[Scopes #: 6]

The metathesis of α -olefins over supported Re-catalysts in supercritical CO₂

Maurizio Selva^{a, *}, Alvise Perosa^a, Massimo Fabris^a, Patrizia Canton^b, Raimondo Maggi^c

^a Dipartimento di Scienze Ambientali dell'Università Ca' Foscari, Dorsoduro 2137, Venezia, 30123, Italy

^b Dipartimento di Chimica Fisica dell'Università Ca' Foscari, Via Torino 155, Mestre (VE), 30172, Italy

^c Dipartimento di Chimica Organica e Industriale dell'Università di Parma, Via G.P. Usberti 17/A, Parma, 43100, Italy

* Corresponding author: +39 041 2348584, selva@unive.it

Abstract: The self-metathesis of α -olefins has been accomplished according to a procedure never previously reported, based on the combined use of heterogeneous catalysts (supported Re-oxides) and of supercritical carbon dioxide as the solvent. The reaction outcome is affected by the nature of the catalytic support (γ -Al₂O₃ and silica), and by the properties of compressed CO₂ which offers advantages in terms of replacement of conventional toxic solvents (e.g. nheptane and toluene), of favourable reaction rates, and of easier recovery of final products.

Keywords: metathesis, Re-supported catalysts, supercritical CO₂.

1. Introduction

The metathesis of olefins is one of the best and more general carbon-carbon bond forming methodologies. ¹ The reaction has also been acknowledged as the archetype Green Chemistry process, for clean productions of pharmaceuticals and polymer with reduced environmental emissions of hazardous wastes. ² In this field however, notwithstanding the enormous efforts for the development of new catalysts able to extend the scope of the metathetic process, ³ the replacement of conventional solvents, typically hexane, toluene, and dichloromethane, ^{3,4} with alternative safer and *greener* media, have been poorly, if any, investigated. In particular, to the best of our knowledge, the combined use of heterogeneous catalysts and CO₂ solvent has never been claimed for the metathesis of olefins. We report here that in presence of Re₂O₇ supported on γ -Al₂O₃, not only the self-metathesis of α -olefins occurs efficiently in supercritical carbon dioxide (scCO₂), but interestingly, the reaction is more rapid than in *n*-heptane and toluene.

2. Experimental

The catalysts were prepared through conventional impregnation methods of aqueous solutions of NH_4ReO_4 over both γ -Al₂O₃ and silica, followed by calcination. The metathesis of 1-alkenes was performed in dense CO₂ at pressure of 80-150 bars. Since previous methodologies were not available, a new Schlenk apparatus was arranged *ad hoc*, to allow multiple operations under an inert (N₂) atmosphere: i) the activation of the catalyst at a high-temperature (550 °C); ii) the charge of the catalyst and of the reactant olefins (RCH=CH₂, R = C₄-C₆) in a stainless-steel autoclave; iii) the reaction step under CO₂ pressure. The method was also compared to conventional procedures carried out at atmospheric pressure, under liquid-phase conditions, using both *n*-heptane and toluene as solvents.

3. Results and discussion

Table 1 reports the results for the metathesis of 1-octene carried out at 35 °C, in presence of Re_2O_7 supported on both γ -Al₂O₃ and silica, and with different solvents. In all cases, regardless of the conditions

used, the formation of the product of self-metathesis (7-tetradecene, **1a**) is accompanied by different coproducts identified as isomers of 1-octene (iso: 2-, 3-, and 4-octene) and linear olefins C_9 - C_{13} . Data indicate that:

- i) Only the catalyst prepared on γ -Al₂O₃ is active for the transformation (entries 1-2, and 4). The different surface acidity between alumina and silica mostly account for this result.⁵
- ii) In $scCO_2$, the average reaction conversion is over 30% higher than in *n*-heptane and toluene. Plausible reasons are based on the gas-like diffusivity and viscosity and the liquid-like density of $scCO_2$, which may improve the mass transfer (with respect to conventional liquids).⁶
- iii) In all cases, the self-metathesis selectivity was of 95-98%.

Entry	Cat. ^a	Solvent	Conv.'n (%,GC) ^b	t (h)	Products (%, GC)			Selectivity		
					iso ^c	$C_{9}-C_{13}^{d}$	1a ^e	(%) ^f		
1	Re-A	<i>n</i> -Heptane	38	2	1	1	36	95		
2	Re-A	Toluene	42	2	1	1	40	95		
3	Re-S	<i>n</i> -Heptane	1	2	1					
4	Re-A	scCO ₂ ^g	74	2	1	2	71	96		
5	Re-S	scCO ₂ ^g	< 1	2	< 1					

Table 1. The metathesis of 1-octene over supported Re-oxides in different solvents

^a Re-A: Re₂O₇ supported on γ-Al₂O₃; Re-S: Re₂O₇ supported on silica. ^b The reaction conversion (% by GC) was referred to all metathesis (olefins C₉-C₁₄) and isomerization compounds. ^c Amount of isomerization by-products (2-, 3- and 4-octene). ^d Amount of products of cross-metathesis (olefins C₉-C₁₃). ^e Amount of 7-tetradecene. ^f Selectivity towards 7-tetradecene. ^g scCO₂: 35 °C, 90 bar.

Similar results are obtained also in the metathesis of 1-hexene and 1-heptene carried out in presence of $scCO_2$ (Table 2).

Entry	Catalyst ^a	Substrate	Conv.'n	Prod	Sel.			
Entry	Catalyst	Substrate	(%) ^b	Iso	Cross	Self	(%) ^d	
1	Re-A	1-hexene	64	1	2	61	95	
2	Re-A	1-heptene	67	2	2	63	94	

Table 2. The self-metathesis of 1-hexene and 1-heptene carried out in scCO₂ (35 °C, 90 bar)

Footnotes a-c: see Table 1.

4. Conclusions

Overall, the combined use of heterogeneous and $scCO_2$ appears a viable alternative for the replacement of conventional liquid-phase methods ordinarily used in the metathesis of olefins.

References

S. Angew. Chem. Int. Ed. Engl. 1997, 36, 2036-2056 (c) Thayler, A. M. Chem. Eng. News 2007, Feb. 12, 37-47.

^{1. (}a) Ivin, K.J.; Mol, J. C. In Olefin Metathesis and Methatesis Polymerization, Academic Press 1997; (b) Schuster, M.; Blechert,

^{2.} Carroll, W. F. Jr. http://pubs.acs.org/pressrelease/nobelprize/2005.html

^{3. (}a) Grubbs, R. H.; Chang, S. *Tetrahedron* **1998**, *54*, 4413-4450; (b) Bielawski, C. W.; Grubbs, R. H. *Angew. Chem. Int. Ed. Engl.* **2000**, *39*, 2903-2906; (c) Chabanas, M.; Coperet, C.; Basset, J.-M. *Chem. Eur. J.* **2003**, *9*, 971-975.

^{4. (}a) Tamagaki, S.; Card, R. J.; Neckers, D. C. J. Am. Chem. Soc. **1978**, 6653-6639; (b) Kapteijn, F.; Mol, J. C. J. Chem. Soc., *Faraday Trans. 1* **1982**, 78, 2583-2592 (c) Kawai, T.; Yamazaki, Y.; Taoka, T.; Kobayashi, K. J. Catal. **1984**, 89, 452-461 (d) Bosma, R. H. A.; van den Aardweg, F.; Mol, J. C. J. Organomet. Chem. **1985**, 280, 115-122 (e) Spronk, R.; Mol, J. C. Appl. Catal. **1991**, 70, 295-306; (f) Sita, L. R. Macromolecules **1995**, 28, 656-657; (g) Crimmins, M. T.; King, B. W. J. Org. Chem. **1996**, 61, 4192-4193; (h) Melis, K.; De Vos, D.; Jacobs, P.; Verpoort, F. J. Mol. Catal. **2001**, 169, 47-56.

^{5. (}a) Yide, X.; Jiasheng, H.; Zhiying, L.; Xiexian, G. J. Mol. Catal. 1991, 65, 275-285; (b) Busca, G. Phys. Chem. Chem. Phys. 1999, 1, 723-736

^{6. (}a) Groβ, T.; Chen, L.; Lüdemann, H.-D. In *Supercritical Fluids as Solvents and Reaction Media*, Chapt. 2.1; Brunner, G. Ed.; Elsevier, 2004;