
The metathesis of α -olefins over supported Re-catalysts in supercritical CO₂

<u>Massimo Fabris</u>,^a Alvise Perosa^a and Maurizio Selva,^a Pete Licence^b ^aDipartimento di Scienze Ambientali dell'Università Ca' Foscari, Venezia, Italy ^bSchool of Chemistry, University of Nottingham (UK)

The metathesis of alkenes represents a paramount archetype of green synthesis with reduced emissions of hazardous wastes to the environment.¹ Nonetheless, the replacement of conventional media for the metathesis reaction - typically hydrocarbons or light chlorinated compounds – with safer and greener solvents, is a largely unexplored area. We report here that in the presence of heterogeneous catalysts such as Re₂O₇ supported on γ -Al₂O₃, not only the self-metathesis of α -olefins occurs efficiently in supercritical carbon dioxide (scCO₂) (Scheme), but it also takes place faster than in classic media (*n*-heptane, toluene and *n*-hexane).

The reaction has been investigated under both batch and continuous-flow conditions. Batch experiments showed that at 35 °C, in the presence of Re-oxide/ γ -Al₂O₃, the self-metathesis of 1-olefins (RCH=CH₂, R=C4-C6) proceeded with a conversion over 30% higher on average, in scCO₂ (90 bar) than in a conventional solvent such as *n*-heptane. For instance, after 2 h, the average conversion of 1-octene was 67%, 40% and 36% in scCO₂, *n*-heptane and toluene, respectively. The product of self-methatesis, 7-tetradecene, was isolated in yields up to 68%.²

Continuous-flow (c.-f.) experiments were carried out in a plug-flow reactor filled with a catalytic bed of Re-oxide supported on γ -Al₂O₃. scCO₂ and *n*-hexane were used as solvents for the self-metathesis of 1-octene. Compared to the hydrocarbon medium, the supercritical phase allowed residence times up to five-fold lower to reach similar reaction conversions (40-50%). Alike to batch conditions, c.-f. experiments proved that scCO₂ as a solvent could improve both productivity and yield for the alkene metathesis.

¹ W. F. Carroll, Jr. http://pubs.acs.org/pressrelease/nobelprize/2005.html

² M. Selva, A. Perosa, M. Fabris and P. Canton, *Green Chem.* 2009, **11**, 229-238