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Abstract

We study a Markov switching stochastic volatility model with heavy-tailed innovations in

the observable process. Due to the economic interpretation of the hidden volatility regimes,

these models have many financial applications like asset allocation, option pricing and risk

management. The Markov switching process is able to capture clustering effects and jumps

in volatility. Heavy-tailed innovations account for extreme variations in the observed process.

Accurate modelling of the tails is important when estimating quantiles is the major interest

like in risk management applications. Moreover we follow a Bayesian approach to filtering

and estimation, focusing on recently developed simulation based filtering techniques, called

Particle Filters. Simulation based filters are recursive techniques, which are useful when

assuming non-linear and non-Gaussian latent variable models and when processing data

sequentially. They allow to update parameter estimates and state filtering as new observations

become available.
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1 Introduction

Stochastic volatility (SV) models find many financial applications, for example option pricing,

asset allocation and risk management. The first work on time series with time changing volatility

is due to Clark [12]. The most simple continuous SV model has been proposed by Taylor [61],

[62], while Hamilton [35] considers a simple discrete SV model. Hull and White [39] introduce

continuous time SV models in the modern theory of finance. Other results in continuous time

asset pricing under the assumption of time varying stochastic volatility are due to Melino and

Turnbull [49] and Wiggins [66]. Barndorff-Nielsen and Shephard [6], [7] develop continuous time

stochastic volatility modelling through Lévy and α-stable stochastic processes.

Many extensions to the basic SV models have been proposed in the literature. In particular

Markov Switching Stochastic Volatility models (MSSV ), studied in So, Lam and Li [59], are

continuous SV models with a Markov switching component in the mean of the volatility process.

They result quite appealing because of the financial interpretation of the hidden Markov process,

which drives the volatility. Chib, Nardari and Shephard [13] propose a Generalized Stochastic

Volatility (GSV) models characterized by heavy-tailed innovations of the observable process.

Moreover they study a GSV model with a Markov switching process, which drives the mean of

the observed process. Following the suggestion of Chib, Nardari and Shephard [13], we extend

their Markov switching GSV model by considering a Markov Markov switching component in

the mean of the volatility process. The models proposed in our work represent also an extension

to the MSSV model of So, Lam and Li [59], because the observable process is characterized by

heavy-tailed innovations.

Estimation of SV is difficult due to the latent variable structure of the model. In particular

MSSV models are more difficult to estimate than simple continuous SV models because there are

two hidden levels in the latent structure. In the following we briefly describe the current state of

the art of SV estimation techniques. The Method of Moments (MM) has been applied by Taylor

[61], [62], [63], by Andersen [1] and Andersen and Sørensen [2]. The MM and the Generalized

MM (GMM) avoid the integration problem associated to the evaluation of the likelihood function.

But MM reveals to be inefficient when compared with Maximum Likelihood method (ML). In

particular in SV models score function cannot be evaluated and the choice of the moments is

thus impossible. An alternative approach is the Quasi-Maximum Likelihood method (QML). It

is based on the maximization of the approximated likelihood function. Nelson [51], Harvey and

Shephard [37], Harvey, Ruiz and Shephard [38] and So, Lam and Li [58] employ a linearized

filtering method (Extended Kalman Filter) to obtain QML estimation.

Simulation based methods are more time consuming, but represent a valid alternative to

GMM and to QML. In the literature we find the following approaches. The indirect inference

method (see Gourieroux, Monfort and Renault [34]) uses an auxiliary model and a calibration
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procedure to simulate from the correctly specified model. The Efficient Methods of Moments (see

Gallant and Tauchen [28] and Gallant, Hsieh and Tauchen [29]) uses the score of the auxiliary

model to improve the indirect inference method. Strictly related to the QML approach is the

Simulated Maximum Likelihood method (SML). The method approximates through Monte Carlo

simulation the likelihood function. Danielson [18], Danielson and Richard [19] and Durbin and

Koopman [23] apply importance sampling in order to simulate the likelihood function and then

maximize the approximated function.

Our work is based on particle filter techniques and belongs to the more general Bayesian

framework for time series analysis. Harrison and West [36] provides an introduction to estimation

methods for dynamic Bayesian models. Bayesian inference represents an alternative framework

to the above cited estimation methods and in the following we discuss the main estimation

approaches within this framework.

A first approach is the Monte Carlo Markov Chain-Expectation Maximization method

(MCMC-EM). It uses MCMC simulation techniques to evaluate the likelihood function and

to calculate the expectation with respect the latent variables. The resulting approximated

expectation is then maximized to obtain the ML estimator. Shephard [56], Geyer [30], [31] apply

MCMC-EM to stochastic volatility methods. Andrieu and Doucet [3] propose and compare

different on-line MCMC-EM algorithms, which allow to process data sequentially. On-line

MCMC-EM reveals efficient also for non-linear models if a set of sufficient statistics exists. As

example, they evaluate the efficiency of this estimation method also on a basic continuous SV

model.

A second approach, in a Bayesian framework, is the Monte Carlo Markov Chain (MCMC)

method. It is based on a data completion (or augmentation) principle. It allows to obtain a

simulated sample from the posterior distribution of parameters and hidden states, given the

available information. Jacquier, Polson and Rossi [40] develop a Bayesian approach to SV model

estimation. Their method is based on a hybrid MCMC algorithm and the superiority of the

Bayes estimator is exhibited through a comparison with QML and MM estimation methods. De

Jong and Shephard [20] apply MCMC approach to SV models and propose a simulation smoother

and a multi-move Gibbs sampler to simulate from the disturbances of a time series rather than

from the hidden states. The algorithm effectively improves the efficiency of the MCMC method

for time series. Shephard and Pitt [57] provide estimation methods for non-Gaussian time series

models with application to SV. They analyse MCMC methods for simulation smoothing and

parameters estimation and compare them with maximum likelihood estimation. The likelihood

function has been approximated through importance sampling. Kim, Shephard and Chib [44]

compare continuous SV models with ARCH models and with GARCH t-Student model. They

provide also an analysis of MCMC method for parameters inference and volatility filtering when
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applied to an approximated likelihood function. In particular they linearized the measurement

equation by taking the logarithm of the square and by approximating the resulting innovation

distribution with a mixture of distribution. The same approximation technique is used in So,

Lam and Li [59]. They generalize the usual continuous SV model by introducing a Markov jump

process in the volatility mean. Through this switching process the model accounts for both

persistence effects and tilts in volatility. They adopt MCMC approach with a data augmentation

principle and take into account the works of Harvey, Ruiz and Shephard [38] and of De Jong and

Shephard [20]. Recently, Chib, Nardari and Shephard [13] introduce GSV models, with Student-

t innovations and with a Markov switching process in the mean of the measurement equation.

They use a MCMC approach for estimating parameters and Particle Filter for approximating

the likelihood function in order to perform model diagnostic. Many recent papers focus on the

use of MCMC methods in financial models estimation. Johannes and Polson [41] review financial

applications of MCMC methods. They discretize the continuous time diffusion process and apply

MCMC for parameters estimation and hidden state filtering. Particle filter are then used for

model diagnostic. Eraker [24] follows the same framework. See Johannes, Polson and Stroud

[42] for a Bayesian approach to state filtering and parameter estimation to jump and diffusion

stochastic processes.

In this work, we follow a third Bayesian approach, which has been recently developed and

which reveals efficient for general dynamic models. This is sequential simulation based filtering,

called Particle Filter,which is particularly useful in financial applications, when processing data

sequentially. As a new observation becomes available, the hidden states and the parameters

of the dynamic model can be updated and a new prediction can be performed. Particle filter

allows also to perform model diagnostic and parameter inference. For a review of the state of the

art see Doucet, Freitas and Gordon [22]. Pitt and Shephard [52] improve standard Sequential

Importance Sampling filtering techniques by introducing the Auxiliary Particle Filter (APF).

They apply APF to stochastic volatility models and find that the method performs better than

other simulation based techniques and that it is particularly sensitive to outliers. Kim, Shephard

and Chib [44] and Chib, Nardari and Shephard [13] apply particle filter for stochastic volatility

extraction but not for parameter estimation. Polson, Stroud and Müller [54] apply a practical

filter for sequential parameter estimation and state filtering. They show the superiority of their

method when compared to the APF with the sequential parameter learning algorithm due to

Storvik [60]. Lopes and Marino [48] and Lopes [47] apply APF to a MSSV model for sequential

parameter learning and state filtering.

The first aim of our work is to develop the idea of Chib, Nardari and Shephard [13], which

propose to extend their jump GSV model by introducing a Markov jump process in the volatility.

The second aim is to develop the joint estimation of the states and the parameters of Markov
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switching SV model. Recently Storvik [60] analyses this problem and reviews main approaches in

the literature. Our work refers to the algorithm of Liu and West [46]. They suggest to combine

the APF algorithm with the kernel reconstruction of the parameters posterior distribution.

Sequential filtering techniques introduce approximation errors in estimation of the states and

parameters. Moreover these errors cumulate over time. Thus, for financial applications of the

dynamic Bayesian models and of the particle filtering, it is necessary to take into account and to

correct approximation errors.

The work is structured as follows. In section 2 we state the SV models, discuss some useful

reparameterisations and provide stationarity condition for the MSSV. Section 3 focuses on the

particle filter for the joint estimation of states and parameters. Section 4 presents some simulation

results. Section 5 concludes.

2 The Markov Switching Stochastic Volatility Models

Financial time series are often characterised by heavy tails, asymmetry and time varying volatility.

In particular they may exhibit jumps in volatility, volatility persistence effects, also called

volatility clustering and leverage effects. In this work we focus on the joint modelling of heavy

tails of the observable process and on the clustering effects in volatility dynamic.

The hypothesis of Gaussian evolution of the observable process seems to be quite restrictive in

many financial applications. Thus some authors proposed generalised stochastic volatility models

(see Harvey, Ruiz and Shephard [38], Shephard and Pitt [57] and Chib, Nardari and Shephard

[13]). In our work we consider MSSV heavy tails processes and make a comparison with the

Gaussian model.

Another aspect of interest is volatility clustering. It is possible to capture volatility persistence

by introducing a jump component in the volatility dynamic. So, Lam and Li [59] extend the simple

continuous volatility model of Taylor [62], by adding a Markov jump process to the drift of the

stochastic volatility. Following them, in our Markov switching stochastic volatility model, we

assume that the log-volatility, ht, is a continuous Markov process, conditionally to a discrete

homogeneous Markov process, st. This process is called switching process and determines the

regime of volatility. Moreover we assume the switching process varies in a finite and known set

of states. See Chopin [14] for an application of particle filters to switching models with a varying

number of states. In the following we give some examples of MSSV models under different

assumptions on the distribution of the observable process. We will consider both a Gaussian

innovations process and heavy-tailed processes like Student-t and α-stable innovations processes,

with unknown degrees of freedom and unknown characteristic exponent respectively.
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Figure 1: Simulation of the Markov switching stochastic volatility model M1 (α1 = −2.5,

α2 = −1, φ = 0.5, σ2 = 0.1, p11 = 0.99, p22 = 0.975). The left upper graph exhibits the evolution

of the hidden jump process, the right upper graph shows the log-volatility of the observable

process, which is represented in the third graph.

2.1 The Gaussian MSSV Model

The assumption of Gaussian innovations is quite common in practice, thus in this section, we

define a basic MSSV model (M1), which is completely Gaussian

(yt|ht) ∼ N (0, eht) (1)

(ht|ht−1, st) ∼ N (ht|αst + φ ht−1, σ
2) (2)

for t = 1, . . . , T , where st is a homogeneous discrete Markov’s process, with transition probabilities

P(st = j|st−1 = i, st−2 = i2..., s0 = it) = P(st = j|st−1 = i) = pij (3)

with i, j = 1, . . . , L, L denoting the number of unobservable states.

For the sake of simplicity we introduce the following notation: θ = ((α1, . . . , αL),

φ, σ2, (p1, . . . ,pL)), with pi = (pi1, . . . , piL), for the parameters and s0:t = (s0, . . . , st) and

h0:t = (h0, . . . , ht), for the two hidden Markov processes. For estimation purposes, in order
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to impose the positivity constraint on σ2 and to constrain pij to be in (0, 1), we adopt the

following reparameterisation: log(σ2) and log(
pij

1−pij
).

Fig. 1 exhibits a sample of T=1,000 values, simulated from the MSSV Gaussian model M1,

with parameters: α1 = −2.5, α2 = −1, φ = 0.5, σ2 = 0.1, p11 = 0.99, p22 = 0.975. We use

the parameters values estimated by So, Lam and Li [59]. Note that the value of the transition

probabilities induces in this simulation example a high degree of persistence in volatility regimes

of the observed process.

2.2 Heavy-tailed MSSV Models

Due to the high degree of heterogeneity of the time series, the assumption of Gaussian observable

process seems to be restrictive in many real contexts and for this reason it has been removed by

many recent studies. Moreover a common way to model heterogeneous dynamics in time series is

to include a stochastic latent structure in the model. For example Chib, Nardari and Shephard

[13] propose a Student-t discrete time GSV model and a similar model with a jump component in

the mean of the observable process. In a continuous time setting Barndorff-Nielsen and Shephard

[6] study heavy-tailed processes.

Financial time series often exhibit volatility tilts and clustering behaviour. In order to capture

these features of the volatility dynamic, we study the following non-Gaussian Markov switching

stochastic volatility models. We assume that the observable variable follows a heavy-tailed

process, which will alternatively be a Student-t process or a α-stable process. Note that both of

them have the Gaussian model as particular case.

The first GSV model (M2), is

(yt|ht) ∼ Tν(yt|0, e
ht) (4)

(ht|ht−1, st) ∼ N (ht|αst + φ ht−1, σ
2) (5)

(st|st−1) ∼ ML(st|1, pst−11, . . . , pst−1L) (6)

for t = 1, . . . , T , where ML is the multinomial distribution and Tν(y|δ, σ) represents the density

of a Student-t distribution

Tν(y|δ, σ) =
Γ((ν + 1)/2)Γ(ν/2)

(νπσ2)1/2

(

1 +
1

νσ2
(y − δ)2

)−(1+ν)/2

. (7)

The distribution is characterised by three parameters: ν the degrees of freedom parameter, δ the

location parameter and σ the scale parameter. Note that the heaviness of the tails is controlled

by the parameter ν and that when ν → ∞ the distribution converges to a Gaussian distribution.

The second GSV model (M3) also is characterised by an heavy-tailed observable process
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Figure 2: Simulation of the Markov switching stochastic volatility model M2 (α1 = −2.5,

α2 = −1, φ = 0.5, σ2 = 0.1, p11 = 0.99, p22 = 0.975 and ν = 3, 5, 8). The hidden jump

process realisations are the same depicted in Fig. 1
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Figure 3: Simulation of the Markov switching stochastic volatility model M3 (α1 = −2.5,

α2 = −1, φ = 0.5, σ2 = 0.1, p11 = 0.99, p22 = 0.975, β = 0 and α = 1.5, 1.8, 1.99). The

realisations of the hidden jump process are the same depicted in Fig. 1
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(yt|ht) ∼ Sα(yt|0, 0, e
ht) (8)

(ht|ht−1, st) ∼ N (ht|αst + φ ht−1, σ
2) (9)

(st|st−1) ∼ ML(st|1, pst−11, . . . , pst−1L) (10)

for t = 1, . . . , T , where ML is the multinomial distribution and Sα(y|β, δ, σ) represents the density

of a stable distribution, which is completely characterised by the following four parameters: the

characteristic exponent α, the skewness parameter β, the location parameter δ and finally the

scale parameter σ. We assume for simplicity that β = 0. Moreover we take α ∈ (1, 2] in order to

have a finite first order moment. Note that stable distributions have the Gaussian distribution

as a particular case, when α = 2.

The stable distribution density can not generally be written in an analytic form, thus it is

conveniently defined through its characteristic function. The most well known parametrisation

is defined in Samorodnitsky and Taqqu [55]

E

[

ei ϑ y
]

=

{

exp(−|σϑ|α)(1 − i β(sign(ϑ)) tan(πα/2) + iδϑ) if α 6= 1;

exp(−|σϑ|(1 + 2 i β ln |ϑ|sign(ϑ)/π) + iδϑ) if α = 1.
(11)

where ϑ ∈ R. In the parameter setting of our model the characteristic function reduces to

E[exp(i ϑ y)] = e−|σ ϑ|α . (12)

In order to obtain an analytic representation of the density of a stable random variable an

auxiliary variable has to be introduced. The same strategy is used in Buckle [10] for α-stable

distributions and in Godsill [32] for inference on time series with α-stable innovations.

For the sake of simplicity we introduce the following notations. The parameter

vector is θ = (ν, (α1, . . . , αL), φ, σ2, (p1, . . . ,pL)) for the model M2 and θ =

(α, (α1, . . . , αL), φ, σ2, (p1, . . . ,pL)) for the model M3. In order to constrain the parameter

α to be into (1, 2] we consider the following invertible transformation: log((α − 1)/(2 − α)).

For the Student-t distribution we let ν vary uniformly in the interval [2, 100], thus we use the

transformation: log(((ν − 2)/98)/(1 + ((ν − 2)/98))).

Fig. 2 and 3 exhibit some samples of T=1,000 values, simulated respectively from the MSSV

models M2 and M3, with parameters: ν = 3, 5, 8, for the Student-t model, α = 1.5, 1.8, 1.99,

for the stable model and α1 = −2.5, α2 = −1, φ = 0.5, σ2 = 0.1, p11 = 0.99, p22 = 0.975.

2.3 Stationarity Conditions for MSSV models

The standard continuous SV process is often assumed in order to model the excess of kurtosis

in the unconditional distribution of the observable process. Moreover continuous SV is able
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to capture volatility clustering, but many financial time series exhibit also a multi-modal

unconditional distribution. This feature can be explained by a volatility process with a mean

changing over time. In MSSV models a hidden jump process (i.e. Markov Switching process)

is added to the mean parameter of the log-volatility process. A first consequence of including

a hidden Markov Switching process in the log-volatility is to increase furthermore the degree of

kurtosis of the observable process. Moreover the MSSV model is able to capture both volatility

persistence and volatility tilts.

Financial applications of MSSV model make sense if stationarity of the model is guaranteed.

Thus some considerations on the stationarity are needed. Define the following reparameterisation

of the MSSV model

yt = eht/2εt , εt ∼ N (0, 1) (13)

ht = αst + φht−1 + σηηt , ηt ∼ N (0, 1) (14)

αst = α + βst (15)

P(st = i|st−1 = j) = pij (16)

with pij ≤ 0, ∀ i, j ∈ E and
∑L

l=1 pil ≤ 1. Moreover {st}t∈N is a Markov jump process, which

takes value in the finite countable state space E = {0, . . . , L}. In the following we assume that

E = {0, 1}, the initial state s0 of the process has probability measure µ0 and finally st has

transition matrix P. Note that through the transition matrix and the initial probability measure,

the Markov jump process is well defined.

As stated in Theorem 2 (Appendix A), the second order stationarity of the process ln(y2
t ) is

guaranteed by the second order stationarity of the process ht. In the following we focus on the

stationarity conditions for the hidden Markov process {ht, st}t∈N. Due to the causality relations

between st and ht, it is possible to study first the unconditional stationarity of {st}t∈N and

secondly the stationarity of {ht}t∈N conditionally on {st}t∈N.

Stationarity conditions for {st}t∈N follow from the properties of the n-times composition of the

transition matrix. When n → +∞, the transition probability P
n tends to a finite quantity if and

only if |1 − p10 − p01| < 1 and by Theorem 2 conclude that these are sufficient condition for the

second order stationarity of ln(y2
t ).

The autoregressive structure of the log-volatility process (see Equation (14)) makes it dependent

on the past history of the Markov jump process. This feature becomes evident from the ergodic

solution of the system of stochastic difference equation (14), (15) and (16)

ht = α
+∞∑

i=0

φi + β
+∞∑

i=0

φist−i + ση

+∞∑

i=0

φiηt−i. (17)
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which is derived in Appendix A, under the assumption |φ| < 1.

In Appendix A, we find that first and second order stationary moments of ht exist if |φ| < 1 and

|1 − p10 − p01| < 1.

Further details on the asymptotic second order stationarity and strictly stationarity for

switching non linear AR and switching ARMA models see also Francq and Roussignol [26] and

Francq and Zakoian [27].

3 Particle Filters

Particle filters, also referred in the literature as Bootstrap filters, Interacting particle filters,

Condensation algorithms, Monte Carlo filters, are sequential Monte Carlo algorithms. They

reveal quite useful for filtering in dynamic models, like M1, M2 and M3, which have elements of

non-linearity and non-Gaussianity and provide a significant advantage over traditional filtering

techniques. In particular, in many real situations data are processed on-line. When a new

observation arrives, the estimate of the states and of the parameters has to be updated.

Thus recursive techniques, like sequential Monte Carlo filters, are well appreciated. Moreover

simulation based filtering allows to evaluate the likelihood function of complex dynamic models

and allows also to perform model diagnostics.

In the following we focus on the joint estimation of states and parameters of the dynamic

model. We state a quite general formulation of the filtering problem in a Bayesian perspective,

which does not usually admit an analytical solution. Denote by {xt; t ∈ N}, xt ∈ X , the

hidden states of the system, by {yt; t ∈ N0}, yt ∈ Y the observable variable and by θ ∈ Θ

the parameters of the densities. In this section we suppose that parameters are known. The

Bayesian state space representation of a nonlinear, non-Gaussian dynamic model, is given by an

initial distribution p(x0), a measurement density p(yt|xt) and a transition density p(xt|xt−1; θ).

Moreover, we assume that the Bayesian dynamic model

(xt|xt−1) ∼ p(xt|xt−1; θ) (18)

(yt|xt) ∼ p(yt|xt; θ) (19)

x0 ∼ p(x0; θ) with t = 1, . . . , T. (20)

is Markovian, that is the transition density depends on the past, only through the last value of

the hidden state. The measurement density is a function of the current value of the hidden state.

Fig. 4 shows the causality structure of the Bayesian dynamic model given in equations (18), (19)

and (20). Note that models M1, M2 and M3 do exhibit this structure.
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Figure 4: Causality structure of a Markovian dynamic model with hidden states. A box around

the variable indicates the variable is known, while a circle indicates a hidden variable.

When processing data on-line, at each time t, two quantities of interest are the estimate of

the current hidden state of the system and the prediction on the state of the system at time t+1.

In order to predict the future value of the state of the system, given the information available at

time t, we use the Chapman-Kolmogorov equation, which characterises the hidden state evolution

and gives us the following prediction density

p(xt+1|y1:t; θ) =

∫

X
p(xt+1|xt,y1:t; θ)p(xt|y1:t; θ)dxt =

∫

X
p(xt+1|xt; θ)p(xt|y1:t; θ)dxt. (21)

As the new observation yt+1 becomes available, it is possible using Bayes’ theorem to update the

prediction density and to filter the current state of the system. The filtering density is

p(xt+1|y1:t+1; θ) =
p(yt+1|xt+1,y1:t; θ)p(xt+1|y1:t; θ)

p(yt+1|y1:t; θ)
(22)

where the marginal density at denominator is obtained as follows

p(yt+1|y1:t; θ) =

∫

p(yt+1|xt+1,y1:t; θ)p(xt+1|y1:t; θ)dxt. (23)

Moreover the assumption of Markovian dynamic of the hidden states allows to obtain a recursive

relation, which is useful when solving a filtering problem and sequentially processing data at the

same time

p(x0:t+1|y1:t+1; θ) = p(x0:t|y1:t; θ)
p(yt+1|xt+1; θ)p(xt+1|xt; θ)

p(yt+1|y1:t; θ)
(24)
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In the following we introduce some basic particle filter algorithms, with a particular attention to

the auxiliary particle filter. Moreover we treat the problem of the joint estimation of the hidden

states and of the parameters of the model.

3.1 State Filtering

Assume the parameters θ of the dynamic model given in equations (18), (19) and (20) are known.

Different versions of the particle filter exist in the literature and different simulation approaches

like rejection sampling, MCMC and importance sampling, can be used for the construction of a

particle filter. To introduce particle filters, we will apply importance sampling reasoning to the

smoothing problem.

At each time step t+1, as a new observation yt+1 arrives, we are interested in predicting and

filtering the hidden variables and the parameters of a general dynamic model. In particular we

search how to approximate prediction an filtering densities given in Equations (21) and (22) by

means of sequential Monte Carlo methods.

Assume that the weighted sample {xi
t, w

i
t}

N
i=1 has been drawn from the filtering density at

time t

p̂(xt|y1:t; θ) =

N∑

i=1

wi
tδ{xi

t}
(dxt) (25)

Each simulated value xi
t is called particle and the particles set, {xi

t, w
i
t}

N
i=1, can be viewed as a

random discretization of the state space X , with associated probabilities weights wi
t. It is possible

to approximate, by means of this particle set, the prediction density given in Eq. (22) as follows

p(xt+1|y1:t; θ) =

∫

X
p(xt+1|xt; θ)p(xt|y1:t; θ)dxt ≈

N∑

i=1

wi
tp(xt+1|x

i
t; θ) (26)

which is called empirical prediction density and is denoted by p̂(xt+1|y1:t, θ). By applying the

Chapman-Kolmogorov equation it is also possible to obtain an approximation of the filtering

density given in Eq. (22)

p(xt+1|y1:t+1; θ) ∝ p(yt+1|xt+1; θ)p(xt+1|y1:t; θ) ≈
N∑

i=1

p(yt+1|xt+1; θ)p(xt+1|x
i
t; θ)w

i
t (27)

which is called empirical filtering density and is denoted by p̂(xt+1|y1:t+1; θ).

Assume now that the quantity E(f(xt+1)|y1:t+1) is of interest. It can be evaluated numerically

by a Monte Carlo sample {xi
t+1, w

i
t+1}

N
i=1, simulated from the filtering distribution
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E(f(xt+1)|y1:t+1) ≈
1
N

∑N
i=1 f(xi

t+1)w
i
t+1

1
N

∑N
i=1 wi

t+1

. (28)

A simple way to obtain a weighted sample from the filtering density at time t + 1 is

to apply importance sampling to the empirical filtering density given in equation (27).

This step corresponds to propagate the initial particle set through the importance density

q(xt+1|xi
t,yt+1; θ). Moreover if we propagate each particle of the set through the transition

density p(xt|x
i
t−1; θ) of the dynamic model, then particle weights § update as follows

wi
t+1 ∝

p(yt+1|xt+1; θ)p(xt+1|y1:t; θ)w
i
t

q(xt+1|xi
t,yt+1; θ)

= wi
t p(yt+1|x

i
t+1; θ) (30)

This is the natural choice for the importance density, because the transition density represents

a sort of prior at time t for the state xt+1. However, as underlined in Pitt and Shephard [52] this

strategy is sensitive to outliers. See also Crisan and Doucet [16], for a discussion on the choice of

the importance densities. They focused on the properties of the importance density, which are

necessary for the a.s. convergence of the sequential Monte Carlo algorithm.

The generic particle filter developed through previous equations is called Sequential

Importance Sampling (SIS). See also Doucet, Freitas and Gordon [22] for an updated review on

the particle filter techniques and on the main convergence results for this kind of algorithms. It is

well known in the literature (see for example Arulampalam, Maskell, Gordon and Clapp [4]), that

basic SIS algorithms have a degeneracy problem. After some iterations the empirical distribution

degenerates into a single particle, because the variance of the importance weights is non-decreasing

over time (see Doucet [21]). In order to solve the degeneracy problem, the Sampling Importance

Resampling (SIR) algorithm has been introduced by Gordon, Salmond and Smith [33]. This

algorithm belongs to a wider class of bootstrap filters, which use a re-sampling step to generate a

new set of particles with uniform weights. This step introduces diversity in particle set, avoiding

degeneracy. Note however that the basic SIR algorithm produces a progressive impoverishment of

the information contained in the particle set, because of the resampling step and of the fact that

particles does not change over filter iterations. Many solutions have been proposed in literature.

We recall here the Regularised Particle Filter proposed by Musso, Oudjane and LeGland [50],

which is based on a discretisation of the continuous state space. Moreover Gilks and Berzuini [8]

§Note that importance sampling requires to know the importance and the target distributions up to a

proportionality constant, thus the unnormalized weights may not sum to one. However normalized importance

sampling weights can be easily obtained as follows

w̃
i
t =

wi
t

∑N

j=1
w

j
t

i = 1, . . . , N and t = 1, . . . , T. (29)

The normalization procedure causes the loss of the unbiasness property.
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propose the SIR-Move algorithm, which moves particles after the re-sampling step. Thus particles

value changes and impoverishment is partially avoided. Finally Pitt and Shephard [52] introduce

the Auxiliary Particle Filter (APF) and applied it to a Gaussian ARCH-type stochastic volatility

model. They find the filter works well, although it is highly sensible to outliers. In the following

we focus on the APF algorithm.

In order to avoid re-sampling, APF algorithm uses an auxiliary variable to select most

representative particles and to mutate them through a simulation step. Then weights of the

regenerated particles are updated through an importance sampling argument. In this way

particles with low probability do not survive to the selection and the information contained

in particles set is not wasted. In particular the auxiliary variable is a random particle index,

which is used in the selection step to sample new particles. The random index is simulated from

a distribution which contains and resumes the information on previous particle set. This feature

is due to the use of µi
t in the measurement density. Note that the empirical filtering density

given in Eq. (27) is a mixture of distributions, which can be reparameterised by introducing the

allocation variable i ∈ {1, . . . , N}. The joint distribution of the hidden state and the index i is

p(xt+1, i|y1:t+1; θ) =
p(yt+1|y1:t,xt+1, i)

p(yt+1|y1:t; θ)
p(xt+1, i|y1:t; θ) = (31)

=
p(yt+1|xt+1; θ)

p(yt+1|y1:t; θ)
p(xt+1|i,y1:t; θ)p(i|y1:t; θ) =

=
p(yt+1|xt+1; θ)

p(yt+1|y1:t; θ)
p(xt+1|x

i
t; θ)w

i
t.

The basic idea of the APF is to refresh the particle set while reducing the loss of information

due to this operation. Thus the algorithm generates a new set of particles by jointly simulating

the particle index i (selection step) and the selected particle value xt+1 (mutation step) from the

reparameterised empirical filtering density and according to the following importance density

q(xj
t+1, i

j |y1:t+1; θ) = q(xj
t+1|y1:t+1; θ)q(i

j |y1:t+1; θ) =

= p(xj
t+1|x

ij ; θ)(p(yt+1|µ
ij

t+1; θ)w
ij

t ) (32)

for j = 1, . . . , N . By following the usual importance sampling argument, the updating relation

for the particle weights is
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wj
t+1

∆
=

p(xj
t+1, i

j |y1:t+1; θ)

q(xj
t+1, i

j |y1:t+1; θ)
=

=
p(xj

t+1|x
ij ; θ)p(yt+1|x

j
t+1; θ)w

ij
t

p(xj
t+1|x

ij ; θ)p(yt+1|µij
t+1; θ)w

ij
t

= (33)

=
p(yt+1|x

j
t+1; θ)

p(yt+1|µij
t+1; θ)

.

In many applications of the particle filter techniques, parameters are treated as known and

MCMC parameter estimates are used instead of the true values. MCMC is typically a off-line

approach, it does not allow to sequentially update parameter estimates as new observations

arrive. Moreover, when applied sequentially, MCMC estimation method is more time consuming

than particle filter algorithms. Thus in the next section we will consider the filtering problem in

presence of unknown static parameters, in a Bayesian perspective.

3.2 Parameter Estimation

When processing sequentially data, both the problems of hidden state filtering and of the

parameters estimation arise. In engineering, a common way to solve this problem is to treat

parameters as hidden states of the system. Berzuini et al. [9] develop this approach in a Bayesian

framework. Thus standard particle filtering techniques apply here to estimate the joint posterior

density p(x0:t, θ|y1:t). Approximated posterior p(θ|y0:t) is then obtained by marginalisation.

Observe that the parameters are fixed over time, thus particles relative to the parameter

posterior distribution do not change, while the particles approximating hidden states are allowed

to vary over filter iterations. As pointed out by Storvik [60], the degeneracy of the parameters

weights produces a negative effect on the whole posterior distribution, which degenerates to a

Dirac mass. Different solutions to the degeneracy problem have been proposed in the literature.

For example Kitagawa [43] explicitly assumes an artificial evolution of the parameters, which

are still considered as hidden states of the dynamic model. The assumption of time varying

parameters introduces diversity in particles set avoiding the degeneracy problem, but produces

higher variability in parameter estimates. Liu and West [46] use a kernel density estimation of the

parameter posterior distribution as importance density to refresh the particle set. This method

produces slowly time-varying parameters and thus adds noise to the parameter estimates. In order

to reduce the effect of the artificial variability, the authors adopt a kernel shrinkage technique.

An alternative approach can be founded in Storvik [60], which proposes a quite general

particle filter for joint estimation of hidden states and non-dynamic parameters. The algorithm

requires to know a set of sufficient statistics for the posterior distribution. Note however that

16



the existence of sufficient statistic for the parameter θ is not necessary in principle, because the

posterior distribution of the parameters p(θ|x0:t,y0:t) can be always evaluated at each time step.

A sequential algorithm, called practical filter, is proposed by Polson, Stroud and Müller [53]. The

parameter and state joint filtering distribution is represented as a mixture of fixed lag-filtering

distributions. They simulate from the joint filtering distribution by simulating sequentially from

the parameter posterior and from the fixed-lag smoothing distribution. The method is particularly

useful when a set of sufficient statistic for the posterior is known. A comparison (see Polson,

Stroud and Müller [54]) with Storvik’s [60] algorithm proves the superiority of the practical filter

when apply to the basic continuous SV model.

Sequential methods, alternative to particle filters, can be founded in Andrieu and Doucet [3],

who propose online Expectation-Maximization type algorithms, which do not degenerate, but

require the knowledge of the hidden Markov process ergodic distribution and of a set of sufficient

statistics for the posterior distribution.

In the following we refer to the algorithm due to Liu and West [46] and to the works of Lopes

[47] and Lopes and Marigno [48], for some applications of the particle filter algorithms to MSSV

models.

The problem of the joint estimation of parameters and states of a dynamic system can be

stated in a Bayesian framework as follows. Define a Bayesian dynamic model with unknown

parameters

(xt|xt−1) ∼ p(xt|xt−1, θ) (34)

(yt|xt) ∼ p(yt|xt, θ) (35)

x0 ∼ p(x0|θ) (36)

θ ∼ p(θ) , with t = 1, . . . , T. (37)

Note that unknown parameters are treated as random quantities, thus we denote the conditional

density by p(· | ·, θ), and assume a prior distribution p(θ). The state and parameters joint posterior

distribution associated to this model is (smoothing problem)

p(x0:t+1, θ|y1:t+1) =
p(yt+1|x0:t+1,y1:t, θ)p(xt+1|x0:t,y1:t, θ)

p(yt+1|y1:t)
p(x0:t, θ|y1:t) = (38)

=
p(yt+1|xt+1, θ)p(xt+1|xt, θ)p(x0:t|y1:t)

p(yt+1|y1:t)
p(θ|x0:t,y1:t).

The posterior distribution is written as the product of two components. The first is the filtering

distribution and the second is the full posterior distribution of the parameters given hidden states
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and the observations. The completed posterior of the parameters is proportional to a function

which can always be written in a recursive form

p(θ|x0:t,y1:t) ∝ p(θ)p(x0|θ)
t∏

k=1

p(xk|xk−1, θ)p(yk|xk, θ) (39)

that can be evaluated in the simulated hidden states as a by product of the particle filter

algorithm.

In the same way as for the smoothing problem, the joint filtering density of the current state xt

and of the parameter θ can be written as the product of two quantities (filtering problem)

p(xt+1, θ|y1:t+1) =
p(yt+1|xt+1,y1:t, θ)p(xt+1, θ|y1:t)

p(yt+1|y1:t)
= (40)

=
p(yt+1|xt+1, θ)p(xt+1|θ,y1:t)

p(yt+1|y1:t)
p(θ|y1:t).

The filtering problem can thus be treated conditionally to the parameters value. It is possible

for example to use the Kalman Filter or the HMM filtering algorithms to filter the states and the

particle filter to estimate the parameters (see for example Chopin [14]). In MSSV model both

the Kalman Filter and the HMM can not be used, thus Monte Carlo filters must be used for the

joint estimation of parameters and states of the dynamic system. However, in a full simulation

based approach, treating the parameters as fixed causes the degeneracy of the filter. To solve

this problem Liu and West [46] propose to approximate the posterior distribution p(θ|y1:t) with

a particle set {xi
t, θ

i
t, w

i
t} and to reconstruct the parameter posterior distribution at time (t + 1)

through a Gaussian kernel density estimation

p(xt+1, θt+1|y1:t+1) ∝

∝ p(yt+1|xt+1, θt+1)p(xt+1|θt+1,y1:t)p(θt+1|y1:t) =

= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ
p(xt+1|xt, θt+1)p(xt|y1:t, θt)p(θt|y1:t)δθt

(θt+1)dθtdxt ≈

Particle
≈

N∑

i=1

p(yt+1|xt+1, θt+1)p(xt+1|xt, θt+1)δθt
(θt+1)w

i
tδ{(xi

t,θ
i
t)}

(dxt, dθt) ≈ (41)

Kernel
≈

N∑

i=1

p(yt+1|xt+1, θt+1)p(xt+1|x
i
t, θt+1)w

i
tN (θt+1|m

i
t, b Vt)

In this context, index t for parameters means that they are updated sequentially. Note that after

particle approximation, another approximation has been introduced. The kernel reconstruction

of the posterior, implies the substitution of the parameter transition density, δθi
t
(θt+1), by a
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Gaussian transition density N (θt+1|m
i
t, b Vt). After the kernel reconstruction of the posterior

density, a new set of particles can be generated by applying the APF algorithm to the states and

to the parameters using the kernel posterior density estimate as parameters importance density.

The reconstruction of the posterior distribution through Gaussian kernel density estimation is

a technique introduced by West [64], [65] in order to obtain an Adaptive Importance Sampling

algorithm. The use of an adapting importance function is particulary useful in the dynamic

models, where the probability density function of the system can change over time.

Note that the posterior distribution is a mixture of distributions, that can be reparameterised,

using an allocation variable i to indicate the mixture component

p(xt, θt, i) = p(yt+1|xt+1, θt+1)p(xt+1|x
i
t, θt+1)w

i
tN (θt+1|m

i
t, b Vt) (42)

The main idea of APF applies here and the particle selection step is obtained by sampling the

mixture index i together with states xt+1 and parameters θt+1. Sampling from the joint density

(42) is obtained through importance sampling with proposal density

q(xt+1, θt+1, i|y1:t+1) = p(xt+1|θt+1,x
i
t)N (θt+1|m

i
t, b

2 Vt)q(i|y1:t+1) (43)

where the instrumental density, used to sample the random index, is q(i|y1:t+1) =

p(yt+1|µi
t+1, m

i
t)w

i
t. From previous assumptions on the proposal distribution, the weights

updating equation is

wj
t+1 ∝

p(yt+1|x
j
t+1, θ

j
t+1)p(xj

t+1|x
ij
t , θj

t+1)N (θj
t+1|m

ij
t , b2 Vt)w

ij
t

p(yt+1|µij
t+1, m

ij
t )p(xj

t+1|x
ij
t , θj

t+1)N (θj
t+1|m

ij
t , b2 Vt)wij

t

= (44)

=
p(yt+1|x

j
t+1, θ

j
t+1)

p(yt+1|µij
t+1, m

ij
t )

.

with j = 1, . . . , N . The algorithm avoids degeneracy by introducing diversity in particles. It

is known that diversity produces the impoverishment of the information contained in particles.

Thus Liu and West [46] propose a kernel shrinkage technique in order to reduce the effect of the

artificial variability. The kernel density at time t+1 depends on the density at time t through the

constraint on the conditional variance: Vt(θt+1) = Vt(θt)
∆
= Vt. It results that each component

of the kernel density estimation of the posterior distribution is not centered on the particles, θi
t ,

but on the linear combination between particles and the empirical average of the particles value

at the previous step

mi
t = aθi

t + (1 − a)θ̄t (45)
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In Appendix B, we give a proof of the kernel shrinkage relations given in equation (45), using

standard theorems on the conditional normal distribution. The resulting APF for states and

parameters estimation is in Algorithm 1.

Algorithm 1 (see Liu and West [46])

Given the initial set of particles {xj
t , θ

j
t , w

j
t}

N
j=1, for j = 1, . . . , N

1. Calculate µj
t+1 = E(xt+1|x

j
t , θ

j
t ) and mj

t = aθj
t + (1 − a)θ̄t

2. Simulate ij ∼ q(i|y1:t+1) ∝ wi
t p(yt+1|µ

i
t+1, m

i
t) with i ∈ {1, . . . , N}

3. Simulate θj
t+1 ∼ p(θt+1|θ

ij
t ) = N (θt+1; m

ij
t , (1 − a2)Vt)

4. Simulate x
j
t+1 ∼ p(xt+1|x

ij
t , θj

t+1)

5. Update particles weights: wj
t+1 ∝

p(yt+1|x
j
t+1

,θj
t+1

)

p(yt+1|µij

t+1
,mij

t )
.

In Appendix C we give a proof of the weights updating relation. Although this filtering approach

does not explicitly assume that parameters vary over time, the dynamic nature of the parameters

results implicitly from the structure of the filtering algorithm. It is possible to show (see Appendix

C), that the proposed filtering approach assumes time varying parameters with a Gaussian

transition density. Note however that the particle filter algorithm uses an approximation of the

parameter posterior distribution and maintains this approximation both in the importance density

and also in the weight updating relation. In principle an exact weight updating relation must be

determined and the approximation errors must be taken into account, before they accumulate

and produce poor parameter estimates. Thus a weight correction step would be needed, which

can be considered a variant of the Rao-Blackwellization argument (Casella and Robert [11]).

In particular, consider the true parameter posterior distribution and look at the kernel density

approximation as a way to obtain an adapting importance function, then the exact weights

updating can be determined as follows

wj
t+1 ∝

p(yt+1|x
j
t+1, θ

j
t+1)p(xj

t+1|x
ij
t , θj

t+1)w
ij
t p(θt+1|y1:t)

p(yt+1|µij
t+1, m

ij
t )p(xj

t+1|x
ij
t , θj

t+1)N (θj
t+1|m

ij
t , b2 Vt)wij

t

. (46)

where the parameter posterior distribution is known from relation (39) and can be approximated

20



through particle filter

p(θt+1|y1:t) =

∫

t⊗

k=1

Xk

p(θ|x0:t,y1:t)dx0:t (47)

≈
N∑

i=1

π(θ)π(x0)
t∏

k=1

p(yk|x
i
k, θ)p(xi

k|x
i
k−1, θ)w

i
k

This approximated weight updating is computationally unfeasible because of the high number

of times (t × N) the transition and the measurement equations must be evaluated. In the next

section we propose APF algorithm for generalised MSSV models.

3.3 Particle Filter Algorithms for Generalised MSSV Models

The general algorithm exhibited in the previous section applies both to the Gaussian model M1

and to heavy-tailed models M2 and M3. Lopes [47] gives a version of the algorithm for the

gaussian model M1. In the following we exhibit the algorithm for a Student-t model. Remember

that θ = (α1, α2, φ, ν, p12, p22, σ
2), then APF is in Algorithm 2.

Algorithm 2 (APF for Student-t MSSV model)

Given an initial set of particles {xi
t, θ

i
t, w

i
t}

N
i=1:

1. Compute Vt =
∑N

j=1(θ
j
t − θ̄t)(θ

j
t − θ̄t)

′wj
t and θ̄t =

∑N
j=1 θj

t w
j
t

2. For j = 1, . . . , N , update the following variables:

(a) s̃j
t+1 = arg max

l∈1,...,k
P(st+1 = l|st = sj

t )

(b) µj
t+1 = αj

s̃j
t+1

+ φj
th

j
t

(c) mj
t = aθj

t + (1 − a)θ̄t

3. For j = 1, . . . , N :

(a) Simulate kj ∈ {1, . . . , N} with P(kj = l) ∝ p(yt+1|µ
l
t+1, m

l
t)w

l
t

(b) Simulate θj
t+1 from N (mkj

t , b2Vt)

(c) Simulate sj
t+1 ∈ {1, . . . , k} from P(sj

t+1 = j|skj

t )

(d) Simulate hj
t+1 from N (αj

sj
t+1

+ φj
t+1h

j
t , (σ

2)j
t+1)

4. Update weights wj
t+1 ∝ p(yt+1|h

j
t+1, ν

j
t+1)/p(yt+1|µ

kj

t+1, m
kj

t )
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Note that the model M2 is more difficult to estimate because the degrees of freedom ν

determine the tail heaviness of the observable process. This element makes the weight updating

relation more sensitive to the evolution of the parameters.

For the model M3 we propose the following adaptation of the algorithm of Liu and West [46]. In

order to obtain an integral representation of the α-stable density, we introduce an auxiliary (or

completing) variable zt. Then we suggest to approximate the integral by simulating zt from its

conditional distribution.

Algorithm 3 - (APF for stable MSSV model)

Given an initial set of particles {xi
t, θ

i
t, w

i
t}

N
i=1:

1. Compute Vt =
∑N

j=1(θ
j
t − θ̄t)(θ

j
t − θ̄t)

′wj
t and θ̄t =

∑N
j=1 θj

t w
j
t

2. For j = 1, . . . , N , update the following variables:

(a) s̃j
t+1 = arg max

l∈1,...,k
P(st+1 = l|st = sj

t )

(b) µj
t+1 = αj

s̃j
t+1

+ φj
th

j
t

and mj
t = aθj

t + (1 − a)θ̄t

3. For j = 1, . . . , N :

(a) Simulate kj ∈ {1, . . . , N} with P(kj = l) ∝
∑R

r=1 p(yt+1, z
l,r
t |µl

t+1, m
l
t)w

l
t

(b) Simulate θj
t+1 from N (mkj

t , b2Vt)

(c) Simulate sj
t+1 ∈ {1, . . . , k} with P(sj

t+1 = j|skj

t )

(d) Simulate hj
t+1 from N (αj

sj
t+1

+ φj
t+1h

j
t , (σ

2)j
t+1)

(e) Simulate zj,r
t+1 from f(z|yt+1, h

j
t+1, m

j
t ) for r = 1, . . . , R

4. Update weights wj
t+1 ∝

∑R
r=1

p(yt+1,zj,r
t+1

|hj
t+1

,θj
t+1

)
∑R

r=1
p(yt+1,zkj,r

t |µkj

t+1
,mkj

t )

Note however that the numerical approximation of the stable density introduces further errors in

the algorithm and the parameter estimation becomes difficult.
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3.4 Convergence of the Particle Filter Algorithms

If we assume the parameter vector is a stochastic process with a Markovian transition kernel, then

the particle filters developed for joint state filtering and parameter estimation converge a.s.. In

fact, the dynamic models and particle filters studied in previous sections, satisfy the assumptions

required for the a.s. convergence of the empirical posterior density to the true posterior

p̂(x0:t, θ0:t|y1:t)
a.s.
→ p(x0:t, θ0:t|y1:t) (48)

The necessary assumptions for the a.s. convergence of quite general sequential Monte Carlo

algorithms are in Crisan and Doucet [16]. The proof of these results are based on the convergence

analysis of empirical densities, produced by Crisan [15]. See also Crisan and Doucet [17] for a

useful survey on the convergence results on particle filters.

4 Simulation Study

In the following we verify the efficiency of the Auxiliary Particle Filter algorithm exhibited in

the previous section through some applications on synthetic data. Tab. 1 shows the effect of

the number of particles on the parameter estimates. An higher number of particles improves the

precision of the estimates, overall for the parameters α1, α2 and φ. For all the experiments we

use as prior a multivariate Gaussian distribution centered near the true parameters value. We

try other initial values and find that for quite all starting value the APF estimates are close to

the true parameters value. The result is not robust with respect all parameter setting. In that

case the choice of the parameter δ related to the kernel shrinkage becomes important. There is

a tradeoff between the high level of artificial noise (controlled by the parameter δ), which allows

to explore the parameters space and the efficiency of the parameter estimates.

Table 1: Gaussian model M1. APF parameter estimates for an increasing number, M , of

particles. Estimates on T=1,000 observations.

θ True θ̂APF

M=100 M=250 M=1000 M=5000

α1 -2.5 -3.271 -2.395 -2.242 -2.133

α2 -1.0 -0.745 -1.011 -0.914 -0.923

φ 0.5 0.373 0.614 0.573 0.524

σ2 0.1 0.006 0.255 0.376 0.354

p12 0.010 0.197 0.249 0.014 0.126

p22 0.975 0.832 0.862 0.974 0.877
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Figure 5: Filtered Markov switching process and log-volatility (solid line) and true log-volatility

(dotted line), for the Gaussian MSSV model.

Tab. 1 gives the result for the Gaussian model M1, on a sample of T = 1, 000 observations and

with a M = 5, 000 constant size particle set. The filtered hidden states are represented in Fig. 5

and the evolution of the particle weights is in Fig. 7.

The absence of degeneracy has been verified by estimating both the survival rate and the effective

sample size indicator (see Fig. 6).

Survival rate measures the fraction of particles survived to the selection step with respect to the

total number of particles in the set. The survival rate reveals particle degeneracy when exhibiting

a persistent high number of dead particles from a generation to the subsequent one. We compute

survival rate as follow

SRt =
N −

∑N
i=1 I{0}(Card(Ii,t))

N
(49)

where Ii,t = {j ∈ {1, . . . , N}|ijt = i} is the set of all random index values, which are selecting, at

time t, the i − th particle. Note that if at time t the particle k does not survive to the selection

step then the set Ik,t becomes empty. Fig. 6 exhibits the evolution over time of the survival rate

for a set of N = 5, 000 particles. Although for some filter iterations the rate falls under the 30%

level, it does not remain persistently under that level. We can conclude that the filter does not

24



0 200 400 600 800 1000
0.00

0.15

0.30

0.45

0.60

0.75
S

u
rv

iv
a
l 
R

a
te

Time

0 200 400 600 800 1000
Time

2000

5000

E
ff

e
c
ti

v
e
 S

a
m

p
le

 S
iz

e
 (

E
S

S
)

Figure 6: Survival Rate and Effective Sample Size of the particle set at each time step.
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Figure 7: Time evolution of particle set and associated weights, for the parameters of the Gaussian

model.
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show degeneracy problems.

In order to complete the degeneracy analysis we evaluate the Effective Sample Size indicator.

This degeneracy measure has been introduced by Liu and Chen [45] and for the general dynamic

system of equations (18)-(20) is defined as

ESSt
∆
=

N

1 + V ar(w∗i
k )

(50)

where the weights, w∗i
k = p(xi

k|y1:k; θ)/q(x
i
k|x

i
k−1; θ), cannot be calculated explicitly. Thus the

following estimator has been used

ˆESSt =
1

∑N
i=1(w̃

i
t)

2
(51)

where normalized weights, w̃i
t, have been defined in equation (29). Observe that this degeneracy

measure is less than or equal to N . It is equal to N when the importance function is exactly

equal to the filtering density and tends to zero when the variance of the importance weights tends

to infinity, this is when particle filter degenerates. Fig. 6 shows the estimated ESS relative to the

particle filter applied to the gaussian model. Observe that the effective sample size varies over

time, but it never stabilizes at zero. Thus we conclude again in favour of a non-degeneracy of

our particle filter for the gaussian model.

We apply particle filter to estimate the Student-t model M2. Estimation results for an

increasing number of particles are represented in Tab. 2.

Table 2: Student-t model M2. APF parameter estimates for an increasing number, M , of

particles. Estimates on T=1,000 observations.

θ True θ̂APF

M=100 M=250 M=1000 M=5000

ν 8 7.563 8.851 9.534 7.927

α1 -2.5 -1.437 -2.133 -2.051 -2.236

α2 -1.0 -0.599 -0.662 -0.577 -0.973

φ 0.5 0.714 0.685 0.709 0.603

σ2 0.1 0.080 0.039 0.038 0.083

p12 0.010 0.107 0.024 0.210 0.101

p22 0.975 0.890 0.881 0.877 0.890

Fig. 8 exhibits both the filtered hidden jump Markov process and the filtered stochastic log-

volatility. The absence of degeneracy has been detected through the survival rate, which is
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Figure 8: Filtered Markov switching process and log-volatility (solid line) and true log-volatility

(dotted line), for the Student-t MSSV model.
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represented in Fig. 9. The same figure gives the evolution over filter iterations of the estimated

parameter, ν, which give the heaviness of the tail of the distribution.

We conclude that the algorithm need of an higher number of particles to produce better parameter

estimates. Moreover the results obtained for both the Gaussian and the Student-t models need

further evaluation studies. In particular the sensitivity of the parameter estimates to the value

of the transition probabilities p11 and p00 need to be studied.

5 Conclusion

Following some suggestions present in the literature on the SV models, in this work we develop

heavy-tailed Markov Switching Stochastic Volatility (MSSV) models. We discuss stationary

conditions of MSSV models and in order to make inference we follow a recent literature on

the simulation based approach. In particular we focus on the parameters and states sequential

learning problem. We show that estimation errors are due to the approximation errors, which

occur when simultaneously applying auxiliary particle filter and adaptive posterior reconstruction

and suggest a theoretical remedy. Moreover we assume time varying parameters and apply the

auxiliary particle filter algorithm to heavy tails MSSV model and verify, through some simulation

studies, the efficiency of such algorithm on Student-t innovations model.
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Appendix A - Stationarity Conditions

In this appendix we derive some stationarity conditions for the stochastic volatility process with

jumps, given in equations (13)-(16).

Note that through the transition matrix and the initial probability measure, the Markov jump

process is well defined on the canonical space

Ω = EN, ω = (ωt)t≥0, st(ω) = ωt (52)

Ft = σ(sk, k ≤ t), F = σ(sk, k ≥ 0)

See Baldi et al.[5] for further details. Stationarity analysis of the MSSV model is also based on

the following property of the transition matrix.

Theorem 1 (Transition matrix composition)

Given the transition matrix P, the n-time composition is denoted by P
n =

n−times
︷ ︸︸ ︷

P ◦ P ◦ . . . ◦ P and is

defined by the following equation:

P
n =

1

p01 + p11

(

p10 p01

p10 p01

)

+
(1 − p01 − p10)

n

p10 + p01

(

p01 −p01

−p10 p10

)

(53)

A sufficient condition for the stationarity of the observable process with stochastic volatility is

the stationarity of the hidden stochastic log-volatility process, as stated in the following.

Theorem 2 (Second order stationarity conditions)

Given the MSSV process defined in equations (13)-(16), if the innovation process εt is stationary

and the hidden process ht is second order stationary then the process log(y2
t ) is second order

stationary.

Proof Consider the logarithmic transformation of y2
t and the independence assumption between

ht and εt, then by the Jensen inequality

Eπ(ln(y2
t )) = Eπ(ht) + Eπ

(
ln
(
ε2
t

))
≤ Eπ(ht) + ln

(
Eπ(ε2

t )
)
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Eπ

((
ln(y2

t )
)2
)

= Eπ(h2
t ) + Eπ

((
ln
(
ε2
t

))2
)

+ 2Eπ(ht)Eπ

(
ln
(
ε2
t

))

and if Eπ(ht), Eπ(h2
t ), Eπ(ln

(
ε2
t

)
) and Eπ(

(
ln
(
ε2
t

))2
) are finite when t → ∞, then previous

quantities are finite.

�

In the following we discuss stationarity of the first and second order moments of the hidden

switching log-volatility process.

Observe that the autoregressive structure of the log-volatility process, see the equation (14),

makes it dependent on the past history of the Markov jump process. This feature becomes evident

after some recursive substitutions

ht = α + βst + φht−1 + σηηt = (54)

= α + βst + φ(α + βst−1 + φht−2 + σηηt−1) + σηηt =

= . . .

= α
t−1∑

i=0

φi + β
t−1∑

i=0

φist−i + ση

t−1∑

i=0

φiηt−i + φth0.

The system of stochastic difference equations (14), (15) and (16) admits an ergodic solution. In

particular it is possible to find the ergodic solution for the process ht.

Theorem 3 (Ergodic solution)

Assume that h0 = 0 and |φ| < 1, then the system of equations (14), (15) and (16), has the

following ergodic solution ht

ht = α
+∞∑

i=0

φi + β
+∞∑

i=0

φist−i + ση

+∞∑

i=0

φiηt−i. (55)

Proof

Consider the process ht

ht = α
+∞∑

i=0

φi + β
+∞∑

i=0

φist−i + ση

+∞∑

i=0

φiηt−i. (56)
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and suppose it is a solution of the system (14)-(16), then we show that it is still a solution of the

system at time t + 1

ht+1 = α + βyt + φ

[

α

1 − φ
+ β

+∞∑

i=0

φist−1−i + ση

+∞∑

i=0

φiηt−1−i

]

+ σηηt =

=
−φα + α + φα

1 − φ
+ βst + β

+∞∑

i=1

φist−i−1 + βst−1 + ση

+∞∑

i=1

φiηt−1−i + σηηt =

=
α

1 − φ
+ βst + φβ

+∞∑

i=0

φist−i−1 + φση

+∞∑

i=0

φiηt−i−1 + σηηt = (57)

=
α

1 − φ
+ β

+∞∑

i=0

φist−i + ση

+∞∑

i=0

φiηt−i
∆
= ht

�

We evaluate the asymptotic stationarity of the ergodic solution by calculating the moments

of the process and by taking. Take the expectation of the process defined in (54) with respect to

the ergodic probability π and consider the limit when t → +∞

lim
t→+∞

Eπ(ht) = lim
t→+∞

(

α
t−1∑

i=0

φi + β
t−1∑

i=0

φi
Eπ(st−i) + φth0

)

=

= lim
t→+∞

(

α
t−1∑

i=0

φi + β
t−1∑

i=0

φi p01

p01 + p10
+ φth0

)

= (58)

=
α

1 − φ
+

β

1 − φ

p01

p01 + p10
.

where the expected value of the jump process is calculated with respect to the ergodic probability

Eπ(st−i) = 0 π0 + 1 π1 = p01/(p01 + p10). (59)

In order to evaluate the second order asymptotic stationarity of the log-volatility process,

consider the variance of the process under the ergodic probability and take the limit when t → +∞

lim
t→+∞

Vπ(ht) =

= lim
t→+∞

(

Vπ(β
t−1∑

i=0

φist−i) + ση

t−1∑

i=0

φ2i

)

= (60)

= lim
t→+∞



β2
t−1∑

i=0

φ2i
Vπ(st−i) + 2β2

∑

i<j

φiφj
Cov(st−i, st−j) + ση

t−1∑

i=0

φ2i
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Under the assumption that |φ| < 1, the first and third terms of the sum have finite limits and

reduce respectively to

lim
t→+∞

(

β2
t−1∑

i=0

φ2i
Vπ(st−i)

)

=
β2

1 − φ2

p01

p01 + p10
(1 −

p01

p01 + p10
) (61)

and

lim
t→+∞

σ2
η

t−1∑

i=0

φ2i = σ2
η

1

1 − φ2
(62)

The covariance term becomes

lim
t→+∞

2β2
∑

i<j

φiφj
Cov(st−i, st−j) =

= lim
t→+∞

2β2
∑

i<j

φiφj p01p10

(p10 + p01)2
(1 − p01 − p10)

(j−i) =

= lim
t→+∞



2β2
t−1∑

i=0

t−1∑

j=i+1

φiφj p01p10

(p10 + p01)2
(1 − p01 − p10)

(j−i)



 =

= lim
t→+∞



2β2 p01p10

(p10 + p01)2

t−1∑

i=0

t−1−i∑

j=1

φ2iφj(1 − p01 − p10)
j



 =

= lim
t→+∞

(

2β2 p01p10

(p10 + p01)2

t−1∑

i=0

φ2i 1 − [φ(1 − p01 − p10)]
t−1−i

1 − φ(1 − p01 − p10)
φ(1 − p01 − p10)

)

= (63)

= lim
t→+∞

(

2β2p01p10

(p10 + p01)2
φ(1 − p01 − p10)

1 − φ(1 − p01 − p10)

{
t−1∑

i=0

φ2i −
t−1∑

i=0

φ2i[φ(1 − p01 − p10)]
t−i−1

})

=

= lim
t→+∞

(
2β2p01p10

(p10 + p01)2
φ(1 − p01 − p10)

1 − φ(1 − p01 − p10)

{
1 − φ2t

1 − φ2
−

[φ(1 − p01 − p10)]
t − φ2t

φ(1 − p01 − p10) − φ2

})

=

=
2β2

1 − φ2

p01p10

(p10 + p01)2
φ(1 − p01 − p10)

1 − φ(1 − p01 − p10)
.

The last equation has been obtained under the following stationarity conditions: |φ| < 1 and

|φ(1 − p01 − p10)| < 1. The first condition is required for the stationarity of the variance term.

The second condition is satisfied due to the existence of the ergodic probability of the jump

process. Note that the auto-covariance of the jump Markov process has been calculated through

the equation (53)
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Covπ(st−i, st−j) = Eπ(st−ist−j) − Eπ(st−i)Eπ(st−i) =

= Pπ(st−i = 1)Pπ(st−j = 1) − Eπ(st−i)Eπ(st−i) = (64)

= Pπ(st−i = 1)Pj−i(1, 1) − (
p01

p01 + p10
)2 =

=
p01

p01 + p10
(p01 + p10(1 − p01 − p10)

j−i) − (
p01

p01 + p10
)2 =

=
p01p10

p01 + p10
(1 − p01 − p10)

j−i.

with i ≤ j. Finally we check the stationarity of the autocovariance function of the process.

Assume that τ ≤ t − 1, then

Covπ(ht, ht+τ ) =

= Covπ(β

t−1∑

i=0

φist−i + ση

t−1∑

i=0

φiηt−i, β

t+τ−1∑

i=0

φist+τ−i + ση

t+τ−1∑

i=0

φiηt+τ−i) = (65)

= Covπ(β
t−1∑

i=0

φist−i, β
t+τ−1∑

i=0

φist+τ−i) + Covπ(ση

t−1∑

i=0

φiηt−i, ση

t+τ−1∑

i=0

φiηt+τ−i) =

= Covπ(β
t−1∑

i=0

φist−i, β
t+τ−1∑

i=0

φist+τ−i) + σ2
ηφ

τ 1 − φ2t

1 − φ2
=

= β2
t−1∑

i=0

t+τ−1∑

j=0

φiφj
Covπ(st−i, st+τ−j) + σ2

ηφ
2 1 − φ2t

1 − φ2
=

= β2
t−1∑

i=0

t−1∑

j=τ

φiφj−τ
Covπ(st−i, st−j) + σ2

ηφ
2 1 − φ2t

1 − φ2
=

= β2
t−1∑

i=0

t−1∑

j=τ

φiφj−τ p01p10

p01 + p10
(1 − p01 − p10)

|j−i| + σ2
ηφ

2 1 − φ2t

1 − φ2

Previous quantity depends on t, thus we process is not second order stationary. Moreover the limit

when t → +∞ is finite and depends only on τ , under the assumption that |φ(1 − p01 − p10)| < 1
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p01p10

p01 + p10
β2

+∞∑

i=0

+∞∑

j=τ

φiφj−τ (1 − p01 − p10)
|j−i| +

σ2
ηφ

2

1 − φ2
= (66)

=
p01p10

p01 + p10
β2

+∞∑

i=0

+∞∑

j=0

φiφj(1 − p01 − p10)
|j+τ−i| +

σ2
ηφ

2

1 − φ2
≤

≤
p01p10

p01 + p10
β2

+∞∑

i=0

+∞∑

j=0

φiφj(1 − p01 − p10)
|j+τ |+|i| +

σ2
ηφ

2

1 − φ2
=

=
p01p10

p01 + p10
β2 (1 − p01 − p10)

τ

(1 − φ(1 − p01 − p10))2
+

σ2
ηφ

2

1 − φ2
< +∞

It is possible to prove that the covariance is finite also in the case τ > t − 1. After previous

considerations, we conclude that the jump log-volatility process is asymptotically stationary of

second order.

Finally we show that the second order stationarity conditions obtained in previous sections are

necessary conditions for the existence and uniqueness of the ergodic distribution of the hidden

Markov process {ht, st}t∈N. On the stationarity conditions of a Markov switching functional

autoregressive process, the only available results are due to Francq and Roussognol [26]. Francq

and Zakoian [27] analyse stationarity conditions of a Markov-switching multivariate autoregressive

moving average process.

In the following we will refer mainly to the work of Francq and Roussignol [26]. Introduce

the following multivariate functional autoregressive process with values in R
S

ht = F (ht−1, st, θ) + G(ηt, st, θ) ∀t ≥ 1 (67)

where {ηt}t∈N is a sequence of i.i.d. random processes, θ ∈ Θ the parameters of the model and

{st}t∈N a discrete Markov chain independent of {ηt}t∈N, with values in the finite state space

E = {1, 2, . . . , L} and with stationary transition probabilities P(st = j|st = i) = pij . Then the

following theorem holds.

Theorem 4 (Existence and uniqueness of the ergodic probability of {xt, st}t∈N)

Suppose the following conditions

(i) The Markov chain {st}t is irreducible and aperiodic;

(ii) For all i ∈ E the random vector G(ηt, i) has density fi(·) with respect to the Lebesgue

measure of R
S and E(||G(ηt, i)||) < ∞ where || · || is the Euclidean norm;
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(iii) There exist a1, a2, . . . , aL such that ∀ (x, y) ∈ R
S, ||F (x, i)− F (y, i)|| ≤ ai||x− y|| and such

that the matrix

Q =









p1,1a1 p2,1a1 · · · pL,1a1

p1,2a2 p2,1a2 · · · pL,2a2

...
...

...
...

p1,LaL p2,LaL · · · pL,LaL









(68)

has spectral radius strictly less than 1;

are satisfied. Then The Markov chain defined by Eq. (67) admits a unique invariant probability

µ. The second marginal of µ is equal to the invariant probability of {st}t∈N. A stationarity

Markov process {ht, st}t∈N satisfying (67) with µ as initial distribution is an aperiodic ergodic

Harris process. Moreover, for all process {ht, st}t∈N satisfying (67) and all µ-integrable function

g from R
S × E to R we have

lim
n→∞

1

n

n∑

i=1

g(xk, sk) = µ(g) a.s. (69)

Proof For a proof see Francq and Roussignol [26]

�

The theorem applies to the hidden log-volatility process. In particular the assumption (ii) is

satisfied because the random variable G(ηt, s) has normal density with mean zero and finite

variance ση.

The third assumption is also satisfied because

||F (x, s) − F (y, s)|| = ||α + βs + φy − (α + βs + φx)|| = |φ| ||y − x|| (70)

thus a1 = a2 = |φ| and the spectral radius of

Q =

(

p0,0|φ| p1,0|φ|

p0,1|φ| p1,0|φ|

)

(71)

is λ1 = |φ| and λ2 = |φ||(1 − p01 − p10)|. The assumption (iii) requires that |φ| < 1 and

|(1− p01 − p10)| < 1. These conditions are satisfied if we require the second order stationarity of

the process {st}, (see Appendix A.3).
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Appendix B - States and Parameters Joint Estimation

In the following we show some analytical aspects of the joint estimation of the parameters and

the states of the Bayesian dynamic model given in equations (34), (35), (36) and (37). We use

the following notation for the conditional moments Vt(·) = V ar(·|y1:t), Ct(·, ·) = Cov(·, ·|y1:t)

and Et(·) = E(·|y1:t). Denote with I the identity matrix. Assume that parameters evolve over

time

θt+1 = θt + ξt+1, with ξt+1 ∼ N(0, Wt+1). (72)

Note that the noise component produces artificial variability in the posterior distribution of the

parameters. In order to reduce the variability Liu and West [46] suggest to impose the following

constraint on the variance-covariance matrix of the parameter Vt(θt+1) = Vt(θt) = Vt. It follows

that

Vt(θt+1) = Vt(θt) + Vt(ξt+1) + 2Ct(ξt+1, θt) ⇔ (73)

Ct(ξt+1, θt) = −
Vt(ξt+1)

2
= −

Wt+1

2
,

In order to control the transition of the parameters between time t and (t+1) they use a technique

of shrinkage between gaussian kernels. The resulting parameters transition density is a Gaussian.

The shrinkage technique has already been used by West [65] in order to reconstruct the posterior

distribution in an adaptive importance sampling scheme. In the following we prove the result

given in Eq. (45).

Proof (Kernel Shrinkage Realtion)

The joint density of θt+1 and θt is a Gaussian density, characterised by the following moments

Et(θt)
∆
= θ̄t (74)

Et(θt+1) = Et(ξt+1) + Et(θt) = Et(θt)
∆
= θ̄t (75)

Vt(θt) = Vt(θt+1) = Vt (76)

Ct(θt+1, θt) = Ct(θt + ξt+1, θt) = Vt + Ct(ξt+1, θt) = Vt −
Wt+1

2
(77)

and by straightforward calculations, the distribution of θt+1 conditional to θt is Gaussian, with

following conditional mean and variance
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Et(θt+1|θt) = θ̄t + (Vt −
Wt+1

2
)V −1

t (θt − θ̄t) (78)

= θ̄t + (I −
Wt+1

2
V −1

t )θt − (I −
Wt+1

2
V −1

t )θ̄t

= At+1θt + (I − At+1)θ̄t

where At+1 = (I − Wt+1

2 V −1
t ).

Vt(θt+1|θt) = Vθt
(θt+1) − Ct(θt+1, θt)V

−1
t (θt)Ct(θt+1, θt) (79)

= Vt − (Vt −
Wt+1

2
)V −1

t (Vt −
Wt+1

2
)

= Vt − (I −
Wt+1

2
V −1

t )(I −
Wt+1

2
V −1

t )Vt

= (I − A2
t+1)Vt.

Conclude that

p(θt+1|θt) = N(At+1θt + (I − At+1)θ̄t, (I − A2
t+1)Vt) (80)

�

In order to simplify the estimation problem Liu and West [46] assume that the variance-covariance

matrix of the noise is proportional to Vt and to a discount factor δ

Wt+1 = Vt(
1

δ
− 1) (81)

Thus previous quantities become: At+1 = I 3δ−1
2δ , Vt(θt+1|θt) = (1 − (3δ−1

2δ )2) and Et(θt+1|θt) =
3δ−1
2δ θt + (1−δ

2δ )θ̄t. Denote a = 3δ−1
2δ , then the distribution in equation (80) simplifies to:

p(θt+1|θt) = N(θt+1; aθt + (1 − a)θ̄t, (1 − a2)Vt) = N(θt+1; mt, (1 − a2)Vt) (82)
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Appendix C - APF Algorithm for States and Parameters Joint

Estimation

The sequential importance sampling (SIS) particle filter is the starting point to understand and

to develop other particle filters like the auxiliary particle filter. Thus, in the following we exhibit

a basic SIS algorithm for the joint estimation of states {xt, t ∈ N}, xt ∈ X and parameters

{θt, t ∈ N}, θt ∈ Θ. In the Bayesian model, given in equations (34)-(37), the parameters are

fixed over time, but for estimation purposes we let parameters vary over time. In particular the

proof in this appendix is based on the hypothesis that parameters evolution is described by a

Gaussian random walk: θt+1 = θt + εt. We use the Liu and West’s kernel shrinkage technique

in order to reduce the effects on the parameters estimates of the artificial diversity introduced

in the particle filter. We show also why the algorithm of Liu and West [46] can be view as a

reinterpretation of a dynamic model with time varying parameters. In the following we give the

pseudo-code representation of the algorithm and the proof of the weights updating relation.

Algorithm 4 - SIS for state and parameter estimation

Given the initial set of particles {xi
t, θ

i
t, w

i
t}

N
i=1, for i = 1, . . . , N

1. Simulate θi
t+1 ∼ p(θt+1|θ

i
t)

2. Simulate xi
t+1 ∼ p(xt+1|xi

t, θ
i
t+1)

3. Update the weights: wi
t+1 ∝ wi

t p(yt+1|x
i
t+1, θ

i
t+1)

Proof (Recursive Weights Updating Relation)

Consider the joint posterior density of the parameters and the hidden states

p(xt+1, θt+1|y1:t+1)
Bayes

=
p(yt+1|xt+1, θt+1,y1:t)p(xt+1, θt+1|y1:t)

p(yt+1|y1:t)
=

Markov
=

p(yt+1|xt+1, θt+1)p(xt+1, θt+1|y1:t)

p(yt+1|y1:t)
∝ (83)

∝ p(yt+1|xt+1, θt+1)p(xt+1, θt+1|y1:t) =
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Kolmog.
= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ
p(xt+1, θt+1|xt, θt,y1:t)p(xt, θt|y1:t)dθtdxt =

= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ
p(xt+1|xt, θt+1, θt,y1:t)p(θt+1|xt, θt,y1:t)p(dxt, dθt|y1:t) =

= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ

Joint transition density
︷ ︸︸ ︷

p(xt+1|xt, θt+1)p(θt+1|θt)p(xt, θt|y1:t)dθtdxt

Observe that the joint transition density is expressed as the product of the state transition density,

conditional to the parameters, and the parameters transition density. At time t the parameters

transition density can be chosen to be a normal distribution centered on the previous value of the

particle: θi
t, but this choice produces higher variability in parameter estimates. In order to solve

the problem, Liu and West [46] use a Gaussian kernel shrinkage technique, which leads to more

stable estimate. The resulting transition density is the Gaussian distribution in equations (80)

and (82), with mean and variance estimated on the simulated posterior distribution.

Assume to have, at time t, a set of particles {xi
t, θ

i
t, w

i
t}

N
i=1, which approximates the prior

distribution p(xt, θt|y1:t). The resulting empirical distribution is

p(xt, θt|y1:t) ≈
N∑

i=1

wi
tδ{xi

t,θ
i
t}

(dxt, dθt) (84)

and the last equation in (83) can be approximated as follows

N∑

i=1

p(yt+1|xt+1, θt+1)p(xt+1|x
i
t, θt+1)p(θt+1|θ

i
t)w

i
tδ{xi

t,θ
i
t}

(dxt, dθt) (85)

In SIS particle filter, the new set of particles {xi
t+1, θ

i
t+1, w

i
t+1}

N
i=1 is generated by simulating

each pair {xi
t+1, θ

i
t+1} from the instrumental density q(xt+1, θt+1|y1:t+1). The weights updating

equation is determined by an importance sampling argument. Choose the instrumental density to

be the product of the priors of θt+1 and xt+1:

q(xt+1, θt+1|y1:t+1) = p(xt+1|xt, θt+1)p(θt+1|θt) (86)

then the weights updating equation is given by the following correction step

wi
t+1 ∝

p(yt+1|x
i
t+1, θ

i
t+1)p(xi

t+1|x
i
t, θ

i
t+1)p(θi

t+1|θ
i
t)w

i
t

p(xi
t+1|x

i
t, θ

i
t+1)p(θi

t+1|θ
i
t)

= (87)

= wi
t p(yt+1|x

i
t+1, θ

i
t+1).
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Figure 10: Causality structure of a Markovian dynamic model with hidden states and time varying

parameter. A box around the variable indicates the variable is known, while a circle indicates a

hidden variable.

�

Auxiliary Particle Filter can be derived from the basic SIS algorithm, exhibited in the previous

appendix. APF uses the auxiliary variable j to select randomly particles and to mutate selected

particles. The auxiliary variable is simulated from a distribution, which summarizes and conserves

the information contained in previous particle set. This feature is obtained also by using the

variable µt. In this way the re-sampling step does not cause the impoverishment of the information

contained in the actual particle set.

Algorithm 5 - APF for states and parameters estimation (see Liu and West [46])

Given the initial set of particles {xj
t , θ

j
t , w

j
t}

N
j=1, for j = 1, . . . , N

1. Calculate µj
t+1 = E(xt+1|x

j
t , θ

j
t ) and mj

t = aθj
t + (1 − a)θ̄t

2. Simulate ij ∼ q(i|y1:t+1) ∝ wi
t p(yt+1|µ

i
t+1, m

i
t) with i ∈ {1, . . . , N}

3. Simulate θj
t+1 ∼ p(θt+1|θij

t ) = N (θt+1; m
ij
t , (1 − a2)Vt)

4. Simulate x
j
t+1 ∼ p(xt+1|x

ij
t , θj

t+1)

5. Update particles weights: wj
t+1 ∝

p(yt+1|x
j
t+1

,θj
t+1

)

p(yt+1|µij

t+1
,mij

t )
.
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Proof (Recursive Weights Updating Relation)

Consider the filtering density or joint posterior density for the parameters and the states

p(xt+1, θt+1|y1:t+1) =

Bayes
=

p(yt+1|xt+1, θt+1,y1:t)p(xt+1, θt+1|y1:t)

p(yt+1|y1:t)
=

Markov
=

p(yt+1|xt+1, θt+1)p(xt+1, θt+1|y1:t)

p(yt+1|y1:t)
∝

∝ p(yt+1|xt+1, θt+1)p(xt+1, θt+1|y1:t) =

Kolmog.
= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ
p(xt+1, θt+1|xt, θt,y1:t)p(xt, θt|y1:t)dθtdxt = (88)

= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ
p(xt+1|xt, θt+1)p(θt+1|θt)p(xt, θt|y1:t)dθtdxt =

= p(yt+1|xt+1, θt+1)

∫

X

∫

Θ

Joint transition density
︷ ︸︸ ︷

p(xt+1|xt, θt+1)p(θt+1|θt)p(xt, θt|y1:t)dθtdxt.

Observe that the joint transition density is decomposed in the product of the state transition

density conditional to the parameters and the parameters transition density. Liu and West [46]

use a Gaussian kernel shrinkage technique, which provides more stable estimates. The resulting

parameter transition density is the Gaussian distribution exhibited in equations (80) and (82).

Assume to have, at time t, a set of particles {xj
t , θ

j
t , w

j
t}

N
j=1, which approximates the prior

distribution p(xt, θt|y1:t). The resulting empirical distribution is:

p(xt, θt|y1:t) ≈
N∑

j=1

wj
t δ{xj

t ,θj
t }

(dxt, dθt) (89)

and the last equation in (88) can be approximated as follows

N∑

j=1

p(yt+1|xt+1, θt+1)p(xt+1|x
j
t , θt+1)p(θt+1|θ

j
t )w

j
t δ{xj

t ,θj
t }

(dxt, dθt) (90)

Note that the previous density is a mixture of distribution and in APF particle

filter, it is reparameterised through the allocation variable i as follows: p(xt, θt, i) =

p(yt+1|xt+1, θt+1)p(xt+1|x
i
t, θt+1)p(θt+1|θ

i
t)w

i
t. The index i represents the auxiliary variable and

is sampled together with the new set of particles, according to the instrumental probability:

q(i|y1:t+1) = p(yt+1|µ
i
t+1, m

i
t)w

i
t, where µi

t+1 is a variable which resumes the information
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contained in the particle set {xj
t , θ

j
t , w

j
t}

N
j=1, and mt = Et(θt+1|θt) is the mean of the parameters

transition density. Given the index i, the new set of particles {xj
t+1, θ

j
t+1, w

j
t+1}

N
j=1 is generated by

simulating (xj
t+1, θ

j
t+1) from the instrumental density q(xt+1, θt+1|i,y1:t+1). The weights updating

equation is determined by an importance sampling argument. Choose the conditional instrumental

density to be the product of the priors of θt+1 and xt+1, given i, with i = 1, . . . , N

q(xt+1, θt+1|i,y1:t+1) = p(xt+1, θt+1|x
i
t, θ

i
t) = p(xt+1|x

i
t, θt+1)p(θt+1|θ

i
t) (91)

then the weights updating equation is given by the following correction step

wj
t+1 ∝

p(yt+1|x
j
t+1, θ

j
t+1)p(xj

t+1|x
ij
t , θj

t+1)p(θj
t+1|θ

ij
t )wij

t

p(yt+1|µij
t+1, m

ij
t )p(xj

t+1|x
ij
t , θj

t+1)p(θj
t+1|θ

ij
t )wij

t

= (92)

=
p(yt+1|x

j
t+1, θ

j
t+1)

p(yt+1|µij
t+1, m

ij
t )

.

with j = 1, . . . , N .

�
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