language
technology. In M.-T. Pazienza (Ed.), Information
Extraction. Springer, Berlin.

Wittgenstein, L. 1953. Philosophical Investigations, Basil
Blackwell, Oxford.

Xiaobin, L., Szpakowicz, S., Matwin, S. 1995. A wordnet-
based algorithm for word sense disambiguation. In
Proceedings of IJCAI-95, pages 1368-1374, Montreal,
Canada, August.

APPENDIX

List of Prefixes and Namespaces:
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : http://dbpedia.org/resource/
PREFIX dbpedia-owl:
<http://dbpedia.org/ontology/>
PREFIX dbpedia2: <http://dbpedia.org/property/>
PREFIX dbpedia: <http://dbpedia.org/>

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

14

